1
|
Rumbajan JM, Yamaguchi Y, Nakabayashi K, Higashimoto K, Yatsuki H, Nishioka K, Matsuoka K, Aoki S, Toda S, Takeda S, Seki H, Hatada I, Hata K, Soejima H, Joh K. The HUS1B promoter is hypomethylated in the placentas of low-birth-weight infants. Gene 2016; 583:141-146. [DOI: 10.1016/j.gene.2016.02.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/16/2016] [Accepted: 02/10/2016] [Indexed: 11/25/2022]
|
2
|
Zhou Z, Jing C, Zhang L, Takeo F, Kim H, Huang Y, Liu Z, Wan Y. Regulation of Rad17 protein turnover unveils an impact of Rad17-APC cascade in breast carcinogenesis and treatment. J Biol Chem 2013; 288:18134-45. [PMID: 23637229 DOI: 10.1074/jbc.m113.456962] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Aberrant regulation of DNA damage checkpoint function leads to genome instability that in turn can predispose cellular tissues to become cancerous. Previous works from us and others demonstrated the role of Rad17 in either activation or termination of DNA damage checkpoint function. In the current study, we have revealed the unexpected accumulation of Rad17 in various types of breast cancer cell lines as well as human breast cancer tissues. We observed that Rad17 protein turnover rate in breast epithelial cells is much faster than in breast cancer cells, where the turnover of Rad17 is regulated by the Cdh1/APC pathway. We further observed that Rad17-mediated checkpoint function is modulated by proteolysis. Stabilization of Rad17 disrupts cellular response to chemotherapeutic drug-induced DNA damage and enhances cellular transformation. In addition, manipulation of Rad17 by RNA interference or stabilization of Rad17 significantly sensitize breast cancer cell to various chemotherapeutic drugs. Our present results indicate the manipulation of Rad17 proteolysis could be a valuable approach to sensitize breast cancer cell to the chemotherapeutic treatment despite of the critical role in governing DNA damage response and cellular recovery from genotoxic stress.
Collapse
Affiliation(s)
- Zhuan Zhou
- Department of Cell Biology, University of Pittsburgh School of Medicine and Hillman Cancer Center, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Bozdarov J, Sherry JP, Duncker BP, Bols NC, Dixon B. The rad1 gene in Rainbow Trout (Oncorhynchus mykiss) is highly conserved and may express proteins from non-canonical spliced isoforms. Comp Biochem Physiol C Toxicol Pharmacol 2013; 157:16-23. [PMID: 22985532 DOI: 10.1016/j.cbpc.2012.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/10/2012] [Accepted: 09/11/2012] [Indexed: 11/26/2022]
Abstract
Cell-cycle checkpoint proteins maintain genomic integrity by sensing damaged DNA and initiating DNA repair or apoptosis. RAD1 is a checkpoint protein involved in the sensing of damaged DNA and is a part of the 9-1-1 complex. In this project rainbow trout rad1 (rtrad1) was cloned, sequenced, expressed as a recombinant protein and anti-rtRAD1 antibodies were developed. RAD1 protein levels were characterized in various rainbow trout tissues. It was determined that an 840 bp open-reading frame encodes 279 aa with a predicted protein size of 31 kDa. The rtRAD1 amino-acid sequence is highly conserved and contains conserved exonuclease and leucine zipper domains. RT-PCR was used to identify three non-canonical splice variants of rtrad1, two of which are capable of forming functional proteins. The rad1 splice variant that encodes an 18 kDa protein appears to be abundant in rainbow trout spleen, heart and gill tissue and in the RTgill-W1 cell-line. Based on the genomic rtrad1 sequence the splice variants contain only partial exons which are consistent with the splicing of rad1 variants in mammals. This is the first time that rad1 has been fully characterized in a fish species.
Collapse
Affiliation(s)
- Johny Bozdarov
- Department of Biology, University of Waterloo, Ontario, Canada
| | | | | | | | | |
Collapse
|
4
|
Maniwa Y, Nishio W, Yoshimura M. Application of hRad9 in lung cancer treatment as a molecular marker and a molecular target. Thorac Cancer 2011; 2:7-15. [PMID: 27755837 DOI: 10.1111/j.1759-7714.2010.00036.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
DNA damage sensor proteins work as upstream components of the DNA damage checkpoint signaling pathways that are essential for cell cycle control and the induction of apoptosis. hRad9 is a member of a family of proteins that act as DNA damage sensors and plays an important role as an upstream regulator of checkpoint signaling. We clarified the significant accumulation of hRad9 in the nuclei of tumor cells in surgically-resected non-small-cell lung cancer (NSCLC) specimens and found the capacity to produce a functional hRad9 protein was intact in lung cancer cells. This finding suggested that hRad9 was a vital component in the pathways that lead to the survival and progression of NSCLC and suggested that hRad9 was a good candidate for a molecular target to control lung cancer cell growth. RNA interference targeting hRad9 was performed to examine this hypothesis. The impairment of the DNA damage checkpoint signaling pathway induced cancer cell death. hRad9 might be a novel molecular target for lung cancer treatment.
Collapse
Affiliation(s)
- Yoshimasa Maniwa
- Division of Thoracic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Wataru Nishio
- Division of Thoracic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masahiro Yoshimura
- Division of Thoracic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
5
|
Abstract
Although now dogma, the idea that nonvertebrate organisms such as yeast, worms, and flies could inform, and in some cases even revolutionize, our understanding of oncogenesis in humans was not immediately obvious. Aided by the conservative nature of evolution and the persistence of a cohort of devoted researchers, the role of model organisms as a key tool in solving the cancer problem has, however, become widely accepted. In this review, we focus on the nematode Caenorhabditis elegans and its diverse and sometimes surprising contributions to our understanding of the tumorigenic process. Specifically, we discuss findings in the worm that address a well-defined set of processes known to be deregulated in cancer cells including cell cycle progression, growth factor signaling, terminal differentiation, apoptosis, the maintenance of genome stability, and developmental mechanisms relevant to invasion and metastasis.
Collapse
Affiliation(s)
- Natalia V. Kirienko
- University of Wyoming, College of Agriculture, Department of Molecular Biology, Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| | - Kumaran Mani
- University of Wyoming, College of Agriculture, Department of Molecular Biology, Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| | - David S. Fay
- University of Wyoming, College of Agriculture, Department of Molecular Biology, Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| |
Collapse
|
6
|
Zhang L, Park CH, Wu J, Kim H, Liu W, Fujita T, Balasubramani M, Schreiber EM, Wang XF, Wan Y. Proteolysis of Rad17 by Cdh1/APC regulates checkpoint termination and recovery from genotoxic stress. EMBO J 2010; 29:1726-37. [PMID: 20424596 DOI: 10.1038/emboj.2010.55] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 03/08/2010] [Indexed: 12/13/2022] Open
Abstract
Recent studies have shown a critical function for the ubiquitin-proteasome system (UPS) in regulating the signalling network for DNA damage responses and DNA repair. To search for new UPS targets in the DNA damage signalling pathway, we have carried out a non-biased assay to identify fast-turnover proteins induced by various types of genotoxic stress. This endeavour led to the identification of Rad17 as a protein exhibiting a distinctive pattern of upregulation followed by subsequent degradation after exposure to UV radiation in human primary cells. Our characterization showed that UV-induced Rad17 oscillation is mediated by Cdh1/APC, a ubiquitin-protein ligase. Studies using a degradation-resistant Rad17 mutant demonstrated that Rad17 stabilization prevents the termination of checkpoint signalling, which in turn attenuates the cellular re-entry into cell-cycle progression. The findings provide an insight into how the proteolysis of Rad17 by Cdh1/APC regulates the termination of checkpoint signalling and the recovery from genotoxic stress.
Collapse
Affiliation(s)
- Liyong Zhang
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Sunavala-Dossabhoy G, De Benedetti A. Tousled homolog, TLK1, binds and phosphorylates Rad9; TLK1 acts as a molecular chaperone in DNA repair. DNA Repair (Amst) 2009; 8:87-102. [DOI: 10.1016/j.dnarep.2008.09.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 06/02/2008] [Accepted: 09/02/2008] [Indexed: 11/30/2022]
|
8
|
Cabrera G, Cabrejos ME, Morassutti AL, Cabezón C, Orellana J, Hellman U, Zaha A, Galanti N. DNA damage, RAD9 and fertility/infertility of Echinococcus granulosus hydatid cysts. J Cell Physiol 2008; 216:498-506. [PMID: 18348165 DOI: 10.1002/jcp.21418] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hydatidosis, caused by the larval stage of the platyhelminth parasite Echinococcus granulosus, affects human and animal health. Hydatid fertile cysts are formed in intermediate hosts (human and herbivores) producing protoscoleces, the infective form to canines, at their germinal layers. Infertile cysts are also formed, but they are unable to produce protoscoleces. The molecular mechanisms involved in hydatid cysts fertility/infertility are unknown. Nevertheless, previous work from our laboratory has suggested that apoptosis is involved in hydatid cyst infertility and death. On the other hand, fertile hydatid cysts can resist oxidative damage due to reactive oxygen and nitrogen species. On these foundations, we have postulated that when oxidative damage of DNA in the germinal layers exceeds the capability of DNA repair mechanisms, apoptosis is triggered and hydatid cysts infertility occurs. We describe a much higher percentage of nuclei with oxidative DNA damage in dead protoscoleces and in the germinal layer of infertile cysts than in fertile cysts, suggesting that DNA repair mechanisms are active in fertile cysts. rad9, a conserved gene, plays a key role in cell cycle checkpoint modulation and DNA repair. We found that RAD9 of E. granulosus (EgRAD9) is expressed at the mRNA and protein levels. As it was found in other eukaryotes, EgRAD9 is hyperphosphorylated in response to DNA damage. Our results suggest that molecules involved in DNA repair in the germinal layer of fertile hydatid cysts and in protoscoleces, such as EgRAD9, may allow preserving the fertility of hydatid cysts in the presence of ROS and RNS.
Collapse
Affiliation(s)
- Gonzalo Cabrera
- Programa Disciplinario de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Singh VK, Nurmohamed S, Davey SK, Jia Z. Tri-cistronic cloning, overexpression and purification of human Rad9, Rad1, Hus1 protein complex. Protein Expr Purif 2007; 54:204-11. [PMID: 17493829 DOI: 10.1016/j.pep.2007.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 03/05/2007] [Accepted: 03/12/2007] [Indexed: 12/16/2022]
Abstract
The least understood components of the DNA damage checkpoint are the DNA damage sensors. Genetic studies of Schizosaccharomyces pombe identified six yeast genes, Rad3, Rad17, Rad9, Rad1, Hus1, and Rad26, which encode proteins thought to sense DNA damage and activate the checkpoint-signaling cascade. It has been suggested that Rad9, Rad1 and Hus1 make a heterotrimeric complex forming a PCNA-like structure. In order to carry out structural and biophysical studies of the complex and its associated proteins, the cDNAs encoding full length human Rad9, Rad1 and Hus1 were cloned together into the pET28a vector using a one-step ligation procedure. Here we report successful tri-cistronic cloning, overexpression and purification of this three-protein complex using a single hexa-histidine tag. The trimeric protein complex of Rad9, Rad1 and Hus1 was purified to near homogeneity, yielding approximately 10mg of protein from one liter of Escherichia coli culture.
Collapse
Affiliation(s)
- Vinay Kumar Singh
- Department of Biochemistry, Queen's University, Kingston, Ont., Canada K7L 3N6
| | | | | | | |
Collapse
|
10
|
Tsuchiya A, Inoue YH, Ida H, Kawase Y, Okudaira K, Ohno K, Yoshida H, Yamaguchi M. Transcriptional regulation of the Drosophila rfc1 gene by the DRE-DREF pathway. FEBS J 2007; 274:1818-32. [PMID: 17381512 DOI: 10.1111/j.1742-4658.2007.05730.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The DNA replication-related element (DRE) is a common 8-bp sequence (5'-TATCGATA) found in the promoters of many DNA replication-related genes, to which DRE-binding factor (DREF) specifically binds to activate transcription. Replication factor C (RFC) is an essential five-subunit complex in DNA replication, the largest subunit being RFC140. We first identified the gene (rfc1) encoding the Drosophila RFC140 (dRFC140) protein and then isolated a mutant. The phenotypes suggested that the gene is essential for cell-cycle progression, and immunocytochemical studies also indicated a relation between its expression and the cell cycle. The rfc1 gene contains three DRE-like sequences in its 5'-flanking region, one of them perfectly matching DRE and the other two demonstrating a match in seven of eight nucleotides. These sequences were named DRE1 (-63 to -69), DRE2 (-378 to -385), and DRE3 (-1127 to -1134), respectively. Immunostaining of polytene chromosomes in third-instar larvae using anti-DREF sera detected a specific band in 82E2 of 3R chromosome, containing the rfc1 gene region. Band-mobility shift assays using Drosophila Kc cell nuclear extracts revealed that DREF binds to DRE1, -2, and -3 in vitro, and chromatin immunoprecipitation using anti-DREF IgG confirmed that this occurs in vivo. Luciferase transient expression assays in S2 cells further suggested that DREs in the rfc1 promoter are involved in transcriptional regulation of the gene. Moreover, rfc1 promoter activity was reduced by 38% in DREF double-stranded RNA-treated S2 cells. These results indicate that DREF positively regulates the rfc1 promoter.
Collapse
Affiliation(s)
- Akihiro Tsuchiya
- Department of Applied Biology, Kyoto Institute of Technology, Japan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Lieberman HB. Rad9, an evolutionarily conserved gene with multiple functions for preserving genomic integrity. J Cell Biochem 2006; 97:690-7. [PMID: 16365875 DOI: 10.1002/jcb.20759] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The Rad9 gene is evolutionarily conserved. Analysis of the gene from yeast, mouse and human reveal roles in multiple, fundamental biological processes primarily but not exclusively important for regulating genomic integrity. The encoded mammalian proteins participate in promoting resistance to DNA damage, cell cycle checkpoint control, DNA repair, and apoptosis. Other functions include a role in embryogenesis, the transactivation of multiple target genes, co-repression of androgen-induced transcription activity of the androgen receptor, a 3'-5' exonuclease activity, and the regulation of ribonucleotide synthesis. Analyses of the functions of Rad9, and in particular its role in regulating and coordinating numerous fundamental biological activities, should not only provide information about the molecular mechanisms of several individual cellular processes, but might also lend insight into the more global control and coordination of what at least superficially present as independent pathways.
Collapse
Affiliation(s)
- Howard B Lieberman
- Center for Radiological Research, Columbia University, 630 W. 168th St., New York, New York 10032, USA.
| |
Collapse
|
12
|
Tsurimoto T, Shinozaki A, Yano M, Seki M, Enomoto T. Human Werner helicase interacting protein 1 (WRNIP1) functions as a novel modulator for DNA polymerase delta. Genes Cells 2005; 10:13-22. [PMID: 15670210 DOI: 10.1111/j.1365-2443.2004.00812.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Human WRNIP1, a Werner DNA helicase interacting protein 1, was expressed in insect cells and E. coli. The purified protein behaved as a homo-oligomeric complex with a native molecular mass indicative of an octamer, and the complex copurified with an ATPase activity that was stimulated by double-stranded DNA ends. As suggested by genetic studies of budding yeast WRNIP1/Mgs1, the purified human WRNIP1 complex interacted physically with human DNA polymerase delta (pol delta), stimulating its DNA synthesis activity more than fivefold in the presence or absence of proliferating cell nuclear antigen. Analysis of reaction products demonstrated the stimulation to be partly due to an increased processivity of pol delta but more importantly to an increase in its initiation frequency. Addition of ATP to reactions partially suppressed stimulation by WRNIP1. Furthermore, a mutant WRNIP1 lacking ATPase activity could stimulate pol delta normally but was insensitive to suppression by ATP. These results indicate that WRNIP1 functions as a modulator for initiation or restart events during pol delta-mediated DNA synthesis and that its ATPase activity is utilized to sense DNA ends and to regulate the extent of stimulation.
Collapse
Affiliation(s)
- Toshiki Tsurimoto
- Department of Biology, School of Sciences, Kyushu University, Fukuoka 812-8581, Japan.
| | | | | | | | | |
Collapse
|
13
|
Maniwa Y, Yoshimura M, Bermudez VP, Yuki T, Okada K, Kanomata N, Ohbayashi C, Hayashi Y, Hurwitz J, Okita Y. Accumulation of hRad9 protein in the nuclei of nonsmall cell lung carcinoma cells. Cancer 2005; 103:126-32. [PMID: 15558813 DOI: 10.1002/cncr.20740] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND DNA damage sensor proteins have received much attention as upstream components of the DNA damage checkpoint signaling pathway that are required for cell cycle control and the induction of apoptosis. Deficiencies in these proteins are directly linked to the accumulation of gene mutations, which can induce cellular transformation and result in malignant disease. METHODS Using 48 sets of tumor tissue specimens and peripheral normal lung tissue specimens from 48 patients with nonsmall cell lung carcinoma (NSCLC) who underwent surgery, the authors investigated the expression of hRad9 protein, a member of the human DNA damage sensor family, using immunohistochemical and Western blot analyses. RESULTS Immunohistochemical analysis detected the accumulation of hRad9 in the nuclei of tumor cells in 16 tumor tissue specimens, (33% of tumor tissue specimens examined). Western blot analysis also revealed elevated levels of phosphorylated hRad9 protein in NSCLC cells that was accompanied by the detection of phosphorylated Chk1, a protein kinase that regulates the downstream signaling of the DNA damage checkpoint pathway. Furthermore, strong expression of hRad9 was correlated with an increase in Ki-67 expression index in the tumor cells that were examined. CONCLUSIONS The findings made in the current study suggest that Rad9 expression may play an important role in cell cycle control in NSCLC cells and may influence NSCLC cell phenotype.
Collapse
Affiliation(s)
- Yoshimasa Maniwa
- Division of Cardiovascular, Thoracic, and Pediatric Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Herr DR, Harris GL. Close head-to-head juxtaposition of genes favors their coordinate regulation inDrosophila melanogaster. FEBS Lett 2004; 572:147-53. [PMID: 15304339 DOI: 10.1016/j.febslet.2004.07.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Revised: 07/12/2004] [Accepted: 07/13/2004] [Indexed: 11/23/2022]
Abstract
This report identifies a large number of gene-pairs in Drosophila melanogaster that share a common upstream region. 877 gene-pairs (approximately 12% of the genome) are separated by less than 350 bp in a head-to-head orientation. This positional relationship is more highly favored in flies than in other organisms. These gene pairs have a higher correlation of expression than similarly spaced genes that have head-to-tail or tail-to-tail orientations. Thus, the positional arrangement of genes appears to play a significant role in coordinating relative expression patterns and may provide clues for identifying the functions of unknown genes.
Collapse
Affiliation(s)
- Deron R Herr
- Department of Biology and Molecular Biology Institute, San Diego State University, San Diego, CA 92182-4614, USA.
| | | |
Collapse
|
15
|
Post SM, Tomkinson AE, Lee EYHP. The human checkpoint Rad protein Rad17 is chromatin-associated throughout the cell cycle, localizes to DNA replication sites, and interacts with DNA polymerase epsilon. Nucleic Acids Res 2003; 31:5568-75. [PMID: 14500819 PMCID: PMC206465 DOI: 10.1093/nar/gkg765] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The checkpoint Rad proteins Rad17, Rad9, Rad1, Hus1, ATR, and ATRIP become associated with chromatin in response to DNA damage caused by genotoxic agents and replication inhibitors, as well as during unperturbed DNA replication in S phase. Here we show that murine Rad17 is phosphorylated at two sites that were previously shown to be modified in response to DNA damage, independent of DNA damage and ATM, in proliferating tissue. In contrast to studies with Xenopus laevis extracts but similar to observations in Schizosaccharomyces pombe, the level of chromatin-bound hRad17 remains relatively constant during the cell cycle and does not change significantly in response to DNA damage or replication block. However, phosphorylated hRad17 preferentially associates with the sites of ongoing DNA replication and interacts with the DNA replication protein, DNA polymerase epsilon. These results provide a link between the DNA damage checkpoint machinery and the replication apparatus and suggest that hRad17 may play a role in monitoring the progress of DNA replication via its interaction with DNA polymerase epsilon.
Collapse
Affiliation(s)
- Sean M Post
- Department of Molecular Medicine/Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245, USA
| | | | | |
Collapse
|
16
|
Abstract
During insect metamorphosis, each tissue displays a unique physiological and morphological response to the steroid hormone 20-hydroxyecdysone (ecdysone). We assayed gene expression in five tissues during metamorphosis onset. Larval-specific tissues display major changes in genome-wide expression profiles, whereas tissues that survive into adulthood display few changes. In one larval tissue, the salivary gland, we used a computational approach to identify a regulatory motif and a cognate transcription factor involved in regulating a set of coexpressed genes. During the metamorphosis of another tissue, the midgut, genes encoding factors from the hedgehog, Notch, EGF, dpp, and wingless pathways are activated by the ecdysone regulatory network. Mutation of the ecdysone receptor abolishes their induction. Cell cycle genes are also activated during the initiation of midgut metamorphosis, and they are also dependent on ecdysone signaling. These results establish multiple new connections between the ecdysone regulatory network and other well-studied regulatory networks.
Collapse
Affiliation(s)
- Tong-Ruei Li
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
17
|
Hofmann ER, Milstein S, Hengartner MO. DNA-damage-induced checkpoint pathways in the nematode Caenorhabditis elegans. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 65:467-73. [PMID: 12760063 DOI: 10.1101/sqb.2000.65.467] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- E R Hofmann
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | |
Collapse
|
18
|
Sasaki H, Kobayashi Y, Yukiue H, Yano M, Kaji M, Fukai I, Kiriyama M, Yamakawa Y, Fujii Y. Hrad17 expression in thymoma. Gen Thorac Cardiovasc Surg 2003; 51:81-5. [PMID: 12691115 DOI: 10.1007/s11748-003-0077-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES We used palindromic polymerase chain reaction-driven complementary deoxyribonucleic acid differential display to identify and isolate a gene, the human homolog of the Schizosaccharomyces pombe checkpoint gene rad17 (Hrad17), from colon cancer tissue. The loss of checkpoint control in mammalian cells results in genomic instability, leading to the amplification, rearrangement, or loss of chromosomes--events associated with tumor progression. We hypothesized that the Hrad17 may be expressed in thymoma, especially in invasive thymoma. We attempted to determine the influence of Hrad17 expression on clinicopathological features for patients with thymoma who had undergone surgery. METHODS Expression of Hrad17 messenger ribonucleic acid (RNA) was evaluated by reverse transcription-polymerase chain reaction using a LightCycler in 38 thymomas and 10 adjacent histologically normal thymus samples from patients for whom follow-up data was available. RESULTS Hrad17 transcripts were detected in all 38 tumor samples (8.789 +/- 7.337) at levels significantly higher than those in normal thymus samples (1.908 +/- 2.267, p < 0.0001). No relationship was seen between Hrad17 gene expression and age, gender, or pathological thymoma subtypes. Hrad17 mRNA expression in invasive thymomas (stage II-IV, 10.067 +/- 5.293) was significantly higher than that in stage I thymomas (5.193 +/- 4.485, p = 0.0168). Immunohistochemistry showed that Hrad17 protein was highly expressed in invasive thymoma tumor tissue but not within the normal thymus tissue. CONCLUSIONS Hrad17 was highly expressed in invasive thymoma.
Collapse
Affiliation(s)
- Hidefumi Sasaki
- Department of Surgery II, Nagoya City University Medical School, Nagoya, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Shiomi Y, Shinozaki A, Nakada D, Sugimoto K, Usukura J, Obuse C, Tsurimoto T. Clamp and clamp loader structures of the human checkpoint protein complexes, Rad9-1-1 and Rad17-RFC. Genes Cells 2002; 7:861-8. [PMID: 12167163 DOI: 10.1046/j.1365-2443.2002.00566.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND We have reported that protein imaging by transmission electron microscope observation based on low-angle platinum shadowing can reproduce characteristic ring structures of the replication clamp, proliferating cell nuclear antigen (PCNA), and the clamp loader protein, replication factor C (RFC). The checkpoint protein complexes, Rad9-Hus1-Rad1 (Rad9-1-1) and Rad17-RFCs2-5 (Rad17-RFC), have been predicted to function as novel clamp and clamp loader proteins, respectively, due to their amino acid sequence similarities with PCNA and RFC. RESULTS We reconstituted human Rad9-1-1 and Rad17-RFC complexes in insect cells using a baculovirus expression system and showed purified Rad9-1-1 to be composed of equimolar amounts of Rad9, Hus1 and Rad1 proteins, exhibiting a native molecular mass of 100 kDa, in line with a trimeric complex. When Rad17 was co-expressed with the four small subunits of RFC in insect cells, these proteins formed a complex of 240 kDa that displayed DNA binding, ATPase activity and binding to its predicted target protein, Rad9-1-1. Analyses of the molecular architecture of Rad9-1-1 and Rad17-RFC using transmission electron microscopy, in comparison with PCNA and RFC, revealed the Rad9-1-1 complex to have a characteristic ring structure indistinguishable from that of PCNA in shape and size. In addition, the Rad17-RFC complex was found to be oval in structure and 26 x 22 nm in size with a cleft, reminiscent of the structure of RFC. CONCLUSION Our direct comparison of images from the two sets of clamp and clamp loader proteins indicated that Rad9-1-1 and Rad17-RFC are, respectively, structural orthologs of PCNA and RFC, with presumed functions as novel clamp and clamp-loader proteins in eukaryotes.
Collapse
Affiliation(s)
- Yasushi Shiomi
- Graduate School of Biological Science, Nara Institute of Science and Technology, Takayama, Ikoma, Nara 630-0101 Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Hang H, Zhang Y, Dunbrack RL, Wang C, Lieberman HB. Identification and characterization of a paralog of human cell cycle checkpoint gene HUS1. Genomics 2002; 79:487-92. [PMID: 11944979 DOI: 10.1006/geno.2002.6737] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A paralog of the human cell cycle checkpoint gene HUS1 has been identified and designated HUS1B. It encodes a 278-amino-acid protein, 48% identical and 69% similar to HUS1. Mouse and rat orthologs of HUS1B have also been detected by a BLAST search. HUS1B is expressed variably in many human tissues, and the tissue-specific levels observed parallel those for HUS1. A HUS1-RAD1-RAD9 protein complex is thought to form a proliferating cell nuclear antigen (PCNA)-like structure, important for cell cycle checkpoint function. However, HUS1B directly interacts with RAD1, but not RAD9 or HUS1, whereas HUS1 can bind RAD1, RAD9, and another molecule of HUS1, suggesting that HUS1B cannot simply substitute for HUS1 in the complex. HUS1B is less conserved evolutionarily than HUS1. Furthermore, overexpression of HUS1B but not HUS1 in human cells induces clonogenic cell death. We suggest that HUS1B and HUS1 have distinct but related roles in regulating cell cycle checkpoints and genomic integrity.
Collapse
Affiliation(s)
- Haiying Hang
- Center for Radiological Research, Columbia University, 630 West 168th Street, New York, New York 10032, USA.
| | | | | | | | | |
Collapse
|
21
|
Kinzel B, Hall J, Natt F, Weiler J, Cohen D. Downregulation of Hus1 by antisense oligonucleotides enhances the sensitivity of human lung carcinoma cells to cisplatin. Cancer 2002; 94:1808-14. [PMID: 11920544 DOI: 10.1002/cncr.10383] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND In Schizosaccharomyces pombe, Hus1 is a component of the radiation sensitive (Rad) machinery that has been identified as playing a role in DNA repair and cell cycle G2/M checkpoint control pathways. Hus1 has been shown to exist in a discrete complex with at least two Rad family members, Rad1 and Rad9. Furthermore, Hus1 is essential for checkpoint activation, since Hus1 mutants fail to arrest the cell cycle in response to DNA damage or unreplicated DNA. To establish the role and relevance of human Hus1 in cell cycle regulation, the authors applied antisense technology to selectively downregulate the expression of Hus1 mRNA. METHODS Transfection of 2'-O-methoxyethyl-modified Hus1 antisense oligoribonucleotides into human H1299 nonsmall lung carcinoma cells was performed using Lipofectin as the carrier. The authors prepared RNA from transfected cells, and levels of Hus1 expression were analyzed by real time polymerase chain reaction. The growth and viability of cells treated with Hus1 antisense oligonucleotides in the presence or absence of cisplatin were analyzed and compared to controls. RESULTS Transfection of selected Hus1 antisense oligonucleotides into p53 deficient H1299 cells resulted in significant downregulation of Hus1 mRNA, up to 80%; RNA analyses reveal a maximal Hus1 antisense activity at a concentration of 200 nM with an IC50 determined to be 90 nM. The design and transfection of oligonucleotides containing three mismatches to their corresponding antisense counterparts had no or only minor effects on Hus1 mRNA levels, showing the specificity of Hus1 mRNA downregulation. The cisplatin IC50 in untransfected H1299 cells was found to be 20 microM and could be reduced significantly to only 7 microM after transfection of a Hus1 antisense oligonucleotide. CONCLUSIONS Experiments addressing the proliferation and viability of transfected H1299 cells suggest that downregulation of Hus1 by specific antisense oligonucleotides sensitizes human cells to treatment with the DNA damaging agent cisplatin.
Collapse
Affiliation(s)
- Bernd Kinzel
- Department of Functional Genomics, Novartis Pharma AG, Basel, Switzerland.
| | | | | | | | | |
Collapse
|
22
|
Post S, Weng YC, Cimprich K, Chen LB, Xu Y, Lee EY. Phosphorylation of serines 635 and 645 of human Rad17 is cell cycle regulated and is required for G(1)/S checkpoint activation in response to DNA damage. Proc Natl Acad Sci U S A 2001; 98:13102-7. [PMID: 11687627 PMCID: PMC60831 DOI: 10.1073/pnas.231364598] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ATR [ataxia-telangiectasia-mutated (ATM)- and Rad3-related] is a protein kinase required for both DNA damage-induced cell cycle checkpoint responses and the DNA replication checkpoint that prevents mitosis before the completion of DNA synthesis. Although ATM and ATR kinases share many substrates, the different phenotypes of ATM- and ATR-deficient mice indicate that these kinases are not functionally redundant. Here we demonstrate that ATR but not ATM phosphorylates the human Rad17 (hRad17) checkpoint protein on Ser(635) and Ser(645) in vitro. In undamaged synchronized human cells, these two sites were phosphorylated in late G(1), S, and G(2)/M, but not in early-mid G(1). Treatment of cells with genotoxic stress induced phosphorylation of hRad17 in cells in early-mid G(1). Expression of kinase-inactive ATR resulted in reduced phosphorylation of these residues, but these same serine residues were phosphorylated in ionizing radiation (IR)-treated ATM-deficient human cell lines. IR-induced phosphorylation of hRad17 was also observed in ATM-deficient tissues, but induction of Ser(645) was not optimal. Expression of a hRad17 mutant, with both serine residues changed to alanine, abolished IR-induced activation of the G(1)/S checkpoint in MCF-7 cells. These results suggest ATR and hRad17 are essential components of a DNA damage response pathway in mammalian cells.
Collapse
Affiliation(s)
- S Post
- Department of Molecular Medicine/Institute of Biotechnology, University of Texas Health Science Center, 15355 Lambda Drive, San Antonio, TX 78245, USA
| | | | | | | | | | | |
Collapse
|
23
|
Chen MS, Higashikubo R, Laszlo A, Roti Roti J. Multiple alternative splicing forms of human RAD17 and their differential response to ionizing radiation. Gene 2001; 277:145-52. [PMID: 11602352 DOI: 10.1016/s0378-1119(01)00692-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this study, we have identified four alternatively spliced RAD17 RNAs, FM1, FM2, FM3, and FM4, which are produced through alternative splicing within the first 300 base-pairs of the coding region. FM3 and FM4 are two novel forms that have not been reported before. All four alternatively spliced RAD17 RNAs were detected in the tissues we examined. However, the levels of these forms varied from tissue to tissue. The expression of these four forms was also found to differ in different phases of the cell cycle and following exposure to X-irradiation. FM2, FM1, FM4, and FM3 encode putative polypeptides consisting of 681, 670, 596, and 516 amino acids, respectively. To determine if these polypeptides were expressed in cells, we generated a polyclonal antibody using a synthetic peptide. A major band around 71 kDa and two minor bands around 73 and 62 kDa were detected in human normal fibroblasts on Western blots. These three bands appear to represent the proteins encoded by FM2 (the 73 kDa band), FM1 (the 71 kDa band), and FM4 (the 62 kDa band) since the apparent molecular weights are close to their theoretical weights of the predicted amino acid sequences. The abundance of the 71 kDa protein was not significantly affected by X-irradiation, while the abundance of the 73 and the 62 kDa proteins was increased at least 5-fold 14 h postirradiation. The differential expression of these four alternatively spliced forms in different tissues, in different phases of the cell cycle, and their differential response to X-irradiation suggest that they may perform different functions in cell-cycle regulation and in the response to irradiation.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Base Sequence
- Blotting, Western
- Cell Cycle/genetics
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA-Binding Proteins
- Gene Expression Regulation/radiation effects
- Humans
- Male
- Molecular Sequence Data
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Messenger/radiation effects
- Radiation, Ionizing
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Tissue Distribution
Collapse
Affiliation(s)
- M S Chen
- Section of Cancer Biology, Radiation Oncology Center, MIR, Washington University School of Medicine, 4511 Forest Park Blvd, Suite 411, Forest Park Blvd., St. Louis, MO 63018, USA.
| | | | | | | |
Collapse
|
24
|
Sasaki H, Chen LB, Auclair D, Moriyama S, Kaji M, Fukai I, Kiriyama M, Yamakawa Y, Fujii Y. Overexpression of Hrad17 gene in non-small cell lung cancers correlated with lymph node metastasis. Lung Cancer 2001; 34:47-52. [PMID: 11557112 DOI: 10.1016/s0169-5002(01)00223-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We used palindromic PCR-driven cDNA differential display technique to identify and isolate a gene, human homologue of the Schizosaccharomyces pombe checkpoint gene rad17, from colon cancer tissues. The loss of checkpoint control in mammalian cells results in genomic instability, leading to the amplification, rearrangement, or loss of chromosomes, events associated with tumor progression. We hypothesized that the Hrad17 may be expressed in non-small cell lung cancer (NSCLC). We attempted to determine the influence of Hrad17 expression on clinicopathological features for patients with NSCLC who had undergone surgery. Expression of Hrad17 messenger RNA was evaluated by reverse transcription-polymerase chain reaction (RT-PCR) in 102 non-small cell lung carcinomas and adjacent histologically normal lung samples from patients for whom follow up data were available. Hrad17 transcripts were detected in 26 (25.5%) of the tumor samples, although some of the paired normal lung samples showed weak expression. There was no relationship between Hrad17 gene expression and age, gender or T-status. About 13 of 31 (41.9%) NSCLC patients with Hrad17 overexpressions were node positive, on the other hand, 13 of 76 (18.3%) cases without Hrad17 overexpressions were node positive. Thus the expression of Hrad17 mRNA correlated with lymph node metastasis (P=0.0231) from NSCLC. Hrad17 protein was highly expressed at the advancing margin of the tumor of lung cancer tissue but not within the normal lung tissue by immunohistochemistry. Thus the expression of Hrad17 might correlate with more advanced NSCLC.
Collapse
Affiliation(s)
- H Sasaki
- Department of Surgery II, Nagoya City University Medical School, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Burtelow MA, Roos-Mattjus PM, Rauen M, Babendure JR, Karnitz LM. Reconstitution and molecular analysis of the hRad9-hHus1-hRad1 (9-1-1) DNA damage responsive checkpoint complex. J Biol Chem 2001; 276:25903-9. [PMID: 11340080 DOI: 10.1074/jbc.m102946200] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
DNA damage activates cell cycle checkpoint signaling pathways that coordinate cell cycle arrest and DNA repair. Three of the proteins involved in checkpoint signaling, Rad1, Hus1, and Rad9, have been shown to interact by immunoprecipitation and yeast two-hybrid studies. However, it is not known how these proteins interact and assemble into a complex. In the present study we demonstrated that in human cells all the hRad9 and hHus1 and approximately one-half of the cellular pool of hRad1 interacted as a stable, biochemically discrete complex, with an apparent molecular mass of 160 kDa. This complex was reconstituted by co-expression of all three recombinant proteins in a heterologous system, and the reconstituted complex exhibited identical chromatographic behavior as the endogenous complex. Interaction studies using differentially tagged proteins demonstrated that the proteins did not self-multimerize. Rather, each protein had a binding site for the other two partners, with the N terminus of hRad9 interacting with hRad1, the N terminus of hRad1 interacting with hHus1, and the N terminus of hHus1 interacting with the C terminus of hRad9's predicted PCNA-like region. Collectively, these analyses suggest a model of how these three proteins assemble to form a functional checkpoint complex, which we dubbed the 9-1-1 complex.
Collapse
Affiliation(s)
- M A Burtelow
- Division of Developmental Oncology Research, Department of Molecular Pharmacology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
26
|
Hang H, Rauth SJ, Hopkins KM, Lieberman HB. Mutant alleles of Schizosaccharomyces pombe rad9(+) alter hydroxyurea resistance, radioresistance and checkpoint control. Nucleic Acids Res 2000; 28:4340-9. [PMID: 11058134 PMCID: PMC113140 DOI: 10.1093/nar/28.21.4340] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2000] [Revised: 09/08/2000] [Accepted: 09/08/2000] [Indexed: 11/13/2022] Open
Abstract
Schizosaccharomyces pombe rad9 mutations can render cells sensitive to hydroxyurea (HU), gamma-rays and UV light and eliminate associated checkpoint controls. In vitro mutagenesis was performed on S.pombe rad9 and altered alleles were transplaced into the genome to ascertain the functional significance of five groups of evolutionarily conserved amino acids. Most targeted regions were changed to alanines, whereas rad9-S3 encodes a protein devoid of 22 amino acids normally present in yeast but absent from mammalian Rad9 proteins. We examined whether these rad9 alleles confer radiation and HU sensitivity and whether the sensitivities correlate with checkpoint control deficiencies. One rad9 mutant allele was fully active, whereas four others demonstrated partial loss of function. rad9-S1, which contains alterations in a BH3-like domain, conferred HU resistance but increased sensitivity to gamma-rays and UV light, without affecting checkpoint controls. rad9-S2 reduced gamma-ray sensitivity marginally, without altering other phenotypes. Two alleles, rad9-S4 and rad9-S5, reduced HU sensitivity, radiosensitivity and caused aberrant checkpoint function. HU-induced checkpoint control could not be uncoupled from drug resistance. These results establish unique as well as overlapping functional domains within Rad9p and provide evidence that requirements of the protein for promoting resistance to radiation and HU are not identical.
Collapse
Affiliation(s)
- H Hang
- Center for Radiological Research, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | | | | | | |
Collapse
|
27
|
Rauen M, Burtelow MA, Dufault VM, Karnitz LM. The human checkpoint protein hRad17 interacts with the PCNA-like proteins hRad1, hHus1, and hRad9. J Biol Chem 2000; 275:29767-71. [PMID: 10884395 DOI: 10.1074/jbc.m005782200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA damage activates cell cycle checkpoints that prevent progression through the cell cycle. In yeast, the DNA damage checkpoint response is regulated by a series of genes that have mammalian homologs, including rad1, rad9, hus1, and rad17. On the basis of sequence homology, yeast and human Rad1, Rad9, and Hus1 protein homologs are predicted to structurally resemble the sliding clamp PCNA. Likewise, Rad17 homologs have extensive homology with replication factor C (RFC) subunits (p36, p37, p38, p40, and p140), which form a clamp loader for PCNA. These observations predict that Rad1, Hus1, and Rad9 might interact with Rad17 as a clamp-clamp loader pair during the DNA damage response. In this report, we demonstrate that endogenous human Rad17 (hRad17) interacts with the PCNA-related checkpoint proteins hRad1, hRad9, and hHus1. Mutational analysis of hRad1 and hRad17 demonstrates that this interaction has properties similar to the interaction between RFC and PCNA, a well characterized clamp-clamp loader pair. Moreover, we show that DNA damage affects the association of hRad17 with the clamp-like checkpoint proteins. Collectively, these data provide the first experimental evidence that hRad17 interacts with the PCNA-like proteins hRad1, hHus1, and hRad9 in manner similar to the interaction between RFC and PCNA.
Collapse
Affiliation(s)
- M Rauen
- Division of Developmental Oncology Research, Mayo Clinic, Rochester, Minnesota 55902, USA
| | | | | | | |
Collapse
|
28
|
Cai RL, Yan-Neale Y, Cueto MA, Xu H, Cohen D. HDAC1, a histone deacetylase, forms a complex with Hus1 and Rad9, two G2/M checkpoint Rad proteins. J Biol Chem 2000; 275:27909-16. [PMID: 10846170 DOI: 10.1074/jbc.m000168200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HDAC1 is a member of the histone deacetylase family, which plays an important role in modulating the eukaryotic chromatin structure. Numerous studies have demonstrated its involvement in transcription and in tumorigenesis. To better understand the functions and regulation of HDAC1, a yeast two-hybrid screening approach was chosen to identify novel interactions involving HDAC1. Human HDAC1 was found to interact specifically in yeast, mammalian cells, and in vitro with the human Hus1 gene product, whose Schizosaccharomyces pombe homolog has been implicated in G(2)/M checkpoint control. Both HDAC1 and Hus1 proteins localize to the nuclei. Furthermore, HDAC1 and Hus1 were found to exist in a complex with Rad9, a known Hus1-interacting factor. In addition, bioinformatics analysis of the protein sequences of Hus1, Rad1, and Rad9, three checkpoint Rad proteins that form a complex, revealed that they all contain a putative proliferating cell nuclear antigen (PCNA) fold, raising the possibility that these factors may bind to DNA in a PCNA-like ring structure. The results reported in this study strongly suggest a novel pathway involving HDAC1 in G(2)/M checkpoint control through the interaction with a functional Rad complex that may utilize a PCNA-like structure. Therefore, physically and functionally similar apparatus may function during G(2)/M checkpoint and DNA replication.
Collapse
Affiliation(s)
- R L Cai
- Functional Genomics Area and the Biomolecular Structure and Computing, Core Technology Area, Novartis Pharmaceuticals Corporation, Summit, New Jersey 07901, USA
| | | | | | | | | |
Collapse
|
29
|
Colgan J, Asmal M, Luban J. Isolation, characterization and targeted disruption of mouse ppia: cyclophilin A is not essential for mammalian cell viability. Genomics 2000; 68:167-78. [PMID: 10964515 DOI: 10.1006/geno.2000.6295] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cyclophilins (CyPs) are a family of proteins found in organisms ranging from prokaryotes to humans. These molecules exhibit peptidyl-prolyl isomerase activity in vitro, suggesting that they influence the conformation of proteins in cells. CyPs also bind with varying affinities to the immunosuppressive drug cyclosporin A (CsA), a compound used clinically to prevent allograft rejection. The founding member of the family, cyclophilin A (CyPA), is an abundant, ubiquitously expressed protein of unknown function that binds with nanomolar affinity to CsA. Here, we describe the isolation and characterization of mouse Ppia (mPpia), the gene encoding CyPA. Ppia was isolated using a PCR screen that distinguishes the expressed gene from multiple pseudogenes present in the mouse genome. mPpia consists of 5 exons and 4 introns spanning roughly 4.5 kb and maps to chromosome 11 near the centromere. Sequence analysis of a 369-bp fragment from the proximal promoter region of mPpia revealed the presence of a TATA box and sites recognized by several transcriptional regulators, including Sp1, AP-2, GATA factors, c-Myb, and NF-IL-6. This region is sufficient to drive high-level reporter gene expression in transfected cells. Both copies of Ppia were disrupted in murine embryonic stem (ES) cells via gene targeting. Ppia(-/-) ES cells grow normally and differentiate into hematopoeitic precursor cells in vitro, indicating that CyPA is not essential for mammalian cell viability.
Collapse
Affiliation(s)
- J Colgan
- Department of Microbiology, Department of Medicine, Columbia University College of Physicians and Surgeons, 701 West 168th Street, New York, New York, 10032, USA
| | | | | |
Collapse
|
30
|
Burtelow MA, Kaufmann SH, Karnitz LM. Retention of the human Rad9 checkpoint complex in extraction-resistant nuclear complexes after DNA damage. J Biol Chem 2000; 275:26343-8. [PMID: 10852904 DOI: 10.1074/jbc.m001244200] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Studies in yeasts and mammals have identified many genes important for DNA damage-induced checkpoint activation, including Rad9, Hus1, and Rad1; however, the functions of these gene products are unknown. In this study we show by immunolocalization that human Rad9 (hRad9) is localized exclusively in the nucleus. However, hRad9 was readily released from the nucleus into the soluble extract upon biochemical fractionation of un-irradiated cells. In contrast, DNA damage promptly converted hRad9 to an extraction-resistant form that was retained at discrete sites within the nucleus. Conversion of hRad9 to the extraction-resistant nuclear form occurred in response to diverse DNA-damaging agents and the replication inhibitor hydroxyurea but not other cytotoxic stimuli. Additionally, extraction-resistant hRad9 interacted with its binding partners, hHus1 and an inducibly phosphorylated form of hRad1. Thus, these studies demonstrate that hRad9 is a nuclear protein that becomes more firmly anchored to nuclear components after DNA damage, consistent with a proximal function in DNA damage-activated checkpoint signaling pathways.
Collapse
Affiliation(s)
- M A Burtelow
- Divisions of Radiation Oncology and Developmental Oncology Research and Departments of Immunology and Molecular Pharmacology, Mayo Foundation, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
31
|
Weiss RS, Enoch T, Leder P. Inactivation of mouse Hus1 results in genomic instability and impaired responses to genotoxic stress. Genes Dev 2000. [DOI: 10.1101/gad.14.15.1886] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The eukaryotic cell cycle is overseen by regulatory mechanisms, termed checkpoints, that respond to DNA damage, mitotic spindle defects, and errors in the ordering of cell cycle events. The DNA replication and DNA damage cell cycle checkpoints of the fission yeastSchizosaccharomyces pombe require the hus1+(hydroxyurea sensitive) gene. To determine the role of the mouse homolog of hus1+ in murine development and cell cycle checkpoint function, we produced a targeted disruption of mouse Hus1. Inactivation of Hus1results in mid-gestational embryonic lethality due to widespread apoptosis and defective development of essential extra-embryonic tissues. DNA damage-inducible genes are up-regulated inHus1-deficient embryos, and primary cells fromHus1-null embryos contain increased spontaneous chromosomal abnormalities, suggesting that loss of Hus1 leads to an accumulation of genome damage. Embryonic fibroblasts lackingHus1 fail to proliferate in vitro, but inactivation ofp21 allows for the continued growth of Hus1-deficient cells.Hus1−/−p21−/−cells display a unique profile of significantly heightened sensitivity to hydroxyurea, a DNA replication inhibitor, and ultraviolet light, but only slightly increased sensitivity to ionizing radiation. Taken together, these results indicate that mouse Hus1 functions in the maintenance of genomic stability and additionally identify an evolutionarily-conserved role for Hus1 in mediating cellular responses to genotoxins.
Collapse
|
32
|
Affiliation(s)
- T Humphrey
- Radiation and Genome Stability Unit, Medical Research Council, Harwell, Oxfordshire OX11 ORD, Didcot, UK
| |
Collapse
|
33
|
Hang H, Lieberman HB. Physical interactions among human checkpoint control proteins HUS1p, RAD1p, and RAD9p, and implications for the regulation of cell cycle progression. Genomics 2000; 65:24-33. [PMID: 10777662 DOI: 10.1006/geno.2000.6142] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Schizosaccharomyces pombe hus1 promotes radioresistance and hydroxyurea resistance, as well as S and G2 phase checkpoint control. We isolated a human cDNA homologous to hus1, called HUS1. The major focus of this report is on a detailed analysis of the physical interactions of the HUS1-encoded protein and two other checkpoint control proteins, RAD1p and RAD9p, implicated in the cellular response to DNA damage. We found that HUS1p interacts with itself and the N-terminal region of RAD1p. In contrast, the C-terminal portion of the checkpoint protein RAD9p is essential for interacting with HUS1p and the C-terminal region of RAD1p. Since the N-terminal portion of RAD9p was previously demonstrated to participate in apoptosis, this protein likely has at least two functional domains, one that regulates programmed cell death and another that regulates cell cycle checkpoint control. Truncated versions of HUS1p are unable to bind RAD1p, RAD9p, or another HUS1p molecule. RAD1p-RAD1p and RAD9p-RAD9p interactions can be demonstrated by coimmunoprecipitation, but not by two-hybrid analysis, suggesting that the proteins associate as part of a complex but do not interact directly. Northern blot analysis indicates that HUS1 is expressed in different tissues, but the mRNA is most predominant in testis where high levels of RAD1 and RAD9 message have been detected. These studies suggest that HUS1p, RAD9p, and RAD1p form a complex in human cells and may function in a meiotic checkpoint in addition to the cell cycle delays induced by incomplete DNA replication or DNA damage.
Collapse
Affiliation(s)
- H Hang
- Center for Radiological Research, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
| | | |
Collapse
|
34
|
Böhm M, Kleine-Besten R, Wieland I. Loss of heterozygosity analysis on chromosome 5p defines 5p13-12 as the critical region involved in tumor progression of bladder carcinomas. Int J Cancer 2000. [DOI: 10.1002/(sici)1097-0215(20000320)89:2<194::aid-ijc15>3.0.co;2-s] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
35
|
Gartner A, Milstein S, Ahmed S, Hodgkin J, Hengartner MO. A conserved checkpoint pathway mediates DNA damage--induced apoptosis and cell cycle arrest in C. elegans. Mol Cell 2000; 5:435-43. [PMID: 10882129 DOI: 10.1016/s1097-2765(00)80438-4] [Citation(s) in RCA: 407] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
To maintain genomic stability following DNA damage, multicellular organisms activate checkpoints that induce cell cycle arrest or apoptosis. Here we show that genotoxic stress blocks cell proliferation and induces apoptosis of germ cells in the nematode C. elegans. Accumulation of recombination intermediates similarly leads to the demise of affected cells. Checkpoint-induced apoptosis is mediated by the core apoptotic machinery (CED-9/CED-4/CED-3) but is genetically distinct from somatic cell death and physiological germ cell death. Mutations in three genes--mrt-2, which encodes the C. elegans homolog of the S. pombe rad1 checkpoint gene, rad-5, and him-7-block both DNA damage-induced apoptosis and cell proliferation arrest. Our results implicate rad1 homologs in DNA damage-induced apoptosis in animals.
Collapse
Affiliation(s)
- A Gartner
- Cold Spring Harbor Laboratory, New York 11724, USA
| | | | | | | | | |
Collapse
|
36
|
Ahmed S, Hodgkin J. MRT-2 checkpoint protein is required for germline immortality and telomere replication in C. elegans. Nature 2000; 403:159-64. [PMID: 10646593 DOI: 10.1038/35003120] [Citation(s) in RCA: 215] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The germ line is an immortal cell lineage that is passed indefinitely from one generation to the next. To identify the genes that are required for germline immortality, we isolated Caenorhabditis elegans mutants with mortal germ lines--worms that can reproduce for several healthy generations but eventually become sterile. One of these mortal germline (mrt) mutants, mrt-2, exhibits progressive telomere shortening and accumulates end-to-end chromosome fusions in later generations, indicating that the MRT-2 protein is required for telomere replication. In addition, the germ line of mrt-2 is hypersensitive to X-rays and to transposon activity. Therefore, mrt-2 has defects in responding both to damaged DNA and to normal double-strand breaks present at telomeres. mrt-2 encodes a homologue of a checkpoint gene that is required to sense DNA damage in yeast. These results indicate that telomeres may be identified as a type of DNA damage and then repaired by the telomere-replication enzyme telomerase.
Collapse
Affiliation(s)
- S Ahmed
- MRC Laboratory of Molecular Biology, Cambridge, UK.
| | | |
Collapse
|
37
|
Weiss RS, Kostrub CF, Enoch T, Leder P. Mouse Hus1, a homolog of the Schizosaccharomyces pombe hus1+ cell cycle checkpoint gene. Genomics 1999; 59:32-9. [PMID: 10395797 DOI: 10.1006/geno.1999.5865] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell cycle checkpoints are regulatory mechanisms that arrest the cell cycle or initiate programmed cell death when critical events such as DNA replication fail to be completed or when DNA or spindle damage occurs. In fission yeast, cell cycle checkpoint responses to DNA replication blocks and DNA damage require the hus1+ gene. Mammalian homologs of hus1+ were recently identified, and here we report a detailed analysis of mouse Hus1. An approximately 4.2-kb full-length cDNA encoding the 32-kDa mouse Hus1 protein was isolated. The genomic structure and exon-intron boundary sequences of the gene were determined, and mouse Hus1 was found to consist of nine exons. Mouse Hus1 was mapped to the proximal end of chromosome 11 and is therefore a candidate gene for the mouse mutation germ cell deficient, which maps to the same genomic region. Finally, mouse Hus1 was found to be expressed in a variety of adult tissues and at several stages of embryonic development.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Cell Cycle/genetics
- Cell Cycle Proteins/genetics
- Chromosome Mapping
- Crosses, Genetic
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- Embryo, Mammalian/metabolism
- Embryonic and Fetal Development
- Female
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Fungal
- Genes, Fungal/genetics
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Molecular Sequence Data
- Muridae
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Schizosaccharomyces/genetics
- Schizosaccharomyces pombe Proteins
- Sequence Analysis, DNA
- Tissue Distribution
Collapse
Affiliation(s)
- R S Weiss
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
38
|
Thelen MP, Venclovas C, Fidelis K. A sliding clamp model for the Rad1 family of cell cycle checkpoint proteins. Cell 1999; 96:769-70. [PMID: 10102265 DOI: 10.1016/s0092-8674(00)80587-5] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|