1
|
Kuo CJ, Lee KH, Huang CC, Wang IF, Hsieh CCJ, Lin HC, Lee YC. Purα regulates the induction of Znf179 transcription during neuronal differentiation. Biochem Biophys Res Commun 2020; 533:1477-1483. [PMID: 33333713 DOI: 10.1016/j.bbrc.2020.10.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 11/15/2022]
Abstract
Development of the mammalian central nervous system is an important process, which is accomplished through precise regulations of many different genes. Zinc finger protein 179 (Znf179) is one of the essential genes that plays a critical role in neuronal differentiation. In our previous study, Znf179 knockout mice displayed brain malformation and impaired brain functions. We have also previously shown that Znf179 involves in cell cycle regulation, but the regulatory mechanism of Znf179 expression is not yet fully characterized. Herein, we identified that Purα is an essential factor for the promotor activity of Znf179. We also showed concurrent expression of Znf179 and Purα during neuronal differentiation. We also found that overexpression of Purα increased Znf179 expression in neuronal differentiated P19 cells. Through its direct binding to Znf179, as shown using DAPA, Purα upregulates Znf179 expression, suggesting that Purα is important for the regulation of Znf179 expression during neuronal differentiation. Our data indicated that Purα is involved in the transcriptional regulation of Znf179 gene during neuronal differentiation, and is indispensable during the brain development.
Collapse
Affiliation(s)
- Chu-Jen Kuo
- Health Management Center, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan
| | - Kuen-Haur Lee
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chi-Chen Huang
- PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan
| | - I-Fang Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Christine Chin-Jung Hsieh
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei, Taiwan; Department of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Hsin-Chuan Lin
- PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan.
| | - Yi-Chao Lee
- PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
2
|
Tsou JH, Yang YC, Pao PC, Lin HC, Huang NK, Lin ST, Hsu KS, Yeh CM, Lee KH, Kuo CJ, Yang DM, Lin JH, Chang WC, Lee YC. Important Roles of Ring Finger Protein 112 in Embryonic Vascular Development and Brain Functions. Mol Neurobiol 2016; 54:2286-2300. [PMID: 26951452 DOI: 10.1007/s12035-016-9812-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/22/2016] [Indexed: 11/28/2022]
Abstract
Rnf112 is a member of the RING finger protein family. The expression of Rnf112 is abundant in the brain and is regulated during brain development. Our previous study has revealed that Rnf112 can promote neuronal differentiation by inhibiting the progression of the cell cycle in cell models. In this study, we further revealed the important functions of Rnf112 in embryo development and in adult brain. Our data showed that most of the Rnf112 -/- embryos exhibited blood vascular defects and died in utero. Upon further investigation, we found that the survival rate of homozygous Rnf112 knockout mice in 129/sv and C57BL/6 mixed genetic background was increased. The survived newborns of Rnf112 -/- mice manifested growth retardation as indicated by smaller size and a reduced weight. Although the overall organization of the brain did not appear to be severely affected in Rnf112 -/- mice, using in vivo 3D MRI imaging, we found that when compared to wild-type littermates, brains of Rnf112 -/- mice were smaller. In addition, Rnf112 -/- mice displayed impairment of brain functions including motor balance, and spatial learning and memory. Our results provide important aspects for the study of Rnf112 gene functions.
Collapse
Affiliation(s)
- Jen-Hui Tsou
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ying-Chen Yang
- Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Ilan, Taiwan
| | - Ping-Chieh Pao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hui-Ching Lin
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Nai-Kuei Huang
- National Research Institute of Chinese Medicine, Taipei, Taiwan.,Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Shih-Ting Lin
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuei-Sen Hsu
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Che-Ming Yeh
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuen-Haur Lee
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chu-Jen Kuo
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan.,Department of Radiology, Shin Kong Wu Ho-Su Memorial Hospital, School of Medicine, Fu Jen Catholic University, Taipei, Taiwan
| | - De-Ming Yang
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Biophotonics, School of Medical Technology and Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Jiann-Her Lin
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Wen-Chang Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Chao Lee
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan. .,Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
3
|
Lin DY, Huang CC, Hsieh YT, Lin HC, Pao PC, Tsou JH, Lai CY, Hung LY, Wang JM, Chang WC, Lee YC. Analysis of the interaction between Zinc finger protein 179 (Znf179) and promyelocytic leukemia zinc finger (Plzf). J Biomed Sci 2013; 20:98. [PMID: 24359566 PMCID: PMC3878200 DOI: 10.1186/1423-0127-20-98] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/17/2013] [Indexed: 01/15/2023] Open
Abstract
Background Zinc finger protein 179 (Znf179), also known as ring finger protein 112 (Rnf112), is a member of the RING finger protein family and plays an important role in neuronal differentiation. To investigate novel mechanisms of Znf179 regulation and function, we performed a yeast two-hybrid screen to identify Znf179-interacting proteins. Results Using a yeast two-hybrid screen, we have identified promyelocytic leukemia zinc finger (Plzf) as a specific interacting protein of Znf179. Further analysis showed that the region containing the first two zinc fingers of Plzf is critical for its interaction with Znf179. Although the transcriptional regulatory activity of Plzf was not affected by Znf179 in the Gal4-dependent transcription assay system, the cellular localization of Znf179 was changed from cytoplasm to nucleus when Plzf was co-expressed. We also found that Znf179 interacted with Plzf and regulated Plzf protein expression. Conclusions Our results showed that Znf179 interacted with Plzf, resulting in its translocation from cytoplasm to the nucleus and increase of Plzf protein abundance. Although the precise nature and role of the Znf179-Plzf interaction remain to be elucidated, both of these two genes are involved in the regulation of neurogenesis. Our finding provides further research direction for studying the molecular functions of Znf179.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yi-Chao Lee
- Ph,D, Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
4
|
Potocki L, Bi W, Treadwell-Deering D, Carvalho CMB, Eifert A, Friedman EM, Glaze D, Krull K, Lee JA, Lewis RA, Mendoza-Londono R, Robbins-Furman P, Shaw C, Shi X, Weissenberger G, Withers M, Yatsenko SA, Zackai EH, Stankiewicz P, Lupski JR. Characterization of Potocki-Lupski syndrome (dup(17)(p11.2p11.2)) and delineation of a dosage-sensitive critical interval that can convey an autism phenotype. Am J Hum Genet 2007; 80:633-49. [PMID: 17357070 PMCID: PMC1852712 DOI: 10.1086/512864] [Citation(s) in RCA: 281] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Accepted: 01/17/2007] [Indexed: 12/26/2022] Open
Abstract
The duplication 17p11.2 syndrome, associated with dup(17)(p11.2p11.2), is a recently recognized syndrome of multiple congenital anomalies and mental retardation and is the first predicted reciprocal microduplication syndrome described--the homologous recombination reciprocal of the Smith-Magenis syndrome (SMS) microdeletion (del(17)(p11.2p11.2)). We previously described seven subjects with dup(17)(p11.2p11.2) and noted their relatively mild phenotype compared with that of individuals with SMS. Here, we molecularly analyzed 28 additional patients, using multiple independent assays, and also report the phenotypic characteristics obtained from extensive multidisciplinary clinical study of a subset of these patients. Whereas the majority of subjects (22 of 35) harbor the homologous recombination reciprocal product of the common SMS microdeletion (~3.7 Mb), 13 subjects (~37%) have nonrecurrent duplications ranging in size from 1.3 to 15.2 Mb. Molecular studies suggest potential mechanistic differences between nonrecurrent duplications and nonrecurrent genomic deletions. Clinical features observed in patients with the common dup(17)(p11.2p11.2) are distinct from those seen with SMS and include infantile hypotonia, failure to thrive, mental retardation, autistic features, sleep apnea, and structural cardiovascular anomalies. We narrow the critical region to a 1.3-Mb genomic interval that contains the dosage-sensitive RAI1 gene. Our results refine the critical region for Potocki-Lupski syndrome, provide information to assist in clinical diagnosis and management, and lend further support for the concept that genomic architecture incites genomic instability.
Collapse
Affiliation(s)
- Lorraine Potocki
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Potocki L, Shaw CJ, Stankiewicz P, Lupski JR. Variability in clinical phenotype despite common chromosomal deletion in Smith-Magenis syndrome [del(17)(p11.2p11.2)]. Genet Med 2003; 5:430-4. [PMID: 14614393 DOI: 10.1097/01.gim.0000095625.14160.ab] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE This report delineates the phenotypic features in a cohort of 58 individuals with Smith-Magenis syndrome (SMS) and compares features of patients with the common microdeletion to those of patients with variable sized deletions, and the three previously reported patients who harbor a mutation in RAI1 (retinoic acid induced 1). METHODS From December 1990 thru September 1999, 58 persons with SMS were enrolled in a 5-day multidisciplinary clinical protocol at the General Clinical Research Center (GCRC), Texas Children's Hospital. Each patient had a cytogenetically evident deletion in 17p11.2. RESULTS Of the 51 patients in whom the molecular extent of the chromosomal deletion could be delineated by pulsed-field gel electrophoresis (PFGE) and/or fluorescent in situ hybridization (FISH), 39 (approximately 76%) had the common SMS deletion. Smaller or larger deletions were seen in approximately 12% and approximately 10% of patients, respectively, and 1 patient had a complex chromosomal rearrangement including a deletion in 17p11.2. Parent of origin was determined by polymorphic marker analysis in a subset of patients: maternal approximately 43%, paternal approximately 57%. All patients had impaired cognitive and adaptive functioning and had at least one objective measure of sleep disturbance. Other common features (seen in >50% of patients) include short stature, ophthalmological, and otolaryngological anomalies, hearing impairment, abnormal EEG, and scoliosis. Cardiac and renal anomalies were seen in approximately 45% and approximately 19% of patients, respectively. There are no statistically significant differences in the incidence of these abnormalities in patients with the common deletion compared to those patients with smaller or larger sized deletions. CONCLUSIONS Despite a common deletion size in 76% of patients with SMS, the only constant objectively defined features among these patients are sleep disturbances, low adaptive functioning, and mental retardation. There is no pathognomonic clinical feature, no characteristic cardiovascular defect, renal anomaly, otolaryngological or ophthalmic abnormality in SMS.
Collapse
Affiliation(s)
- Lorraine Potocki
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
6
|
Yan J, Walz K, Nakamura H, Carattini-Rivera S, Zhao Q, Vogel H, Wei N, Justice MJ, Bradley A, Lupski JR. COP9 signalosome subunit 3 is essential for maintenance of cell proliferation in the mouse embryonic epiblast. Mol Cell Biol 2003; 23:6798-808. [PMID: 12972600 PMCID: PMC193933 DOI: 10.1128/mcb.23.19.6798-6808.2003] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Csn3 (Cops3) maps to the mouse chromosome 11 region syntenic to the common deletion interval for the Smith-Magenis syndrome, a contiguous gene deletion syndrome. It encodes the third subunit of an eight-subunit protein complex, the COP9 signalosome (CSN), which controls a wide variety of molecules of different functions. Mutants of this complex caused lethality at early development of both plants and Drosophila melanogaster. CSN function in vivo in mammals is unknown. We disrupted the murine Csn3 gene in three independent ways with insertional vectors, including constructing a approximately 3-Mb inversion chromosome. The heterozygous mice appeared normal, although the protein level was reduced. Csn3(-/-) embryos arrested after 5.5 days postcoitum (dpc) and resorbed by 8.5 dpc. Mutant embryos form an abnormal egg cylinder which does not gastrulate. They have reduced numbers of epiblast cells, mainly due to increased cell death. In the Csn3(-/-) mice, subunit 8 of the COP9 complex was not detected by immunohistochemical techniques, suggesting that the absence of Csn3 may disrupt the entire COP9 complex. Therefore, Csn3 is important for maintaining the integrity of the COP9 signalosome and is crucial to maintain the survival of epiblast cells and thus the development of the postimplantation embryo in mice.
Collapse
Affiliation(s)
- Jiong Yan
- Department of Molecular and Human Genetics, Texas Children's Hospital, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Selective breeding, quantitative trait locus analysis, and gene arrays identify candidate genes for complex drug-related behaviors. J Neurosci 2003. [PMID: 12805289 DOI: 10.1523/jneurosci.23-11-04491.2003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Acute functional tolerance to ethanol develops during a single exposure to ethanol; it has been suggested to be a predisposing factor for the development of ethanol dependence. Genetic determinants of acute functional tolerance, as well as of ethanol dependence, have been clearly demonstrated. We describe a novel approach that uses a combination of selective breeding (to segregate genes contributing to the phenotype of interest, i.e., acute functional tolerance to the incoordinating effect of ethanol), quantitative trait locus analysis (to define chromosomal regions associated with acute functional tolerance), and DNA microarray technology (to identify differentially expressed genes in the brains of the selected lines of mice) to identify candidate genes for the complex phenotype of ethanol tolerance. The results indicate the importance of a signal transduction cascade that involves the glutamate receptor delta2 protein, the Ephrin B3 ligand, and the NMDA receptor, as well as a transcriptional regulatory protein that may be induced by activation of the NMDA receptor (zinc finger protein 179) and a protein that can modulate downstream responses to NMDA receptor activation (peroxiredoxin), in mediating acute tolerance to the incoordinating effect of ethanol.
Collapse
|
8
|
Walz K, Caratini-Rivera S, Bi W, Fonseca P, Mansouri DL, Lynch J, Vogel H, Noebels JL, Bradley A, Lupski JR. Modeling del(17)(p11.2p11.2) and dup(17)(p11.2p11.2) contiguous gene syndromes by chromosome engineering in mice: phenotypic consequences of gene dosage imbalance. Mol Cell Biol 2003; 23:3646-55. [PMID: 12724422 PMCID: PMC154242 DOI: 10.1128/mcb.23.10.3646-3655.2003] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Contiguous gene syndromes (CGS) are a group of disorders associated with chromosomal rearrangements of which the phenotype is thought to result from altered copy numbers of physically linked dosage-sensitive genes. Smith-Magenis syndrome (SMS) is a CGS associated with a deletion within band p11.2 of chromosome 17. Recently, patients harboring the predicted reciprocal duplication product [dup(17)(p11.2p11.2)] have been described as having a relatively mild phenotype. By chromosomal engineering, we created rearranged chromosomes carrying the deletion [Df(11)17] or duplication [Dp(11)17] of the syntenic region on mouse chromosome 11 that spans the genomic interval commonly deleted in SMS patients. Df(11)17/+ mice exhibit craniofacial abnormalities, seizures, marked obesity, and male-specific reduced fertility. Dp(11)17/+ animals are underweight and do not have seizures, craniofacial abnormalities, or reduced fertility. Examination of Df(11)17/Dp(11)17 animals suggests that most of the observed phenotypes result from gene dosage effects. Our murine models represent a powerful tool to analyze the consequences of gene dosage imbalance in this genomic interval and to investigate the molecular genetic bases of both SMS and dup(17)(p11.2p11.2).
Collapse
Affiliation(s)
- Katherina Walz
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Shaw CJ, Bi W, Lupski JR. Genetic proof of unequal meiotic crossovers in reciprocal deletion and duplication of 17p11.2. Am J Hum Genet 2002; 71:1072-81. [PMID: 12375235 PMCID: PMC420000 DOI: 10.1086/344346] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2002] [Accepted: 08/14/2002] [Indexed: 12/11/2022] Open
Abstract
A number of common contiguous gene syndromes have been shown to result from nonallelic homologous recombination (NAHR) within region-specific low-copy repeats (LCRs). The reciprocal duplications are predicted to occur at the same frequency; however, probably because of ascertainment bias and milder phenotypes, reciprocal events have been identified in only a few cases to date. We previously described seven patients with dup(17)(p11.2p11.2), the reciprocal of the Smith-Magenis syndrome (SMS) deletion, del(17)(p11.2p11.2). In >90% of patients with SMS, identical approximately 3.7-Mb deletions in 17p11.2 have been identified. These deletions are flanked by large (approximately 200 kb), highly homologous, directly oriented LCRs (i.e., proximal and distal SMS repeats [SMS-REPs]). The third (middle) SMS-REP is inverted with respect to them and maps inside the commonly deleted genomic region. To investigate the parental origin and to determine whether the common deletion and duplication arise by unequal crossovers mediated through NAHR between the proximal and distal SMS-REPs, we analyzed the haplotypes of 14 families with SMS and six families with dup(17)(p11.2p11.2), using microsatellite markers directly flanking the SMS common deletion breakpoints. Our data indicate that reciprocal deletion and duplication of 17p11.2 result from unequal meiotic crossovers. These rearrangements occur via both interchromosomal and intrachromosomal exchange events between the proximal and distal SMS-REPs, and there appears to be no parental-origin bias associated with common SMS deletions and the reciprocal duplications.
Collapse
Affiliation(s)
- Christine J. Shaw
- Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston
| | - Weimin Bi
- Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston
| | - James R. Lupski
- Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston
| |
Collapse
|
10
|
Potocki L, Glaze D, Tan DX, Park SS, Kashork CD, Shaffer LG, Reiter RJ, Lupski JR. Circadian rhythm abnormalities of melatonin in Smith-Magenis syndrome. J Med Genet 2000; 37:428-33. [PMID: 10851253 PMCID: PMC1734604 DOI: 10.1136/jmg.37.6.428] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Smith-Magenis syndrome (SMS) is a multiple congenital anomalies/mental retardation syndrome associated with a hemizygous deletion of chromosome 17, band p11.2. Characteristic features include neurobehavioural abnormalities such as aggressive and self-injurious behaviour and significant sleep disturbances. The majority of patients have a common deletion characterised at the molecular level. Physical mapping studies indicate that all patients with the common deletion are haploinsufficient for subunit 3 of the COP9 signalosome (COPS3), which is conserved from plants to humans, and in the plant Arabidopis thaliana regulates gene transcription in response to light. Haploinsufficiency of this gene is hypothesised to be potentially involved in the sleep disturbances seen in these patients. Melatonin is a hormone secreted by the pineal gland. SMS patients are reported to have fewer sleep disturbances when given a night time dose of this sleep inducing hormone. METHODS Urinary excretion of 6-sulphatoxymelatonin (aMT6s), the major hepatic metabolite of melatonin, in 19 SMS patients were measured in conjunction with 24 hour sleep studies in 28 SMS patients. Five of the 28 patients did not have the common SMS deletion. To investigate a potential correlation of COPS3 haploinsufficiency and disturbed melatonin excretion, we performed fluorescence in situ hybridisation (FISH) using two BACs containing coding exons of COPS3. RESULTS All SMS patients show significant sleep disturbances when assessed by objective criteria. Abnormalities in the circadian rhythm of aMT6s were observed in all but one SMS patient. Interestingly this patient did not have the common deletion. All patients studied, including the one patient with a normal melatonin rhythm, were haploinsufficient for COPS3. CONCLUSIONS Our data indicate a disturbed circadian rhythm in melatonin and document the disturbed sleep pattern in Smith-Magenis syndrome. Our findings suggest that the abnormalities in the circadian rhythm of melatonin and altered sleep patterns could be secondary to aberrations in the production, secretion, distribution, or metabolism of melatonin; however, a direct role for COPS3 could not be established.
Collapse
Affiliation(s)
- L Potocki
- Department of Molecular and Human Genetics, Baylor College of Medicine and Texas Children's Hospital, One Baylor Plaza, Room 609E, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Párraga M, del Mazo J. XYbp, a novel RING-finger protein, is a component of the XY body of spermatocytes and centrosomes. Mech Dev 2000; 90:95-101. [PMID: 10585566 DOI: 10.1016/s0925-4773(99)00223-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
RING-finger proteins participate in developmental processes, including gametogenesis. A fetal oocyte cDNA library was used to select genes expressed during male germ-cell differentiation. A novel RING-finger protein, XYbp (XY body protein), participating in mouse spermatogenesis has been identified. This novel gene generates a ubiquitously expressed transcript of 4.2 kb and a testis-specific one of 2.8 kb, processed by an alternative polyadenylation mechanism from a non-canonical polyadenylation signal. Transcription of XYbp is regulated during spermatocyte differentiation. The antiserum raised against the XYbp peptide demonstrated that XYbp is localised mainly in the XY bivalent of spermatocytes (XY body) and in the centrosomes of somatic and germ cells in all phases of the cell cycle. These studies indicate that we have identified a new member of the RING-finger family of proteins associated with the XY meiotic bivalent during spermatogenesis development and with the centrosomes of all cells.
Collapse
Affiliation(s)
- M Párraga
- Department of Cell and Developmental Biology, Centro de Invesigaciones Biológicas (C.S.I.C.), Velázquez, 144, 28006-, Madrid, Spain
| | | |
Collapse
|
12
|
Potocki L, Chen KS, Park SS, Osterholm DE, Withers MA, Kimonis V, Summers AM, Meschino WS, Anyane-Yeboa K, Kashork CD, Shaffer LG, Lupski JR. Molecular mechanism for duplication 17p11.2- the homologous recombination reciprocal of the Smith-Magenis microdeletion. Nat Genet 2000; 24:84-7. [PMID: 10615134 DOI: 10.1038/71743] [Citation(s) in RCA: 234] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recombination between repeated sequences at various loci of the human genome are known to give rise to DNA rearrangements associated with many genetic disorders. Perhaps the most extensively characterized genomic region prone to rearrangement is 17p12, which is associated with the peripheral neuropathies, hereditary neuropathy with liability to pressure palsies (HNPP) and Charcot-Marie-Tooth disease type 1A (CMT1A;ref. 2). Homologous recombination between 24-kb flanking repeats, termed CMT1A-REPs, results in a 1.5-Mb deletion that is associated with HNPP, and the reciprocal duplication product is associated with CMT1A (ref. 2). Smith-Magenis syndrome (SMS) is a multiple congenital anomalies, mental retardation syndrome associated with a chromosome 17 microdeletion, del(17)(p11.2p11.2) (ref. 3,4). Most patients (>90%) carry deletions of the same genetic markers and define a common deletion. We report seven unrelated patients with de novo duplications of the same region deleted in SMS. A unique junction fragment, of the same apparent size, was identified in each patient by pulsed field gel electrophoresis (PFGE). Further molecular analyses suggest that the de novo17p11.2 duplication is preferentially paternal in origin, arises from unequal crossing over due to homologous recombination between flanking repeat gene clusters and probably represents the reciprocal recombination product of the SMS deletion. The clinical phenotype resulting from duplication [dup(17)(p11.2p11.2)] is milder than that associated with deficiency of this genomic region. This mechanism of reciprocal deletion and duplication via homologous recombination may not only pertain to the 17p11.2 region, but may also be common to other regions of the genome where interstitial microdeletion syndromes have been defined.
Collapse
Affiliation(s)
- L Potocki
- Department of Molecular Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Isochromosome 17q in Blast Crisis of Chronic Myeloid Leukemia and in Other Hematologic Malignancies Is the Result of Clustered Breakpoints in 17p11 and Is Not Associated With Coding TP53 Mutations. Blood 1999. [DOI: 10.1182/blood.v94.1.225.413k24_225_232] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An isochromosome of the long arm of chromosome 17, i(17q), is the most frequent genetic abnormality observed during the disease progression of Philadelphia chromosome–positive chronic myeloid leukemia (CML), and has been described as the sole anomaly in various other hematologic malignancies. The i(17q) hence plays a presumably important pathogenetic role both in leukemia development and progression. This notwithstanding, the molecular consequences of this abnormality have not been investigated in detail. We have analyzed 21 hematologic malignancies (8 CML in blast crisis, 8 myelodysplastic syndromes [MDS], 2 acute myeloid leukemias, 2 chronic lymphocytic leukemias, and 1 acute lymphoblastic leukemia) with i(17q) by fluorescence in situ hybridization (FISH). Using a yeast artificial chromosome (YAC) contig, derived from the short arm of chromosome 17, all cases were shown to have a breakpoint in 17p. In 12 cases, the breaks occurred within the Smith-Magenis Syndrome (SMS) common deletion region in 17p11, a gene-rich region which is genetically unstable. In 10 of these 12 cases, we were able to further map the breakpoints to specific markers localized within a single YAC clone. Six other cases showed breakpoints located proximally to the SMS common deletion region, but still within 17p11, and yet another case had a breakpoint distal to this region. Furthermore, using chromosome 17 centromere-specific probes, it could be shown that the majority of the i(17q) chromosomes (11 of 15 investigated cases) were dicentric, ie, they contained two centromeres, strongly suggesting that i(17q) is formed through an intrachromosomal recombination event, and also implicating that the i(17q), in a formal sense, should be designated idic(17)(p11). Because i(17q) formation results in loss of 17p material, potentially uncovering the effect of a tumor suppressor on the remaining 17p, the occurrence of TP53 mutations was studied in 17 cases by sequencing the entire coding region. In 16 cases, noTP53 mutations were found, whereas one MDS displayed a homozygous deletion of TP53. Thus, our data suggest that there is no association between i(17q) and coding TP53 mutations, and that another tumor suppressor gene(s), located in proximity of the SMS common deletion region, or in a more distal location, is of pathogenetic importance in i(17q)-associated leukemia.
Collapse
|