1
|
Liu J, Du C, Chen H, Huang W, Lei Y. Nano-Micron Combined Hydrogel Microspheres: Novel Answer for Minimal Invasive Biomedical Applications. Macromol Rapid Commun 2024; 45:e2300670. [PMID: 38400695 DOI: 10.1002/marc.202300670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/05/2024] [Indexed: 02/25/2024]
Abstract
Hydrogels, key in biomedical research for their hydrophilicity and versatility, have evolved with hydrogel microspheres (HMs) of micron-scale dimensions, enhancing their role in minimally invasive therapeutic delivery, tissue repair, and regeneration. The recent emergence of nanomaterials has ushered in a revolutionary transformation in the biomedical field, which demonstrates tremendous potential in targeted therapies, biological imaging, and disease diagnostics. Consequently, the integration of advanced nanotechnology promises to trigger a new revolution in the realm of hydrogels. HMs loaded with nanomaterials combine the advantages of both hydrogels and nanomaterials, which enables multifaceted functionalities such as efficient drug delivery, sustained release, targeted therapy, biological lubrication, biochemical detection, medical imaging, biosensing monitoring, and micro-robotics. Here, this review comprehensively expounds upon commonly used nanomaterials and their classifications. Then, it provides comprehensive insights into the raw materials and preparation methods of HMs. Besides, the common strategies employed to achieve nano-micron combinations are summarized, and the latest applications of these advanced nano-micron combined HMs in the biomedical field are elucidated. Finally, valuable insights into the future design and development of nano-micron combined HMs are provided.
Collapse
Affiliation(s)
- Jiacheng Liu
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chengcheng Du
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hong Chen
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wei Huang
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yiting Lei
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
2
|
Cho Y, Kim J, Park J, Kim HS, Cho Y. Monodisperse Micro-Droplet Generation in Microfluidic Channel with Asymmetric Cross-Sectional Shape. MICROMACHINES 2023; 14:223. [PMID: 36677284 PMCID: PMC9866528 DOI: 10.3390/mi14010223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Micro-droplets are widely used in the fields of chemical and biological research, such as drug delivery, material synthesis, point-of-care diagnostics, and digital PCR. Droplet-based microfluidics has many advantages, such as small reagent consumption, fast reaction time, and independent control of each droplet. Therefore, various micro-droplet generation methods have been proposed, including T-junction breakup, capillary flow-focusing, planar flow-focusing, step emulsification, and high aspect (height-to-width) ratio confinement. In this study, we propose a microfluidic device for generating monodisperse micro-droplets, the microfluidic channel of which has an asymmetric cross-sectional shape and high hypotenuse-to-width ratio (HTWR). It was fabricated using basic MEMS processes, such as photolithography, anisotropic wet etching of Si, and polydimethylsiloxane (PDMS) molding. Due to the geometric similarity of a Si channel and a PDMS mold, both of which were created through the anisotropic etching process of a single crystal Si, the microfluidic channel with the asymmetric cross-sectional shape and high HTWR was easily realized. The effects of HTWR of channels on the size and uniformity of generated micro-droplets were investigated. The monodisperse micro-droplets were generated as the HTWR of the asymmetric channel was over 3.5. In addition, it was found that the flow direction of the oil solution (continuous phase) affected the size of micro-droplets due to the asymmetric channel structures. Two kinds of monodisperse droplets with different sizes were successfully generated for a wider range of flow rates using the asymmetric channel structure in the developed microfluidic device.
Collapse
Affiliation(s)
- Youngseo Cho
- Department of Mechanical System Design Engineering, Seoul National University of Science & Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Jungwoo Kim
- Department of Mechanical System Design Engineering, Seoul National University of Science & Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Jaewon Park
- OJEong Resilience Institute (OJERI), Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hyun Soo Kim
- Department of Electronic Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| | - Younghak Cho
- Department of Mechanical System Design Engineering, Seoul National University of Science & Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| |
Collapse
|
3
|
Rojek K, Ćwiklińska M, Kuczak J, Guzowski J. Microfluidic Formulation of Topological Hydrogels for Microtissue Engineering. Chem Rev 2022; 122:16839-16909. [PMID: 36108106 PMCID: PMC9706502 DOI: 10.1021/acs.chemrev.1c00798] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 02/07/2023]
Abstract
Microfluidics has recently emerged as a powerful tool in generation of submillimeter-sized cell aggregates capable of performing tissue-specific functions, so-called microtissues, for applications in drug testing, regenerative medicine, and cell therapies. In this work, we review the most recent advances in the field, with particular focus on the formulation of cell-encapsulating microgels of small "dimensionalities": "0D" (particles), "1D" (fibers), "2D" (sheets), etc., and with nontrivial internal topologies, typically consisting of multiple compartments loaded with different types of cells and/or biopolymers. Such structures, which we refer to as topological hydrogels or topological microgels (examples including core-shell or Janus microbeads and microfibers, hollow or porous microstructures, or granular hydrogels) can be precisely tailored with high reproducibility and throughput by using microfluidics and used to provide controlled "initial conditions" for cell proliferation and maturation into functional tissue-like microstructures. Microfluidic methods of formulation of topological biomaterials have enabled significant progress in engineering of miniature tissues and organs, such as pancreas, liver, muscle, bone, heart, neural tissue, or vasculature, as well as in fabrication of tailored microenvironments for stem-cell expansion and differentiation, or in cancer modeling, including generation of vascularized tumors for personalized drug testing. We review the available microfluidic fabrication methods by exploiting various cross-linking mechanisms and various routes toward compartmentalization and critically discuss the available tissue-specific applications. Finally, we list the remaining challenges such as simplification of the microfluidic workflow for its widespread use in biomedical research, bench-to-bedside transition including production upscaling, further in vivo validation, generation of more precise organ-like models, as well as incorporation of induced pluripotent stem cells as a step toward clinical applications.
Collapse
Affiliation(s)
- Katarzyna
O. Rojek
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Monika Ćwiklińska
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Julia Kuczak
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Jan Guzowski
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
4
|
Review on the Scale-Up Methods for the Preparation of Solid Lipid Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14091886. [PMID: 36145632 PMCID: PMC9503303 DOI: 10.3390/pharmaceutics14091886] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 12/13/2022] Open
Abstract
Solid lipid nanoparticles (SLNs) are an alternate carrier system to liposomes, polymeric nanoparticles, and inorganic carriers. SLNs have attracted increasing attention in recent years for delivering drugs, nucleic acids, proteins, peptides, nutraceuticals, and cosmetics. These nanocarriers have attracted industrial attention due to their ease of preparation, physicochemical stability, and scalability. These characteristics make SLNs attractive for manufacture on a large scale. Currently, several products with SLNs are in clinical trials, and there is a high possibility that SLN carriers will quickly increase their presence in the market. A large-scale manufacturing unit is required for commercial applications to prepare enough formulations for clinical studies. Furthermore, continuous processing is becoming more popular in the pharmaceutical sector to reduce product batch-to-batch differences. This review paper discusses some conventional methods and the rationale for large-scale production. It further covers recent progress in scale-up methods for the synthesis of SLNs, including high-pressure homogenization (HPH), hot melt extrusion coupled with HPH, microchannels, nanoprecipitation using static mixers, and microemulsion-based methods. These scale-up technologies enable the possibility of commercialization of SLNs. Furthermore, ongoing studies indicate that these technologies will eventually reach the pharmaceutical market.
Collapse
|
5
|
FUKUYAMA M, HIBARA A. Development of the Pretreatment Method for Trace Analysis by Using Spontaneous Emulsification. BUNSEKI KAGAKU 2022. [DOI: 10.2116/bunsekikagaku.71.391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Mao FUKUYAMA
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University
| | - Akihide HIBARA
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University
| |
Collapse
|
6
|
Bubble formation in high-viscosity liquids in step-emulsification microdevices. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Wang H, Nakajima M, Neves MA, Uemura K, Todoriki S, Kobayashi I. Formulation characteristics of monodisperse structured lipid microparticles using microchannel emulsification. PARTICULATE SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1080/02726351.2021.1929612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Hanxiao Wang
- Food Research Institute, NARO, Tsukuba, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Mitsutoshi Nakajima
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Marcos A. Neves
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | | | - Setsuko Todoriki
- Food Research Institute, NARO, Tsukuba, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | | |
Collapse
|
8
|
Zhan W, Liu Z, Jiang S, Zhu C, Ma Y, Fu T. Comparison of formation of bubbles and droplets in step-emulsification microfluidic devices. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.11.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Low Cost, Easily-Assembled Centrifugal Buoyancy-Based Emulsification and Digital PCR. MICROMACHINES 2022; 13:mi13020171. [PMID: 35208296 PMCID: PMC8924881 DOI: 10.3390/mi13020171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 11/29/2022]
Abstract
Microfluidic-based droplet generation approaches require the design of microfluidic chips and a precise lithography process, which require skilled technicians and a long manufacturing time. Here we developed a centrifugal buoyancy-based emulsification (CBbE) method for producing droplets with high efficiency and minimal fabrication time. Our approach is to fabricate a droplet generation module that can be easily assembled using syringe needles and PCR tubes. With this module and a common centrifuge, high-throughput droplet generation with controllable droplet size could be realized in a few minutes. Experiments showed that the droplet diameter depended mainly on centrifugal speed, and droplets with controllable diameter from 206 to 158 μm could be generated under a centrifugal acceleration range from 14 to 171.9 g. Excellent droplet uniformity was achieved (CV < 3%) when centrifugal acceleration was greater than 108 g. We performed digital PCR tests through the CBbE approach and demonstrated that this cost-effective method not only eliminates the usage of complex microfluidic devices and control systems but also greatly suppresses the loss of materials and cross-contamination. CBbE-enabled droplet generation combines both easiness and robustness, and breaks the technical challenges by using conventional lab equipment and supplies.
Collapse
|
10
|
Liu Z, Liu X, Jiang S, Zhu C, Ma Y, Fu T. Effects on droplet generation in step-emulsification microfluidic devices. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Molloy A, Harrison J, McGrath JS, Owen Z, Smith C, Liu X, Li X, Cox JAG. Microfluidics as a Novel Technique for Tuberculosis: From Diagnostics to Drug Discovery. Microorganisms 2021; 9:microorganisms9112330. [PMID: 34835455 PMCID: PMC8618277 DOI: 10.3390/microorganisms9112330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/29/2022] Open
Abstract
Tuberculosis (TB) remains a global healthcare crisis, with an estimated 5.8 million new cases and 1.5 million deaths in 2020. TB is caused by infection with the major human pathogen Mycobacterium tuberculosis, which is difficult to rapidly diagnose and treat. There is an urgent need for new methods of diagnosis, sufficient in vitro models that capably mimic all physiological conditions of the infection, and high-throughput drug screening platforms. Microfluidic-based techniques provide single-cell analysis which reduces experimental time and the cost of reagents, and have been extremely useful for gaining insight into monitoring microorganisms. This review outlines the field of microfluidics and discusses the use of this novel technique so far in M. tuberculosis diagnostics, research methods, and drug discovery platforms. The practices of microfluidics have promising future applications for diagnosing and treating TB.
Collapse
Affiliation(s)
- Antonia Molloy
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK; (A.M.); (J.H.)
| | - James Harrison
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK; (A.M.); (J.H.)
| | - John S. McGrath
- Sphere Fluidics Limited, The McClintock Building, Suite 7, Granta Park, Great Abington, Cambridge CB21 6GP, UK; (J.S.M.); (Z.O.); (C.S.); (X.L.); (X.L.)
| | - Zachary Owen
- Sphere Fluidics Limited, The McClintock Building, Suite 7, Granta Park, Great Abington, Cambridge CB21 6GP, UK; (J.S.M.); (Z.O.); (C.S.); (X.L.); (X.L.)
| | - Clive Smith
- Sphere Fluidics Limited, The McClintock Building, Suite 7, Granta Park, Great Abington, Cambridge CB21 6GP, UK; (J.S.M.); (Z.O.); (C.S.); (X.L.); (X.L.)
| | - Xin Liu
- Sphere Fluidics Limited, The McClintock Building, Suite 7, Granta Park, Great Abington, Cambridge CB21 6GP, UK; (J.S.M.); (Z.O.); (C.S.); (X.L.); (X.L.)
| | - Xin Li
- Sphere Fluidics Limited, The McClintock Building, Suite 7, Granta Park, Great Abington, Cambridge CB21 6GP, UK; (J.S.M.); (Z.O.); (C.S.); (X.L.); (X.L.)
| | - Jonathan A. G. Cox
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK; (A.M.); (J.H.)
- Correspondence: ; Tel.: +44-121-204-5011
| |
Collapse
|
12
|
Fukuyama M, Zhou L, Okada T, Simonova KV, Proskurnin M, Hibara A. Controlling water transport between micelles and aqueous microdroplets during sample enrichment. Anal Chim Acta 2021; 1149:338212. [PMID: 33551056 DOI: 10.1016/j.aca.2021.338212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/20/2020] [Accepted: 01/08/2021] [Indexed: 11/25/2022]
Abstract
Droplet microfluidics technologies have advanced rapidly, but enrichment in droplets has still been difficult. To deterministically control the droplet enrichment, the water transport from an aqueous microdroplet in organic continuous phase containing span 80 micelles was investigated. Organic phase containing Span-80-micelles contacted a NaCl aqueous solution to control hydration degree of the micelles, prior to being used in the microfluidic device. Then, the organic phase was continuously applied to the microdroplets trappled in microwells. Here, water was transported from the microdroplet to the organic phase micelles. This spontaneous emulsification process induced the droplet shrinkage and stopped when the microdroplet reached a certain diameter. The micelle hydration degree correlated well with the final water activity of droplets. The enrichment factor can be determined by the initial microdroplet salt concentration and by the micelle hydration degree. As a proof-of-concept experiment, enrichment of fluorescent nanoparticles and dye was demonstrated, and fluorescent resonance energy transfer was observed as expected. Another demonstration of bound-free separation was performed utilizing the avidin-biotin system. This technique has the potential to be a powerful pretreatment method for bioassays in droplet microfluidics.
Collapse
Affiliation(s)
- Mao Fukuyama
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku Sendai, 980-8577, Japan; PREST, Japan Science and Technology, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| | - Lin Zhou
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1-W4-20, Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Tetsuo Okada
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1-W4-20, Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Kristina V Simonova
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Mikhail Proskurnin
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Akihide Hibara
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku Sendai, 980-8577, Japan.
| |
Collapse
|
13
|
Zhang Z, Wang Z, Bao F, Fan M, Jiang S, Zhu C, Ma Y, Fu T. Bubble formation in a step-emulsification microdevice: hydrodynamic effects in the cavity. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Naiserová M, Vysloužil J, Kubová K, Holická M, Vetchý D, Mašek J, Mašková E. Use of droplet-based microfluidic techniques in the preparation of microparticles. CESKA A SLOVENSKA FARMACIE : CASOPIS CESKE FARMACEUTICKE SPOLECNOSTI A SLOVENSKE FARMACEUTICKE SPOLECNOSTI 2021; 70:155–163. [PMID: 34875837 DOI: 10.5817/csf2021-5-155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microparticles are widely used in myriad fields such as pharmaceuticals, foods, cosmetics, and other industrial fields. Compared with traditional methods for synthesizing microparticles, microfluidic techniques provide very powerful platforms for creating highly controllable emulsion droplets as templates for fabricating uniform microparticles with advanced structures and functions. Microfluidic techniques can generate emulsion droplets with precisely controlled size, shape, and composition. A more precise preparation process brings an effective tool to control the release profile of the drug and introduces an easily accessible reproducibility. The paper gives information about basic droplet-based set-ups and examples of attainable microparticle types preparable by this method.
Collapse
|
15
|
Liu Z, Duan C, Jiang S, Zhu C, Ma Y, Fu T. Microfluidic step emulsification techniques based on spontaneous transformation mechanism: A review. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.08.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
16
|
Feng Y, White AK, Hein JB, Appel EA, Fordyce PM. MRBLES 2.0: High-throughput generation of chemically functionalized spectrally and magnetically encoded hydrogel beads using a simple single-layer microfluidic device. MICROSYSTEMS & NANOENGINEERING 2020; 6:109. [PMID: 33299601 PMCID: PMC7704393 DOI: 10.1038/s41378-020-00220-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/09/2020] [Accepted: 09/20/2020] [Indexed: 05/04/2023]
Abstract
The widespread adoption of bead-based multiplexed bioassays requires the ability to easily synthesize encoded microspheres and conjugate analytes of interest to their surface. Here, we present a simple method (MRBLEs 2.0) for the efficient high-throughput generation of microspheres with ratiometric barcode lanthanide encoding (MRBLEs) that bear functional groups for downstream surface bioconjugation. Bead production in MRBLEs 2.0 relies on the manual mixing of lanthanide/polymer mixtures (each of which comprises a unique spectral code) followed by droplet generation using single-layer, parallel flow-focusing devices and the off-chip batch polymerization of droplets into beads. To streamline downstream analyte coupling, MRBLEs 2.0 crosslinks copolymers bearing functional groups on the bead surface during bead generation. Using the MRBLEs 2.0 pipeline, we generate monodisperse MRBLEs containing 48 distinct well-resolved spectral codes with high throughput (>150,000/min and can be boosted to 450,000/min). We further demonstrate the efficient conjugation of oligonucleotides and entire proteins to carboxyl MRBLEs and of biotin to amino MRBLEs. Finally, we show that MRBLEs can also be magnetized via the simultaneous incorporation of magnetic nanoparticles with only a minor decrease in the potential code space. With the advantages of dramatically simplified device fabrication, elimination of the need for custom-made equipment, and the ability to produce spectrally and magnetically encoded beads with direct surface functionalization with high throughput, MRBLEs 2.0 can be directly applied by many labs towards a wide variety of downstream assays, from basic biology to diagnostics and other translational research.
Collapse
Affiliation(s)
- Yinnian Feng
- Department of Genetics, Stanford University, Stanford, CA 94305 USA
| | - Adam K. White
- Department of Genetics, Stanford University, Stanford, CA 94305 USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305 USA
| | - Jamin B. Hein
- Department of Biology, Stanford University, Stanford, CA 94305 USA
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen, Denmark
| | - Eric A. Appel
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305 USA
| | - Polly M. Fordyce
- Department of Genetics, Stanford University, Stanford, CA 94305 USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305 USA
- Stanford ChEM-H, Stanford University, Stanford, CA 94305 USA
- Chan Zuckerberg Biohub, San Francisco, CA 94110 USA
| |
Collapse
|
17
|
Wang L, Huang X, Zhao J, Liu C, Xu Z, Pei H. Production of high‐aspect‐ratio rectangular‐lumen microtube by gas‐assisted microextrusion. J Appl Polym Sci 2020. [DOI: 10.1002/app.49352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Lei Wang
- Institute of Process Equipment, College of Energy EngineeringZhejiang University Hangzhou China
| | - Xing Huang
- Institute of Process Equipment, College of Energy EngineeringZhejiang University Hangzhou China
| | - Jianxiang Zhao
- Institute of Process Equipment, College of Energy EngineeringZhejiang University Hangzhou China
| | - Cong Liu
- Institute of Process Equipment, College of Energy EngineeringZhejiang University Hangzhou China
| | - Zhongbin Xu
- Institute of Process Equipment, College of Energy EngineeringZhejiang University Hangzhou China
| | - Hao Pei
- John A. Paulson School of Engineering and Applied SciencesHarvard University Cambridge Massachusetts
| |
Collapse
|
18
|
Mutafopulos K, Lu PJ, Garry R, Spink P, Weitz DA. Selective cell encapsulation, lysis, pico-injection and size-controlled droplet generation using traveling surface acoustic waves in a microfluidic device. LAB ON A CHIP 2020; 20:3914-3921. [PMID: 32966482 DOI: 10.1039/d0lc00723d] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We generate droplets in a microfluidic device using a traveling surface acoustic wave (TSAW), and control droplet size by adjusting TSAW power and duration. We combine droplet production and fluorescence detection to selectively-encapsulate cells and beads; with this active method, the overwhelming majority of single particles or cells are encapsulated individually into droplets, contrasting the Poisson distribution of encapsulation number that governs traditional, passive microfluidic encapsulation. In addition, we lyse cells before selective encapsulation, and pico-inject new materials into existing droplets.
Collapse
Affiliation(s)
- Kirk Mutafopulos
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| | | | | | | | | |
Collapse
|
19
|
Kuroiwa T, Ito M, Okuyama Y, Yamashita K, Kanazawa A. Protein-Stabilized Palm-Oil-in-Water Emulsification Using Microchannel Array Devices under Controlled Temperature. Molecules 2020; 25:molecules25204805. [PMID: 33086710 PMCID: PMC7587966 DOI: 10.3390/molecules25204805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 11/16/2022] Open
Abstract
Microchannel (MC) emulsification for the preparation of monodisperse oil-in-water (O/W) and water-in-oil-in-water (W/O/W) emulsions containing palm oil as the oil phase was investigated for application as basic material solid/semi-solid lipid microspheres for delivery carriers of nutrients and drugs. Emulsification was characterized by direct observation of droplet generation under various operation conditions, as such, the effects of type and concentration of emulsifiers, emulsification temperature, MC structure, and flow rate of to-be-dispersed phase on droplet generation via MC were investigated. Sodium caseinate (SC) was confirmed as the most suitable emulsifier among the examined emulsifiers, and monodisperse O/W and W/O/W emulsions stabilized by it were successfully obtained with 20 to 40 µm mean diameter (dm) using different types of MCs.
Collapse
Affiliation(s)
- Takashi Kuroiwa
- Department of Chemistry and Energy Engineering, Faculty of Science and Engineering, Tokyo City University, 1-28-1 Tamazutsumi, Setagaya, Tokyo 158-8557, Japan; (M.I.); (Y.O.); (K.Y.); (A.K.)
- Advanced Research Laboratories, Tokyo City University, 8-15-1 Todoroki, Setagaya, Tokyo 158-0082, Japan
- Correspondence: ; Tel.: +81-3-5707-0104
| | - Miki Ito
- Department of Chemistry and Energy Engineering, Faculty of Science and Engineering, Tokyo City University, 1-28-1 Tamazutsumi, Setagaya, Tokyo 158-8557, Japan; (M.I.); (Y.O.); (K.Y.); (A.K.)
| | - Yaeko Okuyama
- Department of Chemistry and Energy Engineering, Faculty of Science and Engineering, Tokyo City University, 1-28-1 Tamazutsumi, Setagaya, Tokyo 158-8557, Japan; (M.I.); (Y.O.); (K.Y.); (A.K.)
| | - Kanna Yamashita
- Department of Chemistry and Energy Engineering, Faculty of Science and Engineering, Tokyo City University, 1-28-1 Tamazutsumi, Setagaya, Tokyo 158-8557, Japan; (M.I.); (Y.O.); (K.Y.); (A.K.)
| | - Akihiko Kanazawa
- Department of Chemistry and Energy Engineering, Faculty of Science and Engineering, Tokyo City University, 1-28-1 Tamazutsumi, Setagaya, Tokyo 158-8557, Japan; (M.I.); (Y.O.); (K.Y.); (A.K.)
| |
Collapse
|
20
|
Gelin P, Bihi I, Ziemecka I, Thienpont B, Christiaens J, Hellemans K, Maes D, De Malsche W. Microfluidic Device for High-Throughput Production of Monodisperse Droplets. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b05935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Pierre Gelin
- μFlow group, Department of Bioengineering Sciences, Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels 1050 , Belgium
| | - Ilyesse Bihi
- μFlow group, Department of Bioengineering Sciences, Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels 1050 , Belgium
| | - Iwona Ziemecka
- μFlow group, Department of Bioengineering Sciences, Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels 1050 , Belgium
| | - Benoit Thienpont
- μFlow group, Department of Bioengineering Sciences, Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels 1050 , Belgium
| | - Jo Christiaens
- μFlow group, Department of Bioengineering Sciences, Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels 1050 , Belgium
| | - Karine Hellemans
- Unit Diabetes Pathology and Therapy, Diabetes Research Center, Vrije Universiteit Brussel, Brussels 1000, Belgium
| | - Dominique Maes
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Wim De Malsche
- μFlow group, Department of Bioengineering Sciences, Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels 1050 , Belgium
| |
Collapse
|
21
|
|
22
|
Huang X, He B, Xu Z, Pei H, Ruan YJ. Electro-coalescence in step emulsification: dynamics and applications. LAB ON A CHIP 2020; 20:592-600. [PMID: 31903468 DOI: 10.1039/c9lc01115c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Step emulsification is a low-shear method to produce monodispersed microdroplets by spontaneous breakup of dispersed fluid at a spatial "step". As a semi-open microfluidic system, controllable coalescence of multiple components in step emulsification has not been achieved. Here, we use a low voltage to control the coalescence position of flow tips in the terrace. By investigating the interaction between the coalescence behavior and the hydrodynamics of the drop formation, we numerically predict the shape evolution of the flow tips and give a semi-empirical model to calculate the sizes of droplets by the flow rates and the voltage. Furthermore, we explore the capabilities of the electro-coalescer based on step emulsification. To trigger the coalescence in the wide reservoir, the clogging problem in precipitate-producing reactions is avoided. Besides, the low-shear nature of step emulsification also facilitates the production of multilayered droplets.
Collapse
Affiliation(s)
- Xing Huang
- Institute of Process Equipment, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, China. and John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Binbin He
- Institute of Process Equipment, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Zhongbin Xu
- Institute of Process Equipment, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Hao Pei
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Yun Jie Ruan
- Institute of Agricultural Bio-Environmental Engineering, College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China. and Institute of New Countryside Development, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
23
|
|
24
|
Huang X, Wang L, Zhao J, Liu C, Zhou F, Xu Z, Pei H. Fabrication and application of flexible rectangular microtubes. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2019.1708104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Xing Huang
- Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou, China
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Lei Wang
- Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou, China
| | - Jianxiang Zhao
- Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou, China
| | - Cong Liu
- Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou, China
| | - Fanghao Zhou
- Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou, China
| | - Zhongbin Xu
- Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou, China
| | - Hao Pei
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| |
Collapse
|
25
|
Opalski AS, Makuch K, Derzsi L, Garstecki P. Split or slip – passive generation of monodisperse double emulsions with cores of varying viscosity in microfluidic tandem step emulsification system. RSC Adv 2020; 10:23058-23065. [PMID: 35520343 PMCID: PMC9054724 DOI: 10.1039/d0ra03007d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/02/2020] [Indexed: 12/22/2022] Open
Abstract
We investigate the role of viscosities on the formation of double emulsion in a microfluidic step emulsification system. Aqueous droplets of various viscosities and sizes were engulfed in fluorocarbon oil and subsequently transformed into double droplets in the microfluidic step emulsifying device. We identify two distinct regimes of double droplet formation: (i) core droplets split into multiple smaller droplets, or (ii) cores slip whole into the forming oil shell. We show that the viscosity ratio of the core and shell phases plays a crucial role in determining the mode of formation of the double emulsions. Finally, we demonstrate that high viscosity of the core droplet allows for generation of double emulsions with constant shell thickness for cores of various sizes. We investigate the role of fluid viscosities on formation of double emulsion in a microfluidic step emulsification system. The ratio of fluid viscosities controls double droplet formation, leading to splitting of the core for low core-to-shell viscosity ratio.![]()
Collapse
Affiliation(s)
- Adam S. Opalski
- Institute of Physical Chemistry of Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| | - Karol Makuch
- Institute of Physical Chemistry of Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| | - Ladislav Derzsi
- Institute of Physical Chemistry of Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| | - Piotr Garstecki
- Institute of Physical Chemistry of Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| |
Collapse
|
26
|
Wang JZ, Zhu LL, Zhang F, Herman RA, Li WJ, Zhou XJ, Wu FA, Wang J. Microfluidic tools for lipid production and modification: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:35482-35496. [PMID: 31327140 DOI: 10.1007/s11356-019-05833-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/24/2019] [Indexed: 06/10/2023]
Abstract
Microfluidics has great potential as an efficient tool for a large range of applications in industry. The ability of such devices to deal with an extremely small amount of fluid has additional benefits, including superlatively fast and efficient mass and heat transfer. These characteristics of microfluidics have attracted an enormous amount of interest in their use as a novel tool for lipid production and modification. In addition, lipid resources have a close relationship with energy resources, and lipids are an alternative renewable energy source. Here, recent advances in the application of microfluidics for lipid production and modification, especially in the discovery, culturing, harvesting, separating, and monitoring of lipid-producing microorganisms, will be reviewed. Other applications of microfluidics, such as the modification of lipids from microorganisms, will also be discussed. The novel microfluidic tools in this review will be useful in applications to improve lipid production and modification in the future.
Collapse
Affiliation(s)
- Jin-Zheng Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, People's Republic of China
| | - Lin-Lin Zhu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, People's Republic of China
| | - Fan Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, People's Republic of China
| | - Richard Ansah Herman
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, People's Republic of China
| | - Wen-Jing Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, People's Republic of China
| | - Xue-Jiao Zhou
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, People's Republic of China
| | - Fu-An Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, People's Republic of China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, People's Republic of China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Zhenjiang, 212018, People's Republic of China
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, Zhenjiang, 212018, People's Republic of China
| | - Jun Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, People's Republic of China.
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, People's Republic of China.
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Zhenjiang, 212018, People's Republic of China.
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, Zhenjiang, 212018, People's Republic of China.
| |
Collapse
|
27
|
Monodisperse droplet formation by spontaneous and interaction based mechanisms in partitioned EDGE microfluidic device. Sci Rep 2019; 9:7820. [PMID: 31127142 PMCID: PMC6534564 DOI: 10.1038/s41598-019-44239-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/09/2019] [Indexed: 01/01/2023] Open
Abstract
The partitioned EDGE droplet generation device is known for its’ high monodisperse droplet formation frequencies in two distinct pressure ranges, and an interesting candidate for scale up of microfluidic emulsification devices. In the current study, we test various continuous and dispersed phase properties and device geometries to unravel how the device spontaneously forms small monodisperse droplets (6–18 μm) at low pressures, and larger monodisperse droplets (>28 μm) at elevated pressures. For the small droplets, we show that the continuous phase inflow in the droplet formation unit largely determines droplet formation behaviour and the resulting droplet size and blow-up pressure. This effect was not considered as a factor of significance for spontaneous droplet formation devices that are mostly characterised by capillary numbers in literature. We then show for the first time that the formation of larger droplets is caused by physical interaction between neighbouring droplets, and highly dependent on device geometry. The insights obtained here are an essential step toward industrial emulsification based on microfluidic devices.
Collapse
|
28
|
Opalski AS, Makuch K, Lai YK, Derzsi L, Garstecki P. Grooved step emulsification systems optimize the throughput of passive generation of monodisperse emulsions. LAB ON A CHIP 2019; 19:1183-1192. [PMID: 30843018 DOI: 10.1039/c8lc01096j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Microfluidic step emulsification passively produces highly monodisperse droplets and can be easily parallelized for high throughput emulsion production. The two main techniques used for step emulsification are: i) edge-based droplet generation (EDGE), where droplets are formed in a single, very wide and shallow nozzle, and ii) microchannel emulsification (MCE), where droplets are formed in many separated narrow nozzles. These techniques differ in modes of droplet formation that influence the throughput and monodispersity of produced emulsions. Here we report a systematic study of novel grooved step emulsifying geometries, a hybrid of MCE and EDGE architectures. We introduce partitions of different heights to a wide (EDGE-like) slit to establish optimal geometries for high-throughput droplet production. We demonstrate that the volume and monodispersity of the produced emulsion can be tuned solely by changing the height of these partitions. We show that the spacing of the partitions influences the size of the produced droplets, but not the population monodispersity. We also determine the moment of transition between two distinct droplet generation modes as a function of the geometrical parameters of the nozzle. The optimized grooved geometry appears to combine the advantages of both MCE and EDGE, i.e. spatial localization of droplet forming units (DFUs), high-throughput formation of tightly monodisperse droplets from parallel DFUs, and low sensitivity to variation in the flow rate of the dispersed phase. As a proof-of-concept we show grooved devices that for a 260-fold increase of flow rate produce droplets with volume increased by just 75%, as compared to 91% increase in volume over a 180-fold increase of flow rate of the dispersed phase in MCE devices. We also present the optimum microfluidic device geometry that almost doubles the throughput of an MCE device in the generation of nanoliter droplets.
Collapse
Affiliation(s)
- Adam S Opalski
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland.
| | | | | | | | | |
Collapse
|
29
|
A versatile and robust microfluidic device for capillary-sized simple or multiple emulsions production. Biomed Microdevices 2018; 20:94. [DOI: 10.1007/s10544-018-0340-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
30
|
Li W, Zhang L, Ge X, Xu B, Zhang W, Qu L, Choi CH, Xu J, Zhang A, Lee H, Weitz DA. Microfluidic fabrication of microparticles for biomedical applications. Chem Soc Rev 2018; 47:5646-5683. [PMID: 29999050 PMCID: PMC6140344 DOI: 10.1039/c7cs00263g] [Citation(s) in RCA: 294] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Droplet microfluidics offers exquisite control over the flows of multiple fluids in microscale, enabling fabrication of advanced microparticles with precisely tunable structures and compositions in a high throughput manner. The combination of these remarkable features with proper materials and fabrication methods has enabled high efficiency, direct encapsulation of actives in microparticles whose features and functionalities can be well controlled. These microparticles have great potential in a wide range of bio-related applications including drug delivery, cell-laden matrices, biosensors and even as artificial cells. In this review, we briefly summarize the materials, fabrication methods, and microparticle structures produced with droplet microfluidics. We also provide a comprehensive overview of their recent uses in biomedical applications. Finally, we discuss the existing challenges and perspectives to promote the future development of these engineered microparticles.
Collapse
Affiliation(s)
- Wen Li
- School of Materials Science & Engineering, Department of Polymer Materials, Shanghai University, 333 Nanchen Street, Shanghai 200444, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Pagano APE, Khalid N, Kobayashi I, Nakajima M, Neves MA, Bastos EL. Microencapsulation of betanin in monodisperse W/O/W emulsions. Food Res Int 2018; 109:489-496. [DOI: 10.1016/j.foodres.2018.04.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/05/2018] [Accepted: 04/23/2018] [Indexed: 02/07/2023]
|
32
|
|
33
|
Wu QX, Guan YX, Yao SJ. Sodium cellulose sulfate: A promising biomaterial used for microcarriers’ designing. Front Chem Sci Eng 2018. [DOI: 10.1007/s11705-018-1723-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Scanga R, Chrastecka L, Mohammad R, Meadows A, Quan PL, Brouzes E. Click Chemistry Approaches to Expand the Repertoire of PEG-based Fluorinated Surfactants for Droplet Microfluidics. RSC Adv 2018; 8:12960-12974. [PMID: 31592185 PMCID: PMC6779154 DOI: 10.1039/c8ra01254g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We report the novel and simplified synthesis of fluorinated surfactants for droplet microfluidics. The range of applications of droplet microfluidics has greatly expanded during the last decade thanks to its ability to manipulate and process tiny amount of sample and reagents at high throughput in independent reactors. A critical component of the technology is the formulation of the immiscible oil phase that contains surfactants to stabilize droplets. The success of droplet microfluidics relies mostly on a single fluorinated formulation that uses a PFPE–PEG triblock surfactant. The synthesis of this surfactant is laborious and requires skills in synthetic chemistry preventing the wider community to explore the synthesis of surfactants with alternate structures. We sought to provide a simplified synthesis for novel PFPE–PEG surfactants based on click chemistry approaches such as copper-catalyzed azide-alkyne cycloaddition (CuAAC) and UV-activated thiol–yne reactions. Our strategy is based on converting a moisture sensitive intermediate typically used in the synthesis of the triblock PFPE–PEG surfactant into a stable and click ready molecule. We successfully combined that fluorinated tail with differently functionalized PEG and glycerol ethoxylate molecules to generate surfactants with diverse structures via CuACC and thiol–yne reactions. We report the characterization, biocompatibility and ability to stabilize emulsions of those surfactants, as well as the unique advantages and challenges of the strategy. Click-synthesis of fluorinated surfactants for droplet microfluidics.![]()
Collapse
Affiliation(s)
- Randall Scanga
- Department of chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Lucie Chrastecka
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Ridhwan Mohammad
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Austin Meadows
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Phenix-Lan Quan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Eric Brouzes
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA.,Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
35
|
Håti AG, Szymborski TR, Steinacher M, Amstad E. Production of monodisperse drops from viscous fluids. LAB ON A CHIP 2018; 18:648-654. [PMID: 29359212 DOI: 10.1039/c7lc01322a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Drops are often used as picoliter-sized reaction vessels, for example for high-throughput screening assays, or as templates to produce particles of controlled sizes and compositions. Many of these applications require close control over the size of drops, which can be achieved if they are produced with microfluidics. However, this tight size control comes at the expense of the throughput that is too low for many materials science and almost all industrial applications. To overcome this limitation, different parallelized microfluidic devices have been reported. These devices typically operate at high throughputs if the viscosity of the inner fluid is low. However, fluids that are processed into particles often contain high concentrations of reagents and therefore are rather viscous. We report a microfluidic device containing parallelized triangular nozzles with rectangular cross-sections that can process solutions with viscosities up to 155 mPa s into drops of well-defined sizes and narrow size distributions at significantly higher throughputs than what could be achieved previously. The increased throughput is enabled by the introduction of shunt channels: each nozzle is intersected by shunt channels that facilitate the backflow of the outer phase, thereby increasing the critical rate at which the fluid flow transitions from the dripping into the jetting regime. These modified nozzles open up new possibilities to employ drops made of viscous fluids as templates to produce particles with well-defined sizes for applications that require larger quantities.
Collapse
Affiliation(s)
- Armend G Håti
- Soft Materials Laboratory, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland.
| | | | | | | |
Collapse
|
36
|
Stolovicki E, Ziblat R, Weitz DA. Throughput enhancement of parallel step emulsifier devices by shear-free and efficient nozzle clearance. LAB ON A CHIP 2017; 18:132-138. [PMID: 29168873 DOI: 10.1039/c7lc01037k] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Step emulsification is an attractive method for production of monodisperse drops. Its main advantage is the ability to parallelize many step emulsifier nozzles to achieve high production rates. However, step emulsification is sensitive to any obstructions at the nozzle exit. At high production rates, drops can accumulate at nozzle exits, disturb the formation of subsequent drops and impair monodispersity. As a result, parallelized step emulsifier devices typically do not work at maximum productivity. Here a design is introduced that parallelizes hundreds of step emulsifier nozzles, and effectively removes drops from the nozzle exits. The drop clearance is achieved by an open collecting channel, and is aided by buoyancy. Importantly, this clearance method avoids the use of a continuous phase flow for drop clearance and hence no shear is applied on the forming drops. The method works well for a wide range of drops, sizing from 30 to 1000 μm at production rates of 0.03 and 10 L per hour and achieved by 400 and 120 parallelized nozzles respectively.
Collapse
Affiliation(s)
- Elad Stolovicki
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| | | | | |
Collapse
|
37
|
Silva PS, Morelli S, Dragosavac MM, Starov VM, Holdich RG. Water in oil emulsions from hydrophobized metal membranes and characterization of dynamic interfacial tension in membrane emulsification. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.06.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
38
|
Moore DG, Brignoli JVA, Rühs PA, Studart AR. Functional Microcapsules with Hybrid Shells Made via Sol-Gel Reaction within Double Emulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:9007-9017. [PMID: 28813598 DOI: 10.1021/acs.langmuir.7b01503] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Microcapsules with organic-inorganic hybrid shells can be used as functionally responsive delivery systems that are attractive for a broad range of applications. Hybrid-shell microcapsules have often been synthesized by the assembly of solid inorganic nanoparticles and polymers. Efforts to extend this approach to microfluidic emulsification have been hampered by problems with clogging and flow instabilities when utilizing dispersions of solid particles. In this work, hybrid shell microcapsules are synthesized through the reaction of liquid precursors, eliminating the use of solid dispersions. Our microfluidic water-oil-water emulsification technique also enables the preparation of hybrid-shell microcapsules with thicker and more robust shells compared to alternative techniques. By utilizing bridged-silane precursors to form the hybrid material, we demonstrate hybrid-shell microcapsules with independently tunable functional and mechanical/barrier properties. This independent tuning of physical and functional properties allows for the production of functional organic-inorganic hybrid shell microcapsules that can be tailored to meet the demands of a wide range of applications.
Collapse
Affiliation(s)
- David G Moore
- Complex Materials, Department of Materials, ETH Zürich , 8093 Zürich, Switzerland
| | | | - Patrick A Rühs
- Complex Materials, Department of Materials, ETH Zürich , 8093 Zürich, Switzerland
| | - André R Studart
- Complex Materials, Department of Materials, ETH Zürich , 8093 Zürich, Switzerland
| |
Collapse
|
39
|
Ma J, Wang Y, Liu J. Biomaterials Meet Microfluidics: From Synthesis Technologies to Biological Applications. MICROMACHINES 2017; 8:E255. [PMID: 30400445 PMCID: PMC6190052 DOI: 10.3390/mi8080255] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 07/28/2017] [Accepted: 08/14/2017] [Indexed: 02/07/2023]
Abstract
Microfluidics is characterized by laminar flow at micro-scale dimension, high surface to volume ratio, and markedly improved heat/mass transfer. In addition, together with advantages of large-scale integration and flexible manipulation, microfluidic technology has been rapidly developed as one of the most important platforms in the field of functional biomaterial synthesis. Compared to biomaterials assisted by conventional strategies, functional biomaterials synthesized by microfluidics are with superior properties and performances, due to their controllable morphology and composition, which have shown great advantages and potential in the field of biomedicine, biosensing, and tissue engineering. Take the significance of microfluidic engineered biomaterials into consideration; this review highlights the microfluidic synthesis technologies and biomedical applications of materials. We divide microfluidic based biomaterials into four kinds. According to the material dimensionality, it includes: 0D (particulate materials), 1D (fibrous materials), 2D (sheet materials), and 3D (construct forms of materials). In particular, micro/nano-particles and micro/nano-fibers are introduced respectively. This classification standard could include all of the microfluidic biomaterials, and we envision introducing a comprehensive and overall evaluation and presentation of microfluidic based biomaterials and their applications.
Collapse
Affiliation(s)
- Jingyun Ma
- Regenerative Medicine Center, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
- Stem Cell Clinical Research Center, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Yachen Wang
- Regenerative Medicine Center, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
- Stem Cell Clinical Research Center, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Jing Liu
- Regenerative Medicine Center, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
- Stem Cell Clinical Research Center, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
40
|
Khalid N, Kobayashi I, Neves MA, Uemura K, Nakajima M. Microchannel emulsification: A promising technique towards encapsulation of functional compounds. Crit Rev Food Sci Nutr 2017; 58:2364-2385. [DOI: 10.1080/10408398.2017.1323724] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Nauman Khalid
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australia
| | | | - Marcos A. Neves
- Food Research Institute, NARO, Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | - Mitsutoshi Nakajima
- Food Research Institute, NARO, Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
41
|
Sesen M, Alan T, Neild A. Droplet control technologies for microfluidic high throughput screening (μHTS). LAB ON A CHIP 2017. [PMID: 28631799 DOI: 10.1039/c7lc00005g] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The transition from micro well plate and robotics based high throughput screening (HTS) to chip based screening has already started. This transition promises reduced droplet volumes thereby decreasing the amount of fluids used in these studies. Moreover, it significantly boosts throughput allowing screening to keep pace with the overwhelming number of molecular targets being discovered. In this review, we analyse state-of-the-art droplet control technologies that exhibit potential to be used in this new generation of screening devices. Since these systems are enclosed and usually planar, even some of the straightforward methods used in traditional HTS such as pipetting and reading can prove challenging to replicate in microfluidic high throughput screening (μHTS). We critically review the technologies developed for this purpose in depth, describing the underlying physics and discussing the future outlooks.
Collapse
Affiliation(s)
- Muhsincan Sesen
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
| | | | | |
Collapse
|
42
|
Nakajima M. Comment on "Robust scalable high throughput production of monodisperse drops" by E. Amstad, M. Chemama, M. Eggersdorfer, L. R. Arriaga, M. P. Brenner and D. A. Weitz, Lab Chip, 2016, 16, 4163. LAB ON A CHIP 2017; 17:2330-2331. [PMID: 28603798 DOI: 10.1039/c7lc00181a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This comment on an article that appeared in Lab on a Chip (Amstad et al., Lab Chip, 2016, 16, 4163-4172) provides information on the performance of microchannel (step) emulsification devices developed by the Nakajima Group.
Collapse
Affiliation(s)
- Mitsutoshi Nakajima
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
43
|
van Zwieten R, Verhaagen B, Schroën K, Fernández Rivas D. Emulsification in novel ultrasonic cavitation intensifying bag reactors. ULTRASONICS SONOCHEMISTRY 2017; 36:446-453. [PMID: 28069232 DOI: 10.1016/j.ultsonch.2016.12.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/20/2016] [Accepted: 12/02/2016] [Indexed: 05/25/2023]
Abstract
Cavitation Intensifying Bags (CIBs), a novel reactor type for use with ultrasound, have been recently proposed as a scaled-up microreactor with increased energy efficiencies. We now report on the use of the CIBs for the preparation of emulsions out of hexadecane and an SDS aqueous solution. The CIBs have been designed in such a way that cavitation effects created by the ultrasound are increased. It was found that the CIBs were 60 times more effective in breaking up droplets than conventional bags, therewith showing a proof of principle for the CIBs for the preparation of emulsions. Droplets of 0.2μm could easily be obtained. To our knowledge, no other technology results in the same droplet size more easily in terms of energy usage. Without depending on the wettability changes of the membrane, the CIBs score similarly as membrane emulsification, which is the most energy friendly emulsification method known in literature. Out of the frequencies used, 37kHz was found to require the lowest treatment time. The treatment time decreased at higher temperatures. While the energy usage in the current non-optimised experiments was on the order of 107-109J/m3, which is comparable to that of a high-pressure homogenizer, we expect that the use of CIBs for the preparation of fine emulsions can still be improved considerably. The process presented can be applied for other uses such as water treatment, synthesis of nanomaterials and food processing.
Collapse
Affiliation(s)
- Ralph van Zwieten
- Food Process Engineering Group, Wageningen University, 6700AA Wageningen, The Netherlands
| | | | - Karin Schroën
- Food Process Engineering Group, Wageningen University, 6700AA Wageningen, The Netherlands.
| | - David Fernández Rivas
- BuBclean, 7622PH Borne, The Netherlands; Mesoscale Chemical Systems Group, University of Twente, 7500AE Enschede, The Netherlands.
| |
Collapse
|
44
|
Eggersdorfer ML, Zheng W, Nawar S, Mercandetti C, Ofner A, Leibacher I, Koehler S, Weitz DA. Tandem emulsification for high-throughput production of double emulsions. LAB ON A CHIP 2017; 17:936-942. [PMID: 28197593 DOI: 10.1039/c6lc01553k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Core-shell double emulsions produced using microfluidic methods with controlled structural parameters exhibit great potential in a wide range of applications, but the low production rate of microfluidic methods hinders the exploitation of the capabilities of microfluidics to produce double emulsions with well-defined features. A major obstacle towards the scaled-up production of core-shell double emulsions is the difficulty of achieving robust spatially controlled wettability in integrated microfluidic devices. Here, we use tandem emulsification, a two-step process with microfluidic devices, to scale up the production. With this method, single emulsions are generated in a first device and are re-injected directly into a second device to form uniform double emulsions. We demonstrate the application of tandem emulsification for scalable core-shell emulsion production with both integrated flow focusing and millipede devices and obtain emulsions of which over 90% are single-core monodisperse double emulsion drops. With both mechanisms, the shell thickness can be controlled, so that shells as thin as 3 μm are obtained for emulsions 50 μm in radius.
Collapse
Affiliation(s)
- M L Eggersdorfer
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.
| | - W Zheng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - S Nawar
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.
| | - C Mercandetti
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.
| | - A Ofner
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.
| | - I Leibacher
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.
| | - S Koehler
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.
| | - D A Weitz
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA. and Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
45
|
Darekar M, Singh KK, Joshi JM, Mukhopadhyay S, Shenoy KT. Single-stage microscale solvent extraction in parallel microbore tubes using a monoblock distributor with integrated microfluidic junctions. SEP SCI TECHNOL 2017. [DOI: 10.1080/01496395.2017.1279181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Mayur Darekar
- Chemical Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - K. K. Singh
- Chemical Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai, Maharashtra, India
| | - J. M. Joshi
- Chemical Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai, Maharashtra, India
| | - S. Mukhopadhyay
- Chemical Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - K. T. Shenoy
- Chemical Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai, Maharashtra, India
| |
Collapse
|
46
|
Ofner A, Moore DG, Rühs PA, Schwendimann P, Eggersdorfer M, Amstad E, Weitz DA, Studart AR. High‐Throughput Step Emulsification for the Production of Functional Materials Using a Glass Microfluidic Device. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600472] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Alessandro Ofner
- Complex Materials Department of Materials ETH Zurich 8093 Zurich Switzerland
| | - David G. Moore
- Complex Materials Department of Materials ETH Zurich 8093 Zurich Switzerland
| | - Patrick A. Rühs
- Complex Materials Department of Materials ETH Zurich 8093 Zurich Switzerland
| | - Pascal Schwendimann
- Complex Materials Department of Materials ETH Zurich 8093 Zurich Switzerland
| | - Maximilian Eggersdorfer
- Department of Physics and School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
| | - Esther Amstad
- Institute of Materials EPF Lausanne 1015 Lausanne Switzerland
| | - David A. Weitz
- Department of Physics and School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
| | - André R. Studart
- Complex Materials Department of Materials ETH Zurich 8093 Zurich Switzerland
| |
Collapse
|
47
|
Amstad E, Chemama M, Eggersdorfer M, Arriaga LR, Brenner MP, Weitz DA. Robust scalable high throughput production of monodisperse drops. LAB ON A CHIP 2016; 16:4163-4172. [PMID: 27714028 DOI: 10.1039/c6lc01075j] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Monodisperse drops with diameters between 20 μm and 200 μm can be used to produce particles or capsules for many applications such as for cosmetics, food, and biotechnology. Drops composed of low viscosity fluids can be conveniently made using microfluidic devices. However, the throughput of microfluidic devices is limited and scale-up, achieved by increasing the number of devices run in parallel, can compromise the narrow drop-size distribution. In this paper, we present a microfluidic device, the millipede device, which forms drops through a static instability such that the fluid volume that is pinched off is the same every time a drop forms. As a result, the drops are highly monodisperse because their size is solely determined by the device geometry. This makes the operation of the device very robust. Therefore, the device can be scaled to a large number of nozzles operating simultaneously on the same chip; we demonstrate the operation of more than 500 nozzles on a single chip that produces up to 150 mL h-1 of highly monodisperse drops.
Collapse
Affiliation(s)
- E Amstad
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA. and Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - M Chemama
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.
| | - M Eggersdorfer
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.
| | - L R Arriaga
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.
| | - M P Brenner
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.
| | - D A Weitz
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA. and Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
48
|
Dutka F, Opalski AS, Garstecki P. Nano-liter droplet libraries from a pipette: step emulsificator that stabilizes droplet volume against variation in flow rate. LAB ON A CHIP 2016; 16:2044-9. [PMID: 27161389 DOI: 10.1039/c6lc00265j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Many modern analytical assays, for example, droplet digital PCR, or screening of the properties of single cells or single mutated genes require splitting a liquid sample into a number of small (typically ca. nano-liter in volume) independent compartments or droplets. This calls for a method that would allow splitting small (microliter) samples of liquid into libraries of nano-liter droplets without any dead volume or waste. Step emulsification allows for facile protocols that require delivery of only the sample liquid, yet they typically exhibit dependence of the droplet size on the rate at which the sample is injected. Here, we report a novel microfluidic junction that reduces the dependence of the volume of droplets on the rate of injection. We also demonstrate generation of tightly monodisperse nanoliter droplets by introduction of solely the dispersed phase into the system from an automatic pipette. The method presented here can readily be used and can replace the sophisticated devices typically used to generate libraries of nano-liter droplets from liquid samples.
Collapse
Affiliation(s)
- Filip Dutka
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland. and Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Adam S Opalski
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland.
| | - Piotr Garstecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
49
|
Darekar M, Singh K, Mukhopadhyay S, Shenoy K. Single-stage micro-scale extraction: Studies with single microbore tubes and scale-up. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2015.11.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
50
|
Piradashvili K, Alexandrino EM, Wurm FR, Landfester K. Reactions and Polymerizations at the Liquid–Liquid Interface. Chem Rev 2015; 116:2141-69. [DOI: 10.1021/acs.chemrev.5b00567] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Keti Piradashvili
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | | - Frederik R. Wurm
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|