1
|
Wen S, Huang X, Xiong L, Zeng H, Wu S, An K, Bai J, Zhou Z, Yin T. WDR12/RAC1 axis promoted proliferation and anti-apoptosis in colorectal cancer cells. Mol Cell Biochem 2024; 479:3341-3354. [PMID: 38341833 DOI: 10.1007/s11010-024-04937-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/09/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND WD repeat domain 12 (WDR12) plays a crucial role in the ribosome biogenesis pathway. However, its biological function in colorectal cancer (CRC) remains poorly understood. Therefore, this study aims to investigate the roles of WDR12 in the occurrence and progression of CRC, as well as its underlying mechanisms. METHODS The expression of WDR12 was assessed through The Cancer Genome Atlas (TCGA) and the Human Protein Atlas (HPA) database. Functional experiments including Celigo assay, MTT assay, and Caspase-3/7 assay were conducted to validate the role of WDR12 in the malignant progression of CRC. Additionally, mRNA chip-sequencing and ingenuity pathway analysis (IPA) were performed to identify the molecular mechanism. RESULTS WDR12 expression was significantly upregulated in CRC tissues compared to normal colorectal tissues. Knockdown of WDR12 reduced proliferation and promoted apoptosis of CRC cell lines in vitro and in vivo experiments. Furthermore, WDR12 expression had a significantly inverse association with diseases and functions, including cancer, cell cycle, DNA replication, recombination, cellular growth, proliferation and repair, as revealed by IPA analysis of mRNA chip-sequencing data. Moreover, the activation of cell cycle checkpoint kinases proteins in the cell cycle checkpoint control signaling pathway was enriched in the WDR12 knockdown CRC cell lines. Additionally, downregulation of rac family small GTPase 1 (RAC1) occurred upon WDR12 knockdown, thereby facilitating the proliferation and anti-apoptosis of CRC cells. CONCLUSION Our study demonstrates that the WDR12/RAC1 axis promotes tumor progression in CRC. Therefore, WDR12 may serve as a novel oncogene and a potential target for individualized therapy in CRC. These findings provide an experimental foundation for the clinical development of drugs targeting the WDR12/RAC1 axis.
Collapse
Affiliation(s)
- Su Wen
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road No.1095, Wuhan, 430030, Hubei, China
| | - Xueqing Huang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road No.1095, Wuhan, 430030, Hubei, China
| | - Liping Xiong
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road No.1095, Wuhan, 430030, Hubei, China
| | - Hao Zeng
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road No.1095, Wuhan, 430030, Hubei, China
| | - Shuang Wu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road No.1095, Wuhan, 430030, Hubei, China
| | - Kangli An
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road No.1095, Wuhan, 430030, Hubei, China
| | - Jing Bai
- Geneplus-Beijing Institute, Zhongguancun Life Science Park, Peking University Medical Industrial Park, Life Park Road No.8, Beijing, 102205, China
| | - Zhipeng Zhou
- Geneplus-Beijing Institute, Zhongguancun Life Science Park, Peking University Medical Industrial Park, Life Park Road No.8, Beijing, 102205, China
| | - Tiejun Yin
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road No.1095, Wuhan, 430030, Hubei, China.
| |
Collapse
|
2
|
Yin L, Li L, Gao M, Qi Y, Xu L, Peng J. circMIRIAF aggravates myocardial ischemia-reperfusion injury via targeting miR-544/WDR12 axis. Redox Biol 2024; 73:103175. [PMID: 38795544 PMCID: PMC11140810 DOI: 10.1016/j.redox.2024.103175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/28/2024] Open
Abstract
Exploring and discovering novel circRNAs is one of the ways to develop innovative drugs for the diagnosis and treatment of myocardial ischemia-reperfusion injury (MI/RI). In the work, some dysregulated circRNAs were found by microarray screening analysis in AC16 cells, and hsa_circRNA_104852 named circMIRIAF was screened, which was up-regulated in AC16 cells damaged by hypoxia-reoxygenation injury (H/RI). The comprehensive analysis of ceRNA network revealed the potential relationship of circMIRIAF/miR-544/WDR12. Then, the results of interaction research confirmed that circMIRIAF acted as sponge of miR-544 to positively regulate WDR12 protein expression. Further, the validation results indicate that miR-544 silencing increased the expression of WDR12, and WDR12 activated Notch1 signal to aggravate H/RI of AC16 cells and MI/RI of mice via regulating oxidative stress and inflammation. Furthermore, silencing circMIRIAF caused the decreased circMIRIAF levels and the increased miR-544 levels in cardiomyocytes, while excessive miR-544 inhibited WDR12 expression to alleviate the disorder. On the contrary, excessive circMIRIAF increased WDR12 expression by adsorbing miR-544 to exacerbate H/RI in AC16 cells. In addition, circMIRIAF siRNA reversed the aggravation of H/RI in cells caused by WDR12 overexpression. Overall, circMIRIAF can serve as a drug target or treating MI/RI, and circMIRIAF could sponge miR-544 and enhance WDR12 expression to aggravate MI/RI, which may provide a novel therapeutic strategy for MI/RI treatment.
Collapse
Affiliation(s)
- Lianhong Yin
- Department of Pharmaceutical Analysis, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China
| | - Lili Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Meng Gao
- Department of Pharmaceutical Analysis, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China
| | - Yan Qi
- Department of Pharmaceutical Analysis, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China
| | - Lina Xu
- Department of Pharmaceutical Analysis, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China.
| | - Jinyong Peng
- Department of Pharmaceutical Analysis, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China; College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430065, China.
| |
Collapse
|
3
|
Mi L, Qi Q, Ran H, Chen L, Li D, Xiao D, Wu J, Cai Y, Zhang S, Li Y, Li B, Xie J, Huang H, Li T, Zhou T, Li A, Qi J, Li F, Man J. Suppression of Ribosome Biogenesis by Targeting WD Repeat Domain 12 (WDR12) Inhibits Glioma Stem-Like Cell Growth. Front Oncol 2021; 11:751792. [PMID: 34868955 PMCID: PMC8633585 DOI: 10.3389/fonc.2021.751792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/26/2021] [Indexed: 01/05/2023] Open
Abstract
Glioma stem-like cells (GSCs) are a subset of tumor cells that initiate malignant growth and promote the therapeutic resistance of glioblastoma, the most lethal primary brain tumor. Ribosome biogenesis is an essential cellular process to maintain cell growth, but its regulatory mechanism in GSCs remains largely unknown. Here, we show that WD repeat domain 12 (WDR12), a component of the Pes1-Bop1 complex (PeBoW), is required for ribosome biogenesis in GSCs. WDR12 is preferentially expressed in GSCs compared to non-stem tumor cells and normal brain cells. High levels of WDR12 are associated with glioblastoma progression and poor prognosis. Silencing WDR12 results in the degradation of PeBoW complex components and prevents the maturation of 28S rRNA, thereby inhibiting ribosome biogenesis in GSCs. Subsequently, WDR12 depletion compromises GSC proliferation, inhibits GSC-derived orthotopic tumor growth, and extends animal survival. Together, our results suggest that WDR12 is crucial for ribosome biogenesis in GSCs, and is thus a potential target for GSC-directed therapy of glioblastoma.
Collapse
Affiliation(s)
- Lanjuan Mi
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Qinghui Qi
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Haowen Ran
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Lishu Chen
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Da Li
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Dake Xiao
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Jiaqi Wu
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Yan Cai
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Songyang Zhang
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Yuanyuan Li
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Bohan Li
- Department of Neurosurgery, Beijing Fengtai Hospital, Beijing, China
| | - Jiong Xie
- Department of Neurosurgery, Beijing Fengtai Hospital, Beijing, China
| | - Haohao Huang
- Department of Neurosurgery, General Hospital of Central Theater Command of Chinese People's Liberation Army, Wuhan, China
| | - Tao Li
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Tao Zhou
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Ailing Li
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Ji Qi
- Department of Neurosurgery, Beijing Fengtai Hospital, Beijing, China
| | - Fangye Li
- Department of Neurosurgery, First Medical Center of PLA General Hospital, Beijing, China
| | - Jianghong Man
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| |
Collapse
|
4
|
Li JL, Chen C, Chen W, Zhao LF, Xu XK, Li Y, Yuan HY, Lin JR, Pan JP, Jin BL, Li FC. Integrative genomic analyses identify WDR12 as a novel oncogene involved in glioblastoma. J Cell Physiol 2020; 235:7344-7355. [PMID: 32180229 DOI: 10.1002/jcp.29635] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 01/09/2020] [Indexed: 01/16/2023]
Abstract
Glioblastoma (GBM) is the most malignant primary brain tumor in adults. Due to its invasive nature, it cannot be thoroughly eliminated. WD repeat domain 12 (WDR12) processes the 32S precursor rRNA but cannot affect the synthesis of the 45S/47S primary transcript. In this study, we found that WDR12 is highly expressed in GBM according to the analysis results of mRNA expression by The Cancer Genome Atlas database. The high expression level of WDR12 is dramatically related to shorter overall survival and reduced disease-free survival. Next, we knocked down WDR12 and found that knockdown of WDR12 promoted the apoptosis and inhibited the proliferation by cell biology experiments. Differential expression genes in gene-chip revealed that WDR12 knockdown mainly inhibited cell cycle. Finally, we also found that WDR12 is associated with PLK1 and EZH2 in cell proliferation of GBM. Resumptively, this report showed a possible evidence that WDR12 drove malignant behavior of GBM, whose expression may present a neoteric independent prognostic biomarker in GBM.
Collapse
Affiliation(s)
- Jun-Liang Li
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China.,Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Cheng Chen
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China.,Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Wei Chen
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China.,Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Ling-Feng Zhao
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China.,Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Xin-Ke Xu
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China.,Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Yang Li
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China.,Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Hong-Yao Yuan
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China.,Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Jin-Rong Lin
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China.,Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Jun-Ping Pan
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China.,Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Bi-Lian Jin
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China.,Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Fang-Cheng Li
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China.,Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou, China
| |
Collapse
|
5
|
Thoms M, Ahmed YL, Maddi K, Hurt E, Sinning I. Concerted removal of the Erb1-Ytm1 complex in ribosome biogenesis relies on an elaborate interface. Nucleic Acids Res 2015; 44:926-39. [PMID: 26657628 PMCID: PMC4737154 DOI: 10.1093/nar/gkv1365] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/24/2015] [Indexed: 12/21/2022] Open
Abstract
The complicated process of eukaryotic ribosome biogenesis involves about 200 assembly factors that transiently associate with the nascent pre-ribosome in a spatiotemporally ordered way. During the early steps of 60S subunit formation, several proteins, collectively called A3 cluster factors, participate in the removal of the internal transcribed spacer 1 (ITS1) from 27SA3 pre-rRNA. Among these factors is the conserved hetero-trimeric Nop7–Erb1–Ytm1 complex (or human Pes1–Bop1–Wdr12), which is removed from the evolving pre-60S particle by the AAA ATPase Rea1 to allow progression in the pathway. Here, we clarify how Ytm1 and Erb1 interact, which has implications for the release mechanism of both factors from the pre-ribosome. Biochemical studies show that Ytm1 and Erb1 bind each other via their ß-propeller domains. The crystal structure of the Erb1–Ytm1 heterodimer determined at 2.67Å resolution reveals an extended interaction surface between the propellers in a rarely observed binding mode. Structure-based mutations in the interface that impair the Erb1–Ytm1 interaction do not support growth, with specific defects in 60S subunit synthesis. Under these mutant conditions, it becomes clear that an intact Erb1–Ytm1 complex is required for 60S maturation and that loss of this stable interaction prevents ribosome production.
Collapse
Affiliation(s)
- Matthias Thoms
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | - Yasar Luqman Ahmed
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | - Karthik Maddi
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | - Ed Hurt
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| |
Collapse
|
6
|
Romes EM, Sobhany M, Stanley RE. The Crystal Structure of the Ubiquitin-like Domain of Ribosome Assembly Factor Ytm1 and Characterization of Its Interaction with the AAA-ATPase Midasin. J Biol Chem 2015; 291:882-93. [PMID: 26601951 DOI: 10.1074/jbc.m115.693259] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Indexed: 01/28/2023] Open
Abstract
The synthesis of eukaryotic ribosomes is a complex, energetically demanding process requiring the aid of numerous non-ribosomal factors, such as the PeBoW complex. The mammalian PeBoW complex, composed of Pes1, Bop1, and WDR12, is essential for the processing of the 32S preribosomal RNA. Previous work in Saccharomyces cerevisiae has shown that release of the homologous proteins in this complex (Nop7, Erb1, and Ytm1, respectively) from preribosomal particles requires Rea1 (midasin or MDN1 in humans), a large dynein-like protein. Midasin contains a C-terminal metal ion-dependent adhesion site (MIDAS) domain that interacts with the N-terminal ubiquitin-like (UBL) domain of Ytm1/WDR12 as well as the UBL domain of Rsa4/Nle1 in a later step in the ribosome maturation pathway. Here we present the crystal structure of the UBL domain of the WDR12 homologue from S. cerevisiae at 1.7 Å resolution and demonstrate that human midasin binds to WDR12 as well as Nle1 through their respective UBL domains. Midasin contains a well conserved extension region upstream of the MIDAS domain required for binding WDR12 and Nle1, and the interaction is dependent upon metal ion coordination because removal of the metal or mutation of residues that coordinate the metal ion diminishes the interaction. Mammalian WDR12 displays prominent nucleolar localization that is dependent upon active ribosomal RNA transcription. Based upon these results, we propose that release of the PeBoW complex and subsequent release of Nle1 by midasin is a well conserved step in the ribosome maturation pathway in both yeast and mammalian cells.
Collapse
Affiliation(s)
- Erin M Romes
- From the Signal Transduction Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | - Mack Sobhany
- From the Signal Transduction Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | - Robin E Stanley
- From the Signal Transduction Laboratory, NIEHS, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| |
Collapse
|
7
|
Wegrecki M, Rodríguez-Galán O, de la Cruz J, Bravo J. The structure of Erb1-Ytm1 complex reveals the functional importance of a high-affinity binding between two β-propellers during the assembly of large ribosomal subunits in eukaryotes. Nucleic Acids Res 2015; 43:11017-30. [PMID: 26476442 PMCID: PMC4678814 DOI: 10.1093/nar/gkv1043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 09/30/2015] [Indexed: 12/21/2022] Open
Abstract
Ribosome biogenesis is one of the most essential pathways in eukaryotes although it is still not fully characterized. Given the importance of this process in proliferating cells, it is obvious that understanding the macromolecular details of the interactions that take place between the assembly factors, ribosomal proteins and nascent pre-rRNAs is essentially required for the development of new non-genotoxic treatments for cancer. Herein, we have studied the association between the WD40-repeat domains of Erb1 and Ytm1 proteins. These are essential factors for the biogenesis of 60S ribosomal subunits in eukaryotes that form a heterotrimeric complex together with the also essential Nop7 protein. We provide the crystal structure of a dimer formed by the C-terminal part of Erb1 and Ytm1 from Chaetomium thermophilum at 2.1 Å resolution. Using a multidisciplinary approach we show that the β-propeller domains of these proteins interact in a novel manner that leads to a high-affinity binding. We prove that a point mutation within the interface of the complex impairs the interaction between the two proteins and negatively affects growth and ribosome production in yeast. Our study suggests insights into the association of the Erb1-Ytm1 dimer with pre-ribosomal particles.
Collapse
Affiliation(s)
- Marcin Wegrecki
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, c/ Jaime Roig 11, 46010 Valencia, Spain
| | - Olga Rodríguez-Galán
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Jeronimo Bravo
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, c/ Jaime Roig 11, 46010 Valencia, Spain
| |
Collapse
|
8
|
Moilanen AM, Rysä J, Kaikkonen L, Karvonen T, Mustonen E, Serpi R, Szabó Z, Tenhunen O, Bagyura Z, Näpänkangas J, Ohukainen P, Tavi P, Kerkelä R, Leósdóttir M, Wahlstrand B, Hedner T, Melander O, Ruskoaho H. WDR12, a Member of Nucleolar PeBoW-Complex, Is Up-Regulated in Failing Hearts and Causes Deterioration of Cardiac Function. PLoS One 2015; 10:e0124907. [PMID: 25915632 PMCID: PMC4411154 DOI: 10.1371/journal.pone.0124907] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 03/09/2015] [Indexed: 01/13/2023] Open
Abstract
Aims In a recent genome-wide association study, WD-repeat domain 12 (WDR12) was associated with early-onset myocardial infarction (MI). However, the function of WDR12 in the heart is unknown. Methods and Results We characterized cardiac expression of WDR12, used adenovirus-mediated WDR12 gene delivery to examine effects of WDR12 on left ventricular (LV) remodeling, and analyzed relationship between MI associated WDR12 allele and cardiac function in human subjects. LV WDR12 protein levels were increased in patients with dilated cardiomyopathy and rats post-infarction. In normal adult rat hearts, WDR12 gene delivery into the anterior wall of the LV decreased interventricular septum diastolic and systolic thickness and increased the diastolic and systolic diameters of the LV. Moreover, LV ejection fraction (9.1%, P<0.05) and fractional shortening (12.2%, P<0.05) were declined. The adverse effects of WDR12 gene delivery on cardiac function were associated with decreased cellular proliferation, activation of p38 mitogen–activated protein kinase (MAPK)/heat shock protein (HSP) 27 pathway, and increased protein levels of Block of proliferation 1 (BOP1), essential for ribosome biogenesis. Post-infarction WDR12 gene delivery decreased E/A ratio (32%, P<0.05) suggesting worsening of diastolic function. In human subjects, MI associated WDR12 allele was associated significantly with diastolic dysfunction and left atrial size. Conclusions WDR12 triggers distinct deterioration of cardiac function in adult rat heart and the MI associated WDR12 variant is associated with diastolic dysfunction in human subjects.
Collapse
Affiliation(s)
- Anne-Mari Moilanen
- The Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
- Department of Pathology, The Institute of Diagnostics, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Jaana Rysä
- The Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Leena Kaikkonen
- The Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Teemu Karvonen
- The Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Erja Mustonen
- The Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Raisa Serpi
- The Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Zoltán Szabó
- The Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Olli Tenhunen
- The Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Zsolt Bagyura
- Heart Center, Semmelweis University, Budapest, Hungary
| | - Juha Näpänkangas
- Department of Pathology, The Institute of Diagnostics, University of Oulu, Oulu, Finland
| | - Pauli Ohukainen
- The Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Pasi Tavi
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Risto Kerkelä
- The Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Margrét Leósdóttir
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Cardiology, Skåne University Hospital, Malmö, Sweden
| | - Björn Wahlstrand
- Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Thomas Hedner
- Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Olle Melander
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden
| | - Heikki Ruskoaho
- The Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
9
|
Marcin W, Neira JL, Bravo J. The carboxy-terminal domain of Erb1 is a seven-bladed ß-propeller that binds RNA. PLoS One 2015; 10:e0123463. [PMID: 25880847 PMCID: PMC4400149 DOI: 10.1371/journal.pone.0123463] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/04/2015] [Indexed: 11/19/2022] Open
Abstract
Erb1 (Eukaryotic Ribosome Biogenesis 1) protein is essential for the maturation of the ribosomal 60S subunit. Functional studies in yeast and mammalian cells showed that altogether with Nop7 and Ytm1 it forms a stable subcomplex called PeBoW that is crucial for a correct rRNA processing. The exact function of the protein within the process remains unknown. The N-terminal region of the protein includes a well conserved region shown to be involved in PeBoW complex formation whereas the carboxy-terminal half was predicted to contain seven WD40 repeats. This first structural report on Erb1 from yeast describes the architecture of a seven-bladed β-propeller domain that revealed a characteristic extra motif formed by two α-helices and a β-strand that insert within the second WD repeat. We performed analysis of molecular surface and crystal packing, together with multiple sequence alignment and comparison of the structure with other β-propellers, in order to identify areas that are more likely to mediate protein-protein interactions. The abundance of many positively charged residues on the surface of the domain led us to investigate whether the propeller of Erb1 might be involved in RNA binding. Three independent assays confirmed that the protein interacted in vitro with polyuridilic acid (polyU), thus suggesting a possible role of the domain in rRNA rearrangement during ribosome biogenesis.
Collapse
Affiliation(s)
- Wegrecki Marcin
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, c/ Jaime Roig 11, 46010 Valencia, Spain
| | - Jose Luis Neira
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Avda. del Ferrocarril s/n, 03202 Elche (Alicante), Spain
- Instituto de Biocomputación y Física de los Sistemas Complejos (BIFI), 50009 Zaragoza, Spain
| | - Jeronimo Bravo
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, c/ Jaime Roig 11, 46010 Valencia, Spain
- * E-mail:
| |
Collapse
|
10
|
Kellner M, Rohrmoser M, Forné I, Voss K, Burger K, Mühl B, Gruber-Eber A, Kremmer E, Imhof A, Eick D. DEAD-box helicase DDX27 regulates 3' end formation of ribosomal 47S RNA and stably associates with the PeBoW-complex. Exp Cell Res 2015; 334:146-59. [PMID: 25825154 DOI: 10.1016/j.yexcr.2015.03.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 02/07/2023]
Abstract
PeBoW, a trimeric complex consisting of pescadillo (Pes1), block of proliferation (Bop1), and the WD repeat protein 12 (WDR12), is essential for processing and maturation of mammalian 5.8S and 28S ribosomal RNAs. Applying a mass spectrometric analysis, we identified the DEAD-box helicase DDX27 as stably associated factor of the PeBoW-complex. DDX27 interacts with the PeBoW-complex via an evolutionary conserved F×F motif in the N-terminal domain and is recruited to the nucleolus via its basic C-terminal domain. This recruitment is RNA-dependent and occurs independently of the PeBoW-complex. Interestingly, knockdown of DDX27, but not of Pes1, induces the accumulation of an extended form of the primary 47S rRNA. We conclude that DDX27 can interact specifically with the Pes1 and Bop1 but fulfils critical function(s) for proper 3' end formation of 47S rRNA independently of the PeBoW-complex.
Collapse
Affiliation(s)
- Markus Kellner
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science Munich (CIPSM), Marchioninistr. 25, Munich 81377, Germany
| | - Michaela Rohrmoser
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science Munich (CIPSM), Marchioninistr. 25, Munich 81377, Germany
| | - Ignasi Forné
- Adolf Butenandt Institute, Ludwig Maximilians University of Munich, Center for Integrated Protein Science Munich (CIPSM), Schillerstr. 44, Munich 80336, Germany
| | - Kirsten Voss
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science Munich (CIPSM), Marchioninistr. 25, Munich 81377, Germany
| | - Kaspar Burger
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science Munich (CIPSM), Marchioninistr. 25, Munich 81377, Germany
| | - Bastian Mühl
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science Munich (CIPSM), Marchioninistr. 25, Munich 81377, Germany
| | - Anita Gruber-Eber
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science Munich (CIPSM), Marchioninistr. 25, Munich 81377, Germany
| | - Elisabeth Kremmer
- Institute of Molecular Immunology, Helmholtz Center Munich, Marchioninistr. 25, Munich 81377, Germany
| | - Axel Imhof
- Adolf Butenandt Institute, Ludwig Maximilians University of Munich, Center for Integrated Protein Science Munich (CIPSM), Schillerstr. 44, Munich 80336, Germany
| | - Dirk Eick
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center for Integrated Protein Science Munich (CIPSM), Marchioninistr. 25, Munich 81377, Germany.
| |
Collapse
|
11
|
Le Bouteiller M, Souilhol C, Beck-Cormier S, Stedman A, Burlen-Defranoux O, Vandormael-Pournin S, Bernex F, Cumano A, Cohen-Tannoudji M. Notchless-dependent ribosome synthesis is required for the maintenance of adult hematopoietic stem cells. ACTA ACUST UNITED AC 2013; 210:2351-69. [PMID: 24062412 PMCID: PMC3804936 DOI: 10.1084/jem.20122019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Conditional deletion of Notchless leads to rapid deletion and exhaustion of HSCs and early progenitor cells, whereas committed progenitor cells survive as a result of differences in ribosomal biogenesis. Blood cell production relies on the coordinated activities of hematopoietic stem cells (HSCs) and multipotent and lineage-restricted progenitors. Here, we identify Notchless (Nle) as a critical factor for HSC maintenance under both homeostatic and cytopenic conditions. Nle deficiency leads to a rapid and drastic exhaustion of HSCs and immature progenitors and failure to maintain quiescence in HSCs. In contrast, Nle is dispensable for cycling-restricted progenitors and differentiated cells. In yeast, Nle/Rsa4 is essential for ribosome biogenesis, and we show that its role in pre-60S subunit maturation has been conserved in the mouse. Despite its implication in this basal cellular process, Nle deletion affects ribosome biogenesis only in HSCs and immature progenitors. Ribosome biogenesis defects are accompanied by p53 activation, which causes their rapid exhaustion. Collectively, our findings establish an essential role for Nle in HSC and immature progenitor functions and uncover previously unsuspected differences in ribosome biogenesis that distinguish stem cells from restricted progenitor populations.
Collapse
Affiliation(s)
- Marie Le Bouteiller
- Institut Pasteur, Unité de Génétique Fonctionnelle de la Souris, Département de Biologie du Développement et Cellules Souches, F-75015 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
MicroRNAs profiling in murine models of acute and chronic asthma: a relationship with mRNAs targets. PLoS One 2011. [PMID: 21305051 DOI: 10.1371/journal.pone.0016509.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND miRNAs are now recognized as key regulator elements in gene expression. Although they have been associated with a number of human diseases, their implication in acute and chronic asthma and their association with lung remodelling have never been thoroughly investigated. METHODOLOGY/PRINCIPAL FINDINGS In order to establish a miRNAs expression profile in lung tissue, mice were sensitized and challenged with ovalbumin mimicking acute, intermediate and chronic human asthma. Levels of lung miRNAs were profiled by microarray and in silico analyses were performed to identify potential mRNA targets and to point out signalling pathways and biological processes regulated by miRNA-dependent mechanisms. Fifty-eight, 66 and 75 miRNAs were found to be significantly modulated at short-, intermediate- and long-term challenge, respectively. Inverse correlation with the expression of potential mRNA targets identified mmu-miR-146b, -223, -29b, -29c, -483, -574-5p, -672 and -690 as the best candidates for an active implication in asthma pathogenesis. A functional validation assay was performed by cotransfecting in human lung fibroblasts (WI26) synthetic miRNAs and engineered expression constructs containing the coding sequence of luciferase upstream of the 3'UTR of various potential mRNA targets. The bioinformatics analysis identified miRNA-linked regulation of several signalling pathways, as matrix metalloproteinases, inflammatory response and TGF-β signalling, and biological processes, including apoptosis and inflammation. CONCLUSIONS/SIGNIFICANCE This study highlights that specific miRNAs are likely to be involved in asthma disease and could represent a valuable resource both for biological makers identification and for unveiling mechanisms underlying the pathogenesis of asthma.
Collapse
|
13
|
Garbacki N, Di Valentin E, Huynh-Thu VA, Geurts P, Irrthum A, Crahay C, Arnould T, Deroanne C, Piette J, Cataldo D, Colige A. MicroRNAs profiling in murine models of acute and chronic asthma: a relationship with mRNAs targets. PLoS One 2011; 6:e16509. [PMID: 21305051 PMCID: PMC3030602 DOI: 10.1371/journal.pone.0016509] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 01/03/2011] [Indexed: 12/16/2022] Open
Abstract
Background miRNAs are now recognized as key regulator elements in gene expression. Although they have been associated with a number of human diseases, their implication in acute and chronic asthma and their association with lung remodelling have never been thoroughly investigated. Methodology/Principal Findings In order to establish a miRNAs expression profile in lung tissue, mice were sensitized and challenged with ovalbumin mimicking acute, intermediate and chronic human asthma. Levels of lung miRNAs were profiled by microarray and in silico analyses were performed to identify potential mRNA targets and to point out signalling pathways and biological processes regulated by miRNA-dependent mechanisms. Fifty-eight, 66 and 75 miRNAs were found to be significantly modulated at short-, intermediate- and long-term challenge, respectively. Inverse correlation with the expression of potential mRNA targets identified mmu-miR-146b, -223, -29b, -29c, -483, -574-5p, -672 and -690 as the best candidates for an active implication in asthma pathogenesis. A functional validation assay was performed by cotransfecting in human lung fibroblasts (WI26) synthetic miRNAs and engineered expression constructs containing the coding sequence of luciferase upstream of the 3′UTR of various potential mRNA targets. The bioinformatics analysis identified miRNA-linked regulation of several signalling pathways, as matrix metalloproteinases, inflammatory response and TGF-β signalling, and biological processes, including apoptosis and inflammation. Conclusions/Significance This study highlights that specific miRNAs are likely to be involved in asthma disease and could represent a valuable resource both for biological makers identification and for unveiling mechanisms underlying the pathogenesis of asthma.
Collapse
Affiliation(s)
- Nancy Garbacki
- GIGA-Research, Laboratory of Connective Tissues Biology, University of Liège, Liège, Belgium
| | - Emmanuel Di Valentin
- GIGA-Research, Laboratory of Virology and Immunology, University of Liège, Liège, Belgium
| | - Vân Anh Huynh-Thu
- GIGA-Research, Systems and modeling, University of Liège, Liège, Belgium
| | - Pierre Geurts
- GIGA-Research, Systems and modeling, University of Liège, Liège, Belgium
| | - Alexandre Irrthum
- GIGA-Research, Systems and modeling, University of Liège, Liège, Belgium
| | - Céline Crahay
- GIGA-Research, Laboratory of Biology of Tumours and Development, University of Liège, Liège, Belgium
| | - Thierry Arnould
- Laboratory of Biochemistry and Cell Biology, University of Namur, Namur, Belgium
| | - Christophe Deroanne
- GIGA-Research, Laboratory of Connective Tissues Biology, University of Liège, Liège, Belgium
| | - Jacques Piette
- GIGA-Research, Laboratory of Virology and Immunology, University of Liège, Liège, Belgium
| | - Didier Cataldo
- GIGA-Research, Laboratory of Biology of Tumours and Development, University of Liège, Liège, Belgium
| | - Alain Colige
- GIGA-Research, Laboratory of Connective Tissues Biology, University of Liège, Liège, Belgium
- * E-mail:
| |
Collapse
|
14
|
Bassler J, Kallas M, Pertschy B, Ulbrich C, Thoms M, Hurt E. The AAA-ATPase Rea1 drives removal of biogenesis factors during multiple stages of 60S ribosome assembly. Mol Cell 2010; 38:712-21. [PMID: 20542003 DOI: 10.1016/j.molcel.2010.05.024] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 03/17/2010] [Accepted: 04/21/2010] [Indexed: 12/18/2022]
Abstract
The AAA(+)-ATPase Rea1 removes the ribosome biogenesis factor Rsa4 from pre-60S ribosomal subunits in the nucleoplasm to drive nuclear export of the subunit. To do this, Rea1 utilizes a MIDAS domain to bind a conserved motif in Rsa4. Here, we show that the Rea1 MIDAS domain binds another pre-60S factor, Ytm1, via a related motif. In vivo Rea1 contacts Ytm1 before it contacts Rsa4, and its interaction with Ytm1 coincides with the exit of early pre-60S particles from the nucleolus to the nucleoplasm. In vitro, Rea1's ATPase activity triggers removal of the conserved nucleolar Ytm1-Erb1-Nop7 subcomplex from isolated early pre-60S particle. We suggest that the Rea1 AAA(+)-ATPase functions at successive maturation steps to remove ribosomal factors at critical transition points, first driving the exit of early pre-60S particles from the nucleolus and then driving late pre-60S particles from the nucleus.
Collapse
Affiliation(s)
- Jochen Bassler
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
15
|
Tang L, Sahasranaman A, Jakovljevic J, Schleifman E, Woolford JL. Interactions among Ytm1, Erb1, and Nop7 required for assembly of the Nop7-subcomplex in yeast preribosomes. Mol Biol Cell 2008; 19:2844-56. [PMID: 18448671 DOI: 10.1091/mbc.e07-12-1281] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In Saccharomyces cerevisiae, more than 180 assembly factors associate with preribosomes to enable folding of pre-rRNA, recruitment of ribosomal proteins, and processing of pre-rRNAs to produce mature ribosomes. To examine the molecular architecture of preribosomes and to connect this structure to functions of each assembly factor, assembly subcomplexes have been purified from preribosomal particles. The Nop7-subcomplex contains three assembly factors: Nop7, Erb1, and Ytm1, each of which is necessary for conversion of 27SA(3) pre-rRNA to 27SB(S) pre-rRNA. However, interactions among these three proteins and mechanisms of their recruitment and function in pre-rRNPs are poorly understood. Here we show that Ytm1, Erb1, and Nop7 assemble into preribosomes in an interdependent manner. We identified which domains within Ytm1, Erb1, and Nop7 are necessary for their interaction with each other and are sufficient for recruitment of each protein into preribosomes. Dominant negative effects on growth and ribosome biogenesis caused by overexpressing truncated Ytm1, Erb1, or Nop7 constructs, and recessive phenotypes of the truncated proteins revealed not only interaction domains but also other domains potentially important for each protein to function in ribosome biogenesis. Our data suggest a model for the architecture of the Nop7-subcomplex and provide potential functions of domains of each protein.
Collapse
Affiliation(s)
- Lan Tang
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|
16
|
Petrak J, Myslivcova D, Man P, Cmejlova J, Cmejla R, Vyoral D. Proteomic analysis of erythroid differentiation induced by hexamethylene bisacetamide in murine erythroleukemia cells. Exp Hematol 2007; 35:193-202. [PMID: 17258068 DOI: 10.1016/j.exphem.2006.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 08/25/2006] [Accepted: 10/10/2006] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Murine erythroleukemia (MEL) cells are transformed erythroid precursors that are arrested in an immature and proliferating state. These leukemic cells can be grown in cell cultures and induced to terminal erythroid differentiation by a treatment with a specific chemical inducer such as N,N'-hexamethylene bisacetamide. MEL cells then re-enter their original erythroid program and differentiate along the erythroid pathway into non-dividing hemoglobin-rich cells resembling orthochromatophilic normoblasts. To deepen our understanding of the molecular mechanisms underlying and erythroid differentiation and leukemia we monitored changes in protein expression in differentiating MEL cells. METHODS In our effort to find new candidate proteins involved in the differentiation of MEL cells, we embraced a proteomic approach. Employing two-dimensional (2D) electrophoresis combined with mass spectrometry, we compared protein expression in non-induced MEL cells with MEL cells exposed to N,N'-hexamethylene bisacetamide for 48 h. RESULTS From 700 proteins spots observed, 31 proteins were differentially expressed. We successfully identified 27 of the differentially expressed molecules by mass spectrometry (MALDI-MS). CONCLUSION In addition to proteins involved in heme biosynthesis, protein metabolism, stress defense and cytoskeletal organization, we identified 3 proteins engaged in regulation of cellular trafficking and 7 proteins important for regulation of gene expression and cell cycle progression including 3 components of chromatin remodeling complexes. Many of the identified molecules are associated with erythroid differentiation or leukemia for the first time. To our knowledge, this is the first study applying a modern proteomic approach to the direct analysis of erythroid differentiation of leukemic cells.
Collapse
Affiliation(s)
- Jiri Petrak
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
17
|
Cormier S, Le Bras S, Souilhol C, Vandormael-Pournin S, Durand B, Babinet C, Baldacci P, Cohen-Tannoudji M. The murine ortholog of notchless, a direct regulator of the notch pathway in Drosophila melanogaster, is essential for survival of inner cell mass cells. Mol Cell Biol 2006; 26:3541-9. [PMID: 16611995 PMCID: PMC1447417 DOI: 10.1128/mcb.26.9.3541-3549.2006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Notch signaling is an evolutionarily conserved pathway involved in intercellular communication and is essential for proper cell fate choices. Numerous genes participate in the modulation of the Notch signaling pathway activity. Among them, Notchless (Nle) is a direct regulator of the Notch activity identified in Drosophila melanogaster. Here, we characterized the murine ortholog of Nle and demonstrated that it has conserved the ability to modulate Notch signaling. We also generated mice deficient for mouse Nle (mNle) and showed that its disruption resulted in embryonic lethality shortly after implantation. In late mNle(-/-) blastocysts, inner cell mass (ICM) cells died through a caspase 3-dependent apoptotic process. Most deficient embryos exhibited a delay in the temporal down-regulation of Oct4 expression in the trophectoderm (TE). However, mNle-deficient TE was able to induce decidual swelling in vivo and properly differentiated in vitro. Hence, our results indicate that mNle is mainly required in ICM cells, being instrumental for their survival, and raise the possibility that the death of mNle-deficient embryos might result from abnormal Notch signaling during the first steps of development.
Collapse
Affiliation(s)
- Sarah Cormier
- Unité Biologie du Développement, CNRS URA 2578, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Hölzel M, Rohrmoser M, Schlee M, Grimm T, Harasim T, Malamoussi A, Gruber-Eber A, Kremmer E, Hiddemann W, Bornkamm GW, Eick D. Mammalian WDR12 is a novel member of the Pes1-Bop1 complex and is required for ribosome biogenesis and cell proliferation. ACTA ACUST UNITED AC 2005; 170:367-78. [PMID: 16043514 PMCID: PMC2171466 DOI: 10.1083/jcb.200501141] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Target genes of the protooncogene c-myc are implicated in cell cycle and growth control, yet the linkage of both is still unexplored. Here, we show that the products of the nucleolar target genes Pes1 and Bop1 form a stable complex with a novel member, WDR12 (PeBoW complex). Endogenous WDR12, a WD40 repeat protein, is crucial for processing of the 32S precursor ribosomal RNA (rRNA) and cell proliferation. Further, a conditionally expressed dominant-negative mutant of WDR12 also blocks rRNA processing and induces a reversible cell cycle arrest. Mutant WDR12 triggers accumulation of p53 in a p19ARF-independent manner in proliferating cells but not in quiescent cells. Interestingly, a potential homologous complex of Pes1–Bop1–WDR12 in yeast (Nop7p–Erb1p–Ytm1p) is involved in the control of ribosome biogenesis and S phase entry. In conclusion, the integrity of the PeBoW complex is required for ribosome biogenesis and cell proliferation in mammalian cells.
Collapse
Affiliation(s)
- Michael Hölzel
- Institute of Clinical Molecular Biology and Tumour Genetics, National Research Center for Environment and Health (GSF), 81377 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|