1
|
Nunes SC, Sousa J, Silva F, Silveira M, Guimarães A, Serpa J, Félix A, Gonçalves LG. Peripheral Blood Serum NMR Metabolomics Is a Powerful Tool to Discriminate Benign and Malignant Ovarian Tumors. Metabolites 2023; 13:989. [PMID: 37755269 PMCID: PMC10537270 DOI: 10.3390/metabo13090989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023] Open
Abstract
Ovarian cancer is the major cause of death from gynecological cancer and the third most common gynecological malignancy worldwide. Despite a slight improvement in the overall survival of ovarian carcinoma patients in recent decades, the cure rate has not improved. This is mainly due to late diagnosis and resistance to therapy. It is therefore urgent to develop effective methods for early detection and prognosis. We hypothesized that, besides being able to distinguish serum samples of patients with ovarian cancer from those of patients with benign ovarian tumors, 1H-NMR metabolomics analysis might be able to predict the malignant potential of tumors. For this, serum 1H-NMR metabolomics analyses were performed, including patients with malignant, benign and borderline ovarian tumors. The serum metabolic profiles were analyzed by multivariate statistical analysis, including principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) methods. A metabolic profile associated with ovarian malignant tumors was defined, in which lactate, 3-hydroxybutyrate and acetone were increased and acetate, histidine, valine and methanol were decreased. Our data support the use of 1H-NMR metabolomics analysis as a screening method for ovarian cancer detection and might be useful for predicting the malignant potential of borderline tumors.
Collapse
Affiliation(s)
- Sofia C. Nunes
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria 130, 1169-056 Lisboa, Portugal; (S.C.N.); (J.S.); (A.F.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - Joana Sousa
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Avenida da República (EAN), 2780-157 Oeiras, Portugal
| | - Fernanda Silva
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria 130, 1169-056 Lisboa, Portugal; (S.C.N.); (J.S.); (A.F.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - Margarida Silveira
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - António Guimarães
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - Jacinta Serpa
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria 130, 1169-056 Lisboa, Portugal; (S.C.N.); (J.S.); (A.F.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - Ana Félix
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria 130, 1169-056 Lisboa, Portugal; (S.C.N.); (J.S.); (A.F.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - Luís G. Gonçalves
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Avenida da República (EAN), 2780-157 Oeiras, Portugal
| |
Collapse
|
2
|
Zhang Q, Wang X, Zhang X, Zhan J, Zhang B, Jia J, Chen J. TMEM14A aggravates the progression of human ovarian cancer cells by enhancing the activity of glycolysis. Exp Ther Med 2022; 24:614. [PMID: 36160886 PMCID: PMC9468797 DOI: 10.3892/etm.2022.11551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/06/2022] [Indexed: 12/09/2022] Open
Affiliation(s)
- Qingmei Zhang
- Department of Gynecology, The People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350004, P.R. China
| | - Xiaohong Wang
- Department of Gynecology, The People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350004, P.R. China
| | - Xuan Zhang
- Department of Gynecology, The People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350004, P.R. China
| | - Jingfen Zhan
- Department of Gynecology, The People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350004, P.R. China
| | - Binbin Zhang
- Department of Gynecology, The People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350004, P.R. China
| | - Jin Jia
- Department of Gynecology, The People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350004, P.R. China
| | - Jie Chen
- Department of Gynecology, The People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350004, P.R. China
| |
Collapse
|
3
|
Said NM. Three gold indicators for breast cancer prognosis: a case-control study with ROC analysis for novel ratios related to CBC with (ALP and LDH). Mol Biol Rep 2019; 46:2013-2027. [PMID: 30706358 DOI: 10.1007/s11033-019-04650-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/24/2019] [Indexed: 02/06/2023]
Abstract
Science is still unable to develop a specific strategy for predicting breast cancer in humans. Several attempts are done to obtain the best and closest prognostic predictive biomarkers for breast cancer. The present study aimed to evaluate the impact of novel ratios calculated between the blood indices with CA15.3, alkaline phosphatase and lactate dehydrogenase as prognostic biomarkers in breast cancer. This study was conducted on two groups (Breast cancer Patients group in comparison to a control group who has no tumor family history). All the volunteers are subjected to the routine analysis included liver and kidney function tests, complete blood count with blood indices, tumor markers (CA15.3) assessment, alkaline phosphatase, and lactate dehydrogenase analysis. Thirty different ratios were calculated in the present research between blood indices and three inexpensive serum biomarkers; CA15.3, alkaline phosphatase and lactate dehydrogenase. Fifteen ratios of them were significant in breast cancer group than the control group. Three ratios (PDW/lymphocytes, MPV/lymphocytes, and ALP/RDW) of them gave a sensitivity of 100% with high specificity as indicators for breast cancer incidence. The correlation between significant ratios was very interesting. The more interesting was in the results of subgroup analysis which showed that the ALP/RDW ratio is more specific for pre-menopause while PDW/lymphocytes ratio is more specific for post-menopause. The ratios PDW/lymphocytes, MPV/lymphocytes, and ALP/RDW can be used as prognostic biomarkers in breast cancer patients. The interesting advantage in the results depends on the availability of these indicators in routine blood analysis and will not increase the cost of the diagnostic plan.
Collapse
Affiliation(s)
- Noha Mohamed Said
- Biochemistry Division, Chemistry Department, Faculty of Science, Zagzig University, Zagazig, Egypt.
| |
Collapse
|
4
|
Han CY, Patten DA, Richardson RB, Harper ME, Tsang BK. Tumor metabolism regulating chemosensitivity in ovarian cancer. Genes Cancer 2018; 9:155-175. [PMID: 30603053 PMCID: PMC6305103 DOI: 10.18632/genesandcancer.176] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/14/2018] [Indexed: 12/26/2022] Open
Abstract
Elevated metabolism is a key hallmark of multiple cancers, serving to fulfill high anabolic demands. Ovarian cancer (OVCA) is the fifth leading cause of cancer deaths in women with a high mortality rate (45%). Chemoresistance is a major hurdle for OVCA treatment. Although substantial evidence suggests that metabolic reprogramming contributes to anti-apoptosis and the metastasis of multiple cancers, the link between tumor metabolism and chemoresistance in OVCA remains unknown. While clinical trials targeting metabolic reprogramming alone have been met with limited success, the synergistic effect of inhibiting tumor-specific metabolism with traditional chemotherapy warrants further examination, particularly in OVCA. This review summarizes the role of key glycolytic enzymes and other metabolic synthesis pathways in the progression of cancer and chemoresistance in OVCA. Within this context, mitochondrial dynamics (fission, fusion and cristae structure) are addressed regarding their roles in controlling metabolism and apoptosis, closely associated with chemosensitivity. The roles of multiple key oncogenes (Akt, HIF-1α) and tumor suppressors (p53, PTEN) in metabolic regulation are also described. Next, this review summarizes recent research of metabolism and future direction. Finally, we examine clinical drugs and inhibitors to target glycolytic metabolism, as well as the rationale for such strategies as potential therapeutics to overcome chemoresistant OVCA.
Collapse
Affiliation(s)
- Chae Young Han
- Department of Obstetrics and Gynecology and Cellular and Molecular Medicine, University of Ottawa, and Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - David A. Patten
- Canadian Nuclear Laboratories (CNL), Radiobiology and Health Branch, Chalk River Laboratories, Chalk River, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Richard B. Richardson
- Canadian Nuclear Laboratories (CNL), Radiobiology and Health Branch, Chalk River Laboratories, Chalk River, Ontario, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Benjamin K. Tsang
- Department of Obstetrics and Gynecology and Cellular and Molecular Medicine, University of Ottawa, and Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China
| |
Collapse
|
5
|
Dietz C, Ehret F, Palmas F, Vandergrift LA, Jiang Y, Schmitt V, Dufner V, Habbel P, Nowak J, Cheng LL. Applications of high-resolution magic angle spinning MRS in biomedical studies II-Human diseases. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3784. [PMID: 28915318 PMCID: PMC5690552 DOI: 10.1002/nbm.3784] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/21/2017] [Accepted: 07/10/2017] [Indexed: 05/06/2023]
Abstract
High-resolution magic angle spinning (HRMAS) MRS is a powerful method for gaining insight into the physiological and pathological processes of cellular metabolism. Given its ability to obtain high-resolution spectra of non-liquid biological samples, while preserving tissue architecture for subsequent histopathological analysis, the technique has become invaluable for biochemical and biomedical studies. Using HRMAS MRS, alterations in measured metabolites, metabolic ratios, and metabolomic profiles present the possibility to improve identification and prognostication of various diseases and decipher the metabolomic impact of drug therapies. In this review, we evaluate HRMAS MRS results on human tissue specimens from malignancies and non-localized diseases reported in the literature since the inception of the technique in 1996. We present the diverse applications of the technique in understanding pathological processes of different anatomical origins, correlations with in vivo imaging, effectiveness of therapies, and progress in the HRMAS methodology.
Collapse
Affiliation(s)
- Christopher Dietz
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
- Faculty of Medicine, Julius Maximilian University of Würzburg, 97080 Würzburg, Germany
| | - Felix Ehret
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
- Faculty of Medicine, Julius Maximilian University of Würzburg, 97080 Würzburg, Germany
| | - Francesco Palmas
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
- Department of Chemical and Geological Sciences, University of Cagliari, Cagliari, Sardinia, 09042 Italy
| | - Lindsey A. Vandergrift
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
| | - Yanni Jiang
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
- Department of Radiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029 China
| | - Vanessa Schmitt
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
- Faculty of Medicine, Julius Maximilian University of Würzburg, 97080 Würzburg, Germany
| | - Vera Dufner
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
- Department of Hematology and Oncology, Charité Medical University of Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Piet Habbel
- Department of Hematology and Oncology, Charité Medical University of Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Johannes Nowak
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Leo L. Cheng
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
| |
Collapse
|
6
|
Kucukgoz Gulec U, Paydas S, Guzel AB, Buyukkurt S, Seydaoglu G, Vardar MA. Comparative analysis of CA 125, ferritin, beta-2 microglobulin, lactic dehydrogenase levels in serum and peritoneal fluid in patients with ovarian neoplasia. Med Oncol 2012; 29:2937-43. [PMID: 22274916 DOI: 10.1007/s12032-012-0165-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 01/07/2012] [Indexed: 11/29/2022]
Abstract
The aim of this study was to investigate the diagnostic role of the CA 125, ferritin, beta-2 microglobulin (β2 M), and lactic dehydrogenase (LDH) levels in serum and peritoneal fluid (PF) in patients with ovarian neoplasms. Using cross-sectional study design; serum and PF CA 125, ferritin, β2 M, and LDH levels were analyzed in 40 patients with benign ovarian neoplasms (Group 1) and 59 patients with malignant ovarian neoplasms (Group 2) which were evaluated surgically. Serum and PF levels of these markers compared between the groups. Diagnostic role of these markers were determined with receiver operating curve (ROC) analysis. Serum and PF CA 125, ferritin, β2 M, and LDH levels were statistically significant higher in patients with ovarian cancers as compared with benign neoplasms. Among these biomarkers, PF β2 M levels had highest sensitivity and specificity, 76.3 and 85%, respectively with the cut-off value: 2.3 mg/l. This study results indicates that especially PF β2 M and ferritin levels may be valuable for diagnosis of malignant ascites in patients with ovarian neoplasms.
Collapse
Affiliation(s)
- Umran Kucukgoz Gulec
- Department of Obstetrics and Gynecology, Faculty of Medicine, Cukurova University, Adana, Turkey.
| | | | | | | | | | | |
Collapse
|
7
|
Tarn AC, Lapworth R. Biochemical analysis of ascitic (peritoneal) fluid: what should we measure? Ann Clin Biochem 2010; 47:397-407. [PMID: 20595402 DOI: 10.1258/acb.2010.010048] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ascitic fluid samples are frequently sent to the laboratory for analysis. Although the underlying cause of the ascites is often thought to be clinically obvious, it is important to establish a definitive diagnosis. The value of a cell count and bacterial culture of the ascitic fluid is not disputed, but the role of biochemical testing is less clear. The use of ascitic fluid total protein to try to classify ascitic fluids as either an exudate or a transudate has contributed to this. The use of the physiologically based serum ascites albumin gradient to differentiate ascites caused by portal hypertension from other causes provides a better diagnostic approach. We recommend that the serum ascites albumin gradient is performed by laboratories as the first-line test and that interpretative reports are provided. Additional testing should be restricted to specific diagnostic queries and requires close collaboration between the laboratory and the clinician.
Collapse
Affiliation(s)
- A C Tarn
- Department of Clinical Biochemistry, Mayday University Hospital, Mayday Road, Thornton Heath, Surrey CR77YE, UK.
| | | |
Collapse
|
8
|
Abstract
tRNAs possess a high content of modified nucleosides, which display an incredible structural variety. These modified nucleosides are conserved in their sequence and have important roles in tRNA functions. Most often, hypermodified nucleosides are found in the wobble position of tRNAs, which play a direct role in maintaining translational efficiency and fidelity, codon recognition, etc. One of such hypermodified base is queuine, which is a base analogue of guanine, found in the first anticodon position of specific tRNAs (tyrosine, histidine, aspartate and asparagine tRNAs). These tRNAs of the ‘Q-family’ originally contain guanine in the first position of anticodon, which is post-transcriptionally modified with queuine by an irreversible insertion during maturation. Queuine is ubiquitously present throughout the living system from prokaryotes to eukaryotes, including plants. Prokaryotes can synthesize queuine de novo by a complex biosynthetic pathway, whereas eukaryotes are unable to synthesize either the precursor or queuine. They utilize salvage system and acquire queuine as a nutrient factor from their diet or from intestinal microflora. The tRNAs of the Q-family are completely modified in terminally differentiated somatic cells. However, hypomodification of Q-tRNA (queuosine-modified tRNA) is closely associated with cell proliferation and malignancy. The precise mechanisms of queuine- and Q-tRNA-mediated action are still a mystery. Direct or indirect evidence suggests that queuine or Q-tRNA participates in many cellular functions, such as inhibition of cell proliferation, control of aerobic and anaerobic metabolism, bacterial virulence, etc. The role of Q-tRNA modification in cellular machinery and the signalling pathways involved therein is the focus of this review.
Collapse
|
9
|
Tessem MB, Swanson MG, Keshari KR, Albers MJ, Joun D, Tabatabai ZL, Simko JP, Shinohara K, Nelson SJ, Vigneron DB, Gribbestad IS, Kurhanewicz J. Evaluation of lactate and alanine as metabolic biomarkers of prostate cancer using 1H HR-MAS spectroscopy of biopsy tissues. Magn Reson Med 2009; 60:510-6. [PMID: 18727052 DOI: 10.1002/mrm.21694] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The goal of this study was to investigate the use of lactate and alanine as metabolic biomarkers of prostate cancer using (1)H high-resolution magic angle spinning (HR-MAS) spectroscopy of snap-frozen transrectal ultrasound (TRUS)-guided prostate biopsy tissues. A long-echo-time rotor-synchronized Carr-Purcell-Meiboom-Gill (CPMG) sequence including an electronic reference to access in vivo concentrations (ERETIC) standard was used to determine the concentrations of lactate and alanine in 82 benign and 16 malignant biopsies (mean 26.5% +/- 17.2% of core). Low concentrations of lactate (0.61 +/- 0.28 mmol/kg) and alanine (0.14 +/- 0.06 mmol/kg) were observed in benign prostate biopsies, and there was no significant difference between benign predominantly glandular (N = 54) and stromal (N = 28) biopsies between patients with (N = 38) and without (N = 44) a positive clinical biopsy. In biopsies containing prostate cancer there was a highly significant (P < 0.0001) increase in lactate (1.59 +/- 0.61 mmol/kg) and alanine (0.26 +/- 0.07 mmol/kg), and minimal overlap with lactate concentrations in benign biopsies. This study demonstrates for the first time very low concentrations of lactate and alanine in benign prostate biopsy tissues. The significant increase in the concentration of both lactate and alanine in biopsy tissue containing as little as 5% cancer could be exploited in hyperpolarized (13)C spectroscopic imaging (SI) studies of prostate cancer patients.
Collapse
Affiliation(s)
- May-Britt Tessem
- Department of Radiology, University of California-San Francisco, San Francisco, California 94158-2330, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Simaga S, Abramić M, Osmak M, Babić D, Ilić-Forko J. Total tissue lactate dehydrogenase activity in endometrial carcinoma. Int J Gynecol Cancer 2008; 18:1272-8. [PMID: 18284453 DOI: 10.1111/j.1525-1438.2008.01196.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Lactate dehydrogenase (LDH) is essential for continuous glycolysis necessary for accelerated tumor growth. The aim of this study was to reconsider if assay of total tissue activity of this enzyme could be useful as marker for endometrial carcinoma (EC). Activity of LDH was measured spectrophotometrically in homogenate supernatants of uterine tissue samples of 40 patients (10 normal endometria, 27 normal myometria, and 33 EC), including 30 matched pairs. Data obtained were analyzed in relation to clinical and histopathologic findings and compared with our previously published results on the tissue levels of the same enzyme in ovarian cancer and on the proteolytic activity of dipeptidyl peptidase III (DPP III) in EC (suggested biochemical indicator of this malignancy). Significantly increased (1.8-3.0 times; P < 1 x 10(-4)) LDH activity was observed in EC samples if compared with normal uterine tissues. This rise was not related to the clinicopathologic findings, however. In contrast to previous results on LDH in ovarian carcinomas, a significant rise in LDH activity was found already in grade 1 EC. Using the cutoff value of 1.06 U/mg, diagnostic sensitivity of 82%, specificity of 100%, and accuracy of 91% for total tissue LDH assay have been calculated. A correlation of tissue's LDH and DPP III activities was found, and their combined assay for EC showed increased diagnostic sensitivity (94%) and accuracy (96%).
Collapse
Affiliation(s)
- S Simaga
- Division of Organic Chemistry and Biochemistry, Ruder Boskovíc Institute, Zagreb, Croatia.
| | | | | | | | | |
Collapse
|
11
|
Simaga S, Osmak M, Babic D, Sprem M, Vukelic B, Abramic M. Quantitative biochemical analysis of lactate dehydrogenase in human ovarian tissues: correlation with tumor grade. Int J Gynecol Cancer 2005; 15:438-44. [PMID: 15882167 DOI: 10.1111/j.1525-1438.2005.14410.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
In an attempt to identify glycolytic capacity of normal and neoplastic human ovary, total lactate dehydrogenase (LDH) activity was measured in tissue cytosol originating from 69 patients (18 with benign ovarian tumor, 34 with ovarian carcinoma, six with nonepithelial ovarian malignant tumors, and 11 with tumor metastatic to ovary) and compared to the LDH activity of normal ovarian tissues (n = 19). Median value of total LDH-specific activity expressed as U/mg protein was 0.546 in normal tissues, 0.584 in benign tumors, 1.071 in malignancies metastatic to ovaries, 0.872 in nonepithelial primary ovarian tumors, and 0.818 in primary carcinomas. A significant rise in LDH-specific activity was found in malignant primary and secondary tumors of epithelial and nonepithelial origin, but not in benign neoplasms, compared to the activity in normal tissue. Ovarian carcinomas of serous histologic type did not differ in LDH activity from mucinous tumors. However, poorly differentiated carcinomas (grade 3) showed significantly enhanced activity of this glycolytic enzyme when compared to its grade 1 counterpart. The subgroup of grade 1 tumors did not differ in LDH activity from normal and benign ovarian tissue. Obtained results suggest that direct correlation might exist between ovarian epithelial tumor grade and lactate dehydrogenase activity.
Collapse
Affiliation(s)
- S Simaga
- Department of Organic Chemistry and Biochemistry, 'Ruder Boskovic' Institute, Zagreb, Croatia
| | | | | | | | | | | |
Collapse
|
12
|
Ouellet V, Provencher DM, Maugard CM, Le Page C, Ren F, Lussier C, Novak J, Ge B, Hudson TJ, Tonin PN, Mes-Masson AM. Discrimination between serous low malignant potential and invasive epithelial ovarian tumors using molecular profiling. Oncogene 2005; 24:4672-87. [PMID: 15940270 DOI: 10.1038/sj.onc.1208214] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Tumors of low malignant potential (LMP) represent 20% of epithelial ovarian cancers (EOCs) and are associated with a better prognosis than the invasive tumors (TOV). Defining the relationship between LMPs and TOVs remains an important goal towards understanding the molecular pathways that contribute to prognosis, as well as providing molecular markers, for these EOCs. To this end, DNA microarray analyses were performed either in a primary culture or a tumor tissue model system and selected candidate genes showing a distinctive expression profile between LMPs and TOVs were identified using a class prediction approach based on three statistical methods of analysis. Both model systems appear relevant as candidate genes identified by either model allowed the proper reclassification of samples as either LMPs or TOVs. Selected candidate genes (CAS, CCNE1, LGALS8, ITGbeta3, ATP1B1, FLIP, KRT7 and KRT19) were validated by real-time quantitative PCR analysis and show differential expression between LMPs and TOVs. Immunohistochemistry analyses showed that the two tumor classes were distinguishable by their expression of CAS, TNFR1A, FLIP, CKS1 and CCNE1. These results define signature patterns for gene expression of LMPs and TOVs and identify gene candidates that warrant further study to deepen our understanding of the biology of EOC.
Collapse
Affiliation(s)
- Véronique Ouellet
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal/Institut du cancer de Montréal, Montreal, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Boran N, Kayikçioğlu F, Yalvaç S, Tulunay G, Ekinci U, Köse MF. Significance of serum and peritoneal fluid lactate dehydrogenase levels in ovarian cancer. Gynecol Obstet Invest 2000; 49:272-4. [PMID: 10828712 DOI: 10.1159/000010258] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We investigated prospectively whether the detection of serum lactate dehydrogenase (LDH) and/or peritoneal fluid LDH levels may serve as a reliable biochemical marker in discriminating ovarian carcinoma from benign ovarian tumors. In this series, postoperatively 20 of 50 patients had a diagnosis of ovarian cancer while the remaining 30 patients had benign ovarian tumor. No significant difference in peritoneal fluid LDH levels was observed between patients with ovarian cancer and benign ovarian tumor (p > 0.05). Serum LDH levels in ovarian cancer patients were significantly higher than those in patients with benign ovarian tumor (p < 0.05). Statistically significant differences were not observed in LDH levels of different histological types of ovarian cancer and different stages of the disease. Serum LDH levels presented diagnostic accuracy with high specificity and may have a potential use as a biochemical marker.
Collapse
Affiliation(s)
- N Boran
- Department of Gynecological Oncology, SSK Ankara Maternity Hospital, Etlik-Ankara, Turkey
| | | | | | | | | | | |
Collapse
|
14
|
Alexandrakis MG, Moschandrea JA, Koulocheri SA, Kouroumalis E, Eliopoulos GD. Discrimination between malignant and nonmalignant ascites using serum and ascitic fluid proteins in a multivariate analysis model. Dig Dis Sci 2000; 45:500-8. [PMID: 10749324 DOI: 10.1023/a:1005437005811] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Our objectives were to study the value of different proteins in the serum and ascitic fluid and assess their potential in discriminating between malignant and nonmalignant ascites in a model that could be developed to aid clinical diagnosis. In all, 57 different measurements (30 in serum and 27 in ascitic fluid) including erythrocyte sedimentation rate, number of white blood cells, cytokines, interleukin-1a (IL-1a), IL-1b, IL-2, IL-6, IL-8, tumor necrosis factor-alpha, immunoglobulins (IgG, IgA, IgM), complement factors C3 and C4, acute-phase proteins such as alpha1-acid glycoprotein, alpha2-macroglobulin, alpha1-antitrypsin, haptoglobin, C-reactive protein, ferritin, ceruloplasmin and transferin, were performed in 61 patients with ascites (25 with malignant exudates, 13 with nonmalignant exudates, and 23 with transudates). Patients with sepsis were excluded. Correlation tests and one-way ANOVAs were used for comparisons between different groups. Discriminant analyses were used to assess the significance of each parameter in the differentiation process. Correct classification of 100% of cases required the use of all 57 ascitic fluid measurements in the model, which was not considered practical in clinical diagnosis. Discriminant analysis showed that five ascitic fluid measurements-total protein, LDH, TNF-alpha, C4, and haptoglobin-were sufficient for a model to correctly classify 89% of cases. Cross-validation showed that 70% of unknown cases were correctly classified using this model. In conclusion, we have shown that five easily taken protein measurements in the ascitic fluid can differentiate to a large extent between cases with ascites and have proposed a relatively simple statistical model with these parameters that could be developed to be extremely useful in the clinical setting.
Collapse
Affiliation(s)
- M G Alexandrakis
- Department of Haematology, University Hospital of Heraklion, Crete, Greece
| | | | | | | | | |
Collapse
|
15
|
Parker MF, Conslato SS, Chang AS, Taylor RR, Reed ME, Mayer AR. Chemical analysis of adnexal cyst fluid. Gynecol Oncol 1999; 73:16-20. [PMID: 10094874 DOI: 10.1006/gyno.1998.5263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The purpose of the study was to determine if adnexal cyst fluid glucose, protein, and lactate dehydrogenase (LDH) levels can discriminate between cancerous and noncancerous adnexal masses. METHODS Intracystic fluid was aspirated from adnexal masses immediately after operative excision. Patient age and menopausal status, mass size, and cyst fluid specific gravity were recorded. Cyst fluid and intraoperative serum glucose, protein, and LDH levels were measured. Masses were grouped by histopathologic diagnosis. Cyst fluid chemical levels and cyst fluid/serum ratios were compared among and between the groups. RESULTS Fifty-eight adnexal masses were analyzed: 15 nonneoplastic (group 1), 23 benign neoplastic (group 2), and 20 malignant (group 3). There were no significant differences among the groups with regard to patient age, menopausal status, or cyst fluid specific gravity. Cyst size (cm2) was significantly different among the three groups (P < 0.01), with the largest mean size found in the cancer group. No significant differences in cyst chemistries or cyst fluid/serum ratios were found between groups 1 and 2. Comparing groups 1 and 3, all values were significantly different (P < 0.05), with the greatest level of significance attained by comparison of cyst fluid LDH levels (P < 0.001). Groups 2 and 3 statistically differed in cyst fluid levels and cyst fluid/serum ratios of both protein and LDH, with the highest levels of significance achieved by comparisons of cyst fluid levels and ratios of LDH (P = 0.001 and P < 0.001, respectively). The cyst fluid LDH level was found to be the best single chemistry for distinguishing noncancerous (groups 1 and 2) from cancerous (group 3) adnexal masses. A cyst fluid LDH level of >/=451 U/L imparted a 90% sensitivity and 71% specificity for detecting malignancy. CONCLUSIONS Evaluation of adnexal cyst fluid LDH may help to distinguish benign from malignant adnexal masses. More cases are needed to adequately assess the predictive value and clinical utility of this approach.
Collapse
Affiliation(s)
- M F Parker
- Department of Obstetrics and Gynecology, Tripler Army Medical Center, Hawaii, 96859, USA
| | | | | | | | | | | |
Collapse
|