1
|
Han H, Dye L, Mackie A. The impact of processing on the release and antioxidant capacity of ferulic acid from wheat: A systematic review. Food Res Int 2023; 164:112371. [PMID: 36737957 DOI: 10.1016/j.foodres.2022.112371] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/09/2022] [Accepted: 12/24/2022] [Indexed: 01/01/2023]
Abstract
The antioxidant capacity and bioaccessibility of ferulic acid (FA)1 in wheat are highly limited by the lack of free ferulic acid (FFA).2 However, many studies claim that wheat processing can efficiently increase FFA content and ultimately influence the overall antioxidant capacity. Hence, this systematic review investigated changes in FFA content, antioxidant capacity and bioaccessibility of wheat after different processing treatments. A literature search of two databases (PubMed and Web of Science) was undertaken covering the last 20 years, yielding 1148 articles. Studies which employed bioprocessing, thermal processing and milling of wheat were considered. After exclusion criteria were applied, 36 articles were included. These covered single processing methods (n = 25, bioprocessing: n = 9, thermal processing: n = 9, milling n = 7) and combined processing methods (n = 11, bioprocessing & thermal processing = 7, bioprocessing, thermal processing & milling = 2, thermal processing & milling = 2). The total ferulic acid (TFA)3 content, degree of covalent bond hydrolysis and the percentage of FFA degraded or transformed to other compounds dominated the final changes in FFA content, antioxidant capacity and bioaccessibility. This systematic review is the first to comprehensively summarize the best efficient processing method for releasing FA and increasing antioxidant capacity and or bioaccessibility in wheat. The combination of particle size reduction, pre-hydrolysis thermal processing (except at high temperature and extended duration) and enzymatic hydrolysis (ferulic acid esterase (FAE)4 or fermentation) has the highest potential of releasing FA. However, the literature on the bioaccessibility of FA in wheat is limited and more work is required to demonstrate the link between the release of FA by processing and the consequent health benefits.
Collapse
Affiliation(s)
- Haizhen Han
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, LS2 9JT Leeds, United Kingdom.
| | - Louise Dye
- School of Psychology, Faculty of Medicine and Health, University of Leeds, LS2 9JT Leeds, United Kingdom.
| | - Alan Mackie
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, LS2 9JT Leeds, United Kingdom.
| |
Collapse
|
2
|
Mencin M, Jamnik P, Mikulič Petkovšek M, Veberič R, Terpinc P. Enzymatic treatments of raw, germinated and fermented spelt (Triticum spelta L.) seeds improve the accessibility and antioxidant activity of their phenolics. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
3
|
Seke F, Manhivi VE, Shoko T, Slabbert RM, Sultanbawa Y, Sivakumar D. Extraction optimisation, hydrolysis, antioxidant properties and bioaccessibility of phenolic compounds in Natal plum fruit (Carissa Macrocarpa). FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
4
|
Birsan RI, Wilde P, Waldron KW, Rai DK. Anticholinesterase Activities of Different Solvent Extracts of Brewer's Spent Grain. Foods 2021; 10:foods10050930. [PMID: 33922726 PMCID: PMC8145039 DOI: 10.3390/foods10050930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 01/17/2023] Open
Abstract
Cholinesterases, involved in acetylcholine catabolism in the central and peripheral nervous system, have been strongly linked with neurodegenerative diseases. Current therapeutic approaches using synthetic drugs present several side effects. Hence, there is an increasing research interest in naturally-occurring dietary polyphenols, which are also considered efficacious. Food processing by-products such as brewer’s spent grain (BSG) would be a potential bio-source of polyphenols. In this study, polyphenol-rich BSG extracts using 60% acetone and 0.75% NaOH solutions were generated, which were further subjected to liquid–liquid partitioning using various organic solvents. The water-partitioned fractions of the saponified extracts had the highest total polyphenol content (6.2 ± 2.8 mgGAE/g dw) as determined by Folin–Ciocalteu reagent, while the LC-MS/MS showed ethyl acetate fraction with the highest phenolics (2.9 ± 0.3 mg/g BSG dw). The best inhibitions of acetyl- (37.9 ± 2.9%) and butyryl- (53.6 ± 7.7%) cholinesterases were shown by the diethyl ether fraction of the saponified extract. This fraction contained the highest sum of quantified phenolics (99 ± 21.2 µg/mg of extract), and with significant (p < 0.01) inhibitory contribution of decarboxylated-diferulic acid. Amongst the standards, caffeic acid presented the highest inhibition for both cholinesterases, 25.5 ± 0.2% for acetyl- and 52.3 ± 0.8% for butyryl-cholinesterase, respectively, whilst the blends insignificantly inhibited both cholinesterases. The results showed that polyphenol-rich BSG fractions have potentials as natural anti-cholinesterase agents.
Collapse
Affiliation(s)
- Rares I. Birsan
- Department of Food BioSciences, Teagasc Food Research Centre Ashtown, D15KN3K Dublin, Ireland;
- Food Innovation and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Colney NR4 7UQ, UK;
| | - Peter Wilde
- Food Innovation and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Colney NR4 7UQ, UK;
| | - Keith W. Waldron
- Anglia Science Writing Ltd., Wramplingham, Norfolk NR18 0RU, UK;
| | - Dilip K. Rai
- Department of Food BioSciences, Teagasc Food Research Centre Ashtown, D15KN3K Dublin, Ireland;
- Correspondence: ; Tel.: +353-018-059-500
| |
Collapse
|
5
|
Ge X, Saleh AS, Jing L, Zhao K, Su C, Zhang B, Zhang Q, Li W. Germination and drying induced changes in the composition and content of phenolic compounds in naked barley. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Zhang B, Zhang Y, Li H, Deng Z, Tsao R. A review on insoluble-bound phenolics in plant-based food matrix and their contribution to human health with future perspectives. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
7
|
Barcelos MCS, Ramos CL, Kuddus M, Rodriguez-Couto S, Srivastava N, Ramteke PW, Mishra PK, Molina G. Enzymatic potential for the valorization of agro-industrial by-products. Biotechnol Lett 2020; 42:1799-1827. [DOI: 10.1007/s10529-020-02957-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022]
|
8
|
Bento-Silva A, Koistinen VM, Mena P, Bronze MR, Hanhineva K, Sahlstrøm S, Kitrytė V, Moco S, Aura AM. Factors affecting intake, metabolism and health benefits of phenolic acids: do we understand individual variability? Eur J Nutr 2020; 59:1275-1293. [PMID: 31115680 PMCID: PMC7230068 DOI: 10.1007/s00394-019-01987-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/03/2019] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Phenolic acids are important phenolic compounds widespread in foods, contributing to nutritional and organoleptic properties. FACTORS AFFCETING INDIVIDUAL VARIABILITY The bioavailability of these compounds depends on their free or conjugated presence in food matrices, which is also affected by food processing. Phenolic acids undergo metabolism by the host and residing intestinal microbiota, which causes conjugations and structural modifications of the compounds. Human responses, metabolite profiles and health responses of phenolics, show considerable individual variation, which is affected by absorption, metabolism and genetic variations of subjects. OPINION A better understanding of the gut-host interplay and microbiome biochemistry is becoming highly relevant in understanding the impact of diet and its constituents. It is common to study metabolism and health benefits separately, with some exceptions; however, it should be preferred that health responders and non-responders are studied in combination with explanatory metabolite profiles and gene variants. This approach could turn interindividual variation from a problem in human research to an asset for research on personalized nutrition.
Collapse
Affiliation(s)
- Andreia Bento-Silva
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
- Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Ville M Koistinen
- Department of Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy
| | - Maria R Bronze
- Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- Instituto de Biologia Experimental Tecnológica (iBET), Oeiras, Portugal
| | - Kati Hanhineva
- Department of Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Stefan Sahlstrøm
- Nofima Norwegian Institute of Food Fisheries and Aquaculture, Ås, Norway
| | | | - Sofia Moco
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Anna-Marja Aura
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, Tietotie 2, 02044 VTT, Espoo, Finland.
| |
Collapse
|
9
|
Birsan RI, Wilde P, Waldron KW, Rai DK. Recovery of Polyphenols from Brewer's Spent Grains. Antioxidants (Basel) 2019; 8:antiox8090380. [PMID: 31500308 PMCID: PMC6769810 DOI: 10.3390/antiox8090380] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/28/2019] [Accepted: 09/04/2019] [Indexed: 11/28/2022] Open
Abstract
The recovery of antioxidant polyphenols from light, dark and mix brewer’s spent grain (BSG) using conventional maceration, microwave and ultrasound assisted extraction was investigated. Total polyphenols were measured in the crude (60% acetone), liquor extracts (saponified with 0.75% NaOH) and in their acidified ethyl acetate (EtOAc) partitioned fractions both by spectrophotometry involving Folin–Ciocalteu reagent and liquid-chromatography-tandem mass spectrometry (LC-MS/MS) methods. Irrespective of the extraction methods used, saponification of BSG yielded higher polyphenols than in the crude extracts. The EtOAc fractionations yielded the highest total phenolic content (TPC) ranging from 3.01 ± 0.19 to 4.71 ± 0.28 mg gallic acid equivalent per g of BSG dry weight. The corresponding total polyphenols quantified by LC-MS/MS ranged from 549.9 ± 41.5 to 2741.1 ± 5.2 µg/g of BSG dry weight. Microwave and ultrasound with the parameters and equipment used did not improve the total polyphenol yield when compared to the conventional maceration method. Furthermore, the spectrophotometric quantification of the liquors overestimated the TPC, while the LC-MS/MS quantification gave a closer representation of the total polyphenols in all the extracts. The total polyphenols were in the following order in the EtOAc fractions: BSG light > BSG Mix > BSG dark, and thus suggested BSG light as a sustainable, low cost source of natural antioxidants that may be tapped for applications in food and phytopharmaceutical industries.
Collapse
Affiliation(s)
- Rares I Birsan
- Department of Food BioSciences, Teagasc Food Research Centre Ashtown, D15KN3K Dublin, Ireland.
- Food Innovation and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Colney NR4 7UQ, UK.
| | - Peter Wilde
- Food Innovation and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Colney NR4 7UQ, UK.
| | - Keith W Waldron
- Anglia Science Writing Ltd., Wramplingham NR18 0RU, Norfolk, UK.
| | - Dilip K Rai
- Department of Food BioSciences, Teagasc Food Research Centre Ashtown, D15KN3K Dublin, Ireland.
| |
Collapse
|
10
|
Budaraju S, Mallikarjunan K, Annor G, Schoenfuss T, Raun R. Effect of pre-treatments on the antioxidant potential of phenolic extracts from barley malt rootlets. Food Chem 2018; 266:31-37. [PMID: 30381191 DOI: 10.1016/j.foodchem.2018.05.110] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 12/20/2022]
Abstract
In this study, barley malt rootlets (BMR) were subjected to five different pre-treatments (steaming (220 °C), roasting (60 °C), autoclaving (121 °C), microwaving (160-800 W, 30-120 s) and enzyme treatment). Total phenolic content (TPC) and antioxidant activity of the BMR extracts were evaluated for both free and bound phenolics. The free phenolic content for non-treated extract was 1.8 mg/g of dry weight of BMR with 17.5% of antioxidant activity. Among the pre-treatments, autoclaving exhibited the highest values for free phenolics of 3.8 mg/g of dry weight of BMR and 71.6% of antioxidant activity. Pre-treatments did not show any effect on bound phenolic content, but increased antioxidant activity. The highest %DPPH activity for bound phenolics was observed for microwave treatment (160 W, 120 s) with 49.9%. Overall, pre-treatments significantly increased the free phenolic content of BMR phenolic extracts. Additional research is necessary to understand the phenolic profile and the thermal interactions of bound phenolic extracts.
Collapse
Affiliation(s)
- Sravanthi Budaraju
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA.
| | - Kumar Mallikarjunan
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA.
| | - George Annor
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA
| | - Tonya Schoenfuss
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA
| | - Roger Raun
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
11
|
Chen GL, Zhang X, Chen SG, Han MD, Gao YQ. Antioxidant activities and contents of free, esterified and insoluble-bound phenolics in 14 subtropical fruit leaves collected from the south of China. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.01.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
12
|
Phenolic compositions, and antioxidant performance of olive leaf and fruit (Olea europaea L.) extracts and their structure–activity relationships. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.05.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
13
|
Antioxidant capacity of arabinoxylan oligosaccharide fractions prepared from wheat aleurone using Trichoderma viride or Neocallimastix patriciarum xylanase. Food Chem 2015; 167:311-9. [DOI: 10.1016/j.foodchem.2014.07.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 04/12/2014] [Accepted: 07/01/2014] [Indexed: 11/20/2022]
|
14
|
Singh A, Karmakar S, Jacob BS, Bhattacharya P, Kumar SPJ, Banerjee R. Enzymatic polishing of cereal grains for improved nutrient retainment. Journal of Food Science and Technology 2014; 52:3147-57. [PMID: 26028698 DOI: 10.1007/s13197-014-1405-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/15/2014] [Accepted: 04/29/2014] [Indexed: 01/16/2023]
Abstract
Consumer acceptance of food products is largely driven by the dietary and functional quality of their ingredients. Though whole cereal grains are well known for bioactive components, scientists are facing dire need for better technologies to prevent the nutritional losses incurred through the conventional food processing technologies. Application of enzyme for depolymerisation of carbohydrates present in bran layer of grain is becoming an efficient method for phenolic mobilization and dietary fiber solubilisation. The present article emphasizes deep insights about the application of enzyme as an alternative technology for cereal grain processing to improve the product quality while forbidding the nutritional losses in an eco-friendly manner.
Collapse
Affiliation(s)
- Anshu Singh
- Microbial Biotechnology and Downstream Processing Laboratory, Agricultural and Food Engineering Department, Indian Institute of Technology, Kharagpur, 721302 India
| | - Sandipan Karmakar
- Department of Industrial Engineering and Management, Indian Institute of Technology, Kharagpur, 721302 India
| | - B Samuel Jacob
- Microbial Biotechnology and Downstream Processing Laboratory, Agricultural and Food Engineering Department, Indian Institute of Technology, Kharagpur, 721302 India
| | - Patrali Bhattacharya
- Microbial Biotechnology and Downstream Processing Laboratory, Agricultural and Food Engineering Department, Indian Institute of Technology, Kharagpur, 721302 India
| | - S P Jeevan Kumar
- Microbial Biotechnology and Downstream Processing Laboratory, Agricultural and Food Engineering Department, Indian Institute of Technology, Kharagpur, 721302 India
| | - Rintu Banerjee
- Microbial Biotechnology and Downstream Processing Laboratory, Agricultural and Food Engineering Department, Indian Institute of Technology, Kharagpur, 721302 India
| |
Collapse
|
15
|
Savolainen OI, Coda R, Suomi K, Katina K, Juvonen R, Hanhineva K, Poutanen K. The role of oxygen in the liquid fermentation of wheat bran. Food Chem 2013; 153:424-31. [PMID: 24491749 DOI: 10.1016/j.foodchem.2013.12.062] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 11/21/2013] [Accepted: 12/16/2013] [Indexed: 01/28/2023]
Abstract
The extensive use of wheat bran as a food ingredient is limited due to its bitter taste and hard texture. To overcome these, some preprocessing methods, such as fermentation with yeast and lactic acid bacteria or enzymatic treatments have been proposed. The current work studied microbial communities, acidification, ethanol formation and metabolite profile of wheat bran fermented in either aerated or anaerobic conditions. In aerated conditions, yeasts grew better and the production of organic acids was smaller, and hence pH was higher. In anaerobic conditions, lactic acid bacteria and endogenous heterotrophic bacteria grew better. Aeration had a large effect on the sourdough metabolite profile, as analyzed by UPLC-qTOF-MS. Anaerobic conditions induced degradation of ferulic and caffeic acids, whereas the amount of sinapic acid increased. Aeration caused degradation of amino acids and hydroxycinnamic acid derivatives of polyamines. The results suggest that the control of oxygen could be used for tailoring the properties of bran sourdough.
Collapse
Affiliation(s)
- Otto I Savolainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - Rossana Coda
- VTT Technical Research Centre of Finland, P.O. Box 1000, 02044 VTT Espoo, Finland; Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari, Via G. Amendola 165/a, 70126 Bari, Italy
| | - Katja Suomi
- VTT Technical Research Centre of Finland, P.O. Box 1000, 02044 VTT Espoo, Finland
| | - Kati Katina
- VTT Technical Research Centre of Finland, P.O. Box 1000, 02044 VTT Espoo, Finland
| | - Riikka Juvonen
- VTT Technical Research Centre of Finland, P.O. Box 1000, 02044 VTT Espoo, Finland
| | - Kati Hanhineva
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Kaisa Poutanen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; VTT Technical Research Centre of Finland, P.O. Box 1000, 02044 VTT Espoo, Finland
| |
Collapse
|
16
|
Rosa NN, Dufour C, Lullien-Pellerin V, Micard V. Exposure or release of ferulic acid from wheat aleurone: Impact on its antioxidant capacity. Food Chem 2013; 141:2355-62. [DOI: 10.1016/j.foodchem.2013.04.132] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 04/03/2013] [Accepted: 04/23/2013] [Indexed: 11/25/2022]
|
17
|
Acosta-Estrada BA, Gutiérrez-Uribe JA, Serna-Saldívar SO. Bound phenolics in foods, a review. Food Chem 2013; 152:46-55. [PMID: 24444905 DOI: 10.1016/j.foodchem.2013.11.093] [Citation(s) in RCA: 670] [Impact Index Per Article: 60.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 11/04/2013] [Accepted: 11/18/2013] [Indexed: 11/30/2022]
Abstract
Among phytochemicals, phenolic compounds have been extensively researched due to their diverse health benefits. Phenolic compounds occur mostly as soluble conjugates and insoluble forms, covalently bound to sugar moieties or cell wall structural components. Absorption mechanisms for bound phenolic compounds in the gastrointestinal tract greatly depend on the liberation of sugar moieties. Food processes such as fermentation, malting, thermoplastic extrusion or enzymatic, alkaline and acid hydrolyses occasionally assisted with microwave or ultrasound have potential to release phenolics associated to cell walls. Different kinds of wet chemistry methodologies to release and detect bound phenolic have been developed. These include harsh heat treatments, chemical modifications or biocatalysis. New protocols for processing and determining phenolics in food matrices must be devised in order to release bound phenolics and for quality control in the growing functional food industry.
Collapse
Affiliation(s)
- Beatriz A Acosta-Estrada
- Centro de Biotecnología-FEMSA, School of Biotechnology and Foods, Tecnológico de Monterrey-Campus Monterrey, Av. Eugenio Garza Sada 2501, Monterrey, N.L. C.P. 64849, Mexico
| | - Janet A Gutiérrez-Uribe
- Centro de Biotecnología-FEMSA, School of Biotechnology and Foods, Tecnológico de Monterrey-Campus Monterrey, Av. Eugenio Garza Sada 2501, Monterrey, N.L. C.P. 64849, Mexico.
| | - Sergio O Serna-Saldívar
- Centro de Biotecnología-FEMSA, School of Biotechnology and Foods, Tecnológico de Monterrey-Campus Monterrey, Av. Eugenio Garza Sada 2501, Monterrey, N.L. C.P. 64849, Mexico
| |
Collapse
|
18
|
Martinez LC, Vargas MAP, del Angel AIC, Bermudez FC, Avalos HAJ. Total Phenolic Content and Antioxidant Capacity of Germinated, Popped, and Cooked Huauzontle (Chenopodium berlandieri spp. nuttalliae) Seeds. Cereal Chem 2013. [DOI: 10.1094/cchem-03-12-0022-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- L. Chaires Martinez
- Food Research Center – Instituto Tecnologico Superior de Alamo Temapache, Alamo Temapache, Veracruz, Mexico
- Corresponding author. Phone/Fax: +52 017658440038. E-mail:
| | - M. A. Perez Vargas
- Food Research Center – Instituto Tecnologico Superior de Alamo Temapache, Alamo Temapache, Veracruz, Mexico
| | - A. I. Cantor del Angel
- Food Research Center – Instituto Tecnologico Superior de Alamo Temapache, Alamo Temapache, Veracruz, Mexico
| | - F. Cruz Bermudez
- Food Research Center – Instituto Tecnologico Superior de Alamo Temapache, Alamo Temapache, Veracruz, Mexico
| | - H. A. Jimenez Avalos
- Food Research Center – Instituto Tecnologico Superior de Alamo Temapache, Alamo Temapache, Veracruz, Mexico
| |
Collapse
|
19
|
Gong L, Huang L, Zhang Y. Effect of steam explosion treatment on barley bran phenolic compounds and antioxidant capacity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:7177-84. [PMID: 22708804 DOI: 10.1021/jf301599a] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A steam explosion pretreatment process followed by methanol extraction has been applied for releasing and extracting phenolic compounds, as well as other effective components, from barley bran. The steam explosion treatment was performed at different temperatures ranging from 210 to 250 °C, with a residence time of 30 s. The effect of residence time was also studied in the range 10 s to 120 s at 220 °C. The extracts were evaluated for their total soluble phenolic content (TSPC) including total free phenolic acids (TFPC) and total soluble conjugates (TSC), identified phenolic acids, total antioxidant capacity (TAC), water-soluble carbohydrates (WSC) and total methanol extracts (TME). High-performance liquid chromatography (HPLC) coupled with a photodiode array detector (PDA) was used in this study for the analysis of p-coumaric acid and ferulic acid in barley bran before and after steam explosion. Our results indicate that TSPC and TAC increased with residence time. They also increased dramatically with temperature up to 220 °C. After steam explosion at 220 °C for 120 s, the TSPC reached 1686.4 gallic acid equivalents mg/100 g dry weight, which was about 9-fold higher than that of the untreated sample. The TSPC and TAC obtained were highly positively correlated (r = 0.918-0.993), which meant that the increase of TAC for the steam explosion pretreated barley bran extracts was due, at least in part, to the increase of TSPC in the methanol soluble fraction. Also, under optimum conditions, the WSC in aqueous solution was 5 times as much as that of the untreated sample, which demonstrated that steam explosion also hydrolyzes carbohydrates into water-soluble sugars. It can be concluded that a proper and reasonable steam explosion pretreatment could be applied to release the bound phenolic compounds and enhance the antioxidant capacity of barley bran extracts.
Collapse
Affiliation(s)
- Lingxiao Gong
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | | | | |
Collapse
|
20
|
Szwajgier D. The Use of an Extracellular Ferulic Acid Esterase from Lactobacillus acidophilus K1 for the Release of Phenolic Acids During Mashing. JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/j.2050-0416.2011.tb00489.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
21
|
Yang HJ, Yue Q. Effect of glucose addition and N sources in defined media on fibrolytic activity profiles ofNeocallimastix sp. YQ1 grown on corn stover. J Anim Physiol Anim Nutr (Berl) 2011; 96:554-62. [DOI: 10.1111/j.1439-0396.2011.01177.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Du L, Yu P. Relationship of physicochemical characteristics and hydrolyzed hydroxycinnamic acid profile of barley varieties and nutrient availability in ruminants. J Cereal Sci 2011. [DOI: 10.1016/j.jcs.2010.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Screening of edible mushrooms for release of ferulic acid from wheat bran by fermentation. Enzyme Microb Technol 2010. [DOI: 10.1016/j.enzmictec.2009.10.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
24
|
Du L, Yu P, Rossnagel BG, Christensen DA, McKinnon JJ. Physicochemical characteristics, hydroxycinnamic acids (ferulic acid, P-coumaric acid) and their ratio, and in situ biodegradability: comparison of genotypic differences among six barley varieties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:4777-83. [PMID: 19432476 DOI: 10.1021/jf803995p] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Barley contains hydroxycinnamic acids, mainly ferulic acid (FA; 3-methoxy-4-hydroxycinnamic acid) and p-coumaric acid (PCA; 4-hydroxycinnamic acid). Ferulic acid is produced via the phenylpropanoid biosynthetic pathway and covalently cross-linked to polysaccharides by ester bonds and to components of lignin mainly by ether bonds. Various studies have consistently indicated that FA is among the factors most inhibitory to the biodegradability of cell wall polysaccharides. p-Coumaric acid is also covalently linked to polysaccharides (minor) and lignin (major), but does not form the inhibitory cross-linkages as FA does and is considered to represent cell wall lignification. The objectives in this study were to (1) determine genotypic differences in physicochemical characteristics in terms of (a) two major low molecular weight hydroxycinnamic acid profiles (FA, PCA, PCA-to-FA ratio, which are associated with digestion and lignification), (b) particle size distributions (mean, median), (c) hull content, and (d) digestion-resistant fiber fractions and (2) determine genotypic differences in in situ solubilization kinetics of FA and PCA. The barley varieties grown during three consecutive years (2003, 2004, and 2005) included AC Metcalfe, CDC Dolly, McLeod, CDC Helgason, CDC Trey, and CDC Cowboy. These barleys were grown at the Kernen Crop Research Farm (KCRF, University of Saskatchewan) and managed using standard agronomic production practices. Results showed that there were significant differences in hull content (P < 0.05) among the barley varieties, with Mcleod having the highest (11% DM) and CDC Dolly and CDC Helgason the lowest hull content (9% DM). Ferulic acid ranged from 555 to 663 microg/g of DM (P < 0.05). p-Coumaric acid ranged (P < 0.05) from 283 to 345 microg/g of DM. PCA-to-FA ratios ranged (P < 0.05) from 0.49 to 0.56. Mean particle size ranged (P < 0.05) from 3.06 to 3.66 mm, and median particle size ranged (P < 0.05) from 2.71 to 3.04 mm. In situ DM degradability ranged from 44 to 49%. In situ solubilized FA fractions ranged (P < 0.05) from 60 to 72% and of PCA ranged (P < 0.05) from 71 to 81%. In conclusion, CDC Dolly was best and McLeod barley was poorest as feed barley in terms of hull and FA contents. There were significant genotypic differences in FA, PCA and their ratio, hull content, particle size distribution, and in situ solubilization of FA and PCA among the barley varieties.
Collapse
Affiliation(s)
- Liqin Du
- College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | | | | |
Collapse
|
25
|
Treimo J, Westereng B, Horn SJ, Forssell P, Robertson JA, Faulds CB, Waldron KW, Buchert J, Eijsink VGH. Enzymatic solubilization of brewers' spent grain by combined action of carbohydrases and peptidases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:3316-3324. [PMID: 19284754 DOI: 10.1021/jf803310f] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Brewers' spent grain (BSG), a high-volume coproduct from the brewing industry, primarily contains proteins, barley cell wall carbohydrates, and lignin. To create new possibilities for the exploitation of this large biomass stream, the solubilization of BSG by the combined action of carbohydrases (Depol 740 and Econase) and peptidase (Alcalase and Promod 439) was explored. Hydrolysis protocols were optimized with respect to temperature (influencing both microbial contamination and rate of enzymatic hydrolysis), pH, enzyme dose, order of enzyme addition, and processing time. On the basis of this approach, one- and two-step protocols are proposed taking 4-8 h and yielding combined or separate fractions of hydrolyzed oligosaccharides and liberated hydrolyzed protein. Optimized procedures resulted in the solubilization of >80% of the proteinaceous material, up to 39% of the total carbohydrates, and up to 42% of total dry matter in BSG. Of the original xylan present in BSG, 36% could be solubilized. Sequential and simultaneous treatments with the two enzyme types gave similar results. In sequential processes, the order of the carbohydrase and peptidase treatments had only minor effects on the outcome. Depol 740 released more pentoses than Econase and gave slightly higher overall dry matter solubilization yields.
Collapse
Affiliation(s)
- Janneke Treimo
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, N-1432 Aas, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Vanbeneden N, Van Roey T, Willems F, Delvaux F, Delvaux FR. Release of phenolic flavour precursors during wort production: Influence of process parameters and grist composition on ferulic acid release during brewing. Food Chem 2008. [DOI: 10.1016/j.foodchem.2008.03.029] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Vanbeneden N, Gils F, Delvaux F, Delvaux FR. Formation of 4-vinyl and 4-ethyl derivatives from hydroxycinnamic acids: Occurrence of volatile phenolic flavour compounds in beer and distribution of Pad1-activity among brewing yeasts. Food Chem 2008. [DOI: 10.1016/j.foodchem.2007.08.008] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Vanbeneden N, Gils F, Delvaux F, Delvaux FR. Variability in the release of free and bound hydroxycinnamic acids from diverse malted barley (Hordeum vulgare L.) cultivars during wort production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:11002-11010. [PMID: 18038991 DOI: 10.1021/jf072340a] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Volatile phenols have long been recognized as important flavor contributors to the aroma of various alcoholic beverages. The two main flavor-active volatile phenols in beer are 4-vinylguaiacol and 4-vinylphenol. They are the decarboxylation products of the precursors ferulic acid and p-coumaric acid, respectively, which are released during the brewing process, mainly from malt. In this study, the variability in the release of free and ester-bound hydroxycinnamic acids from nine malted barley ( Hordeum vulgare L.) varieties during wort production was investigated. A large variability between different barley malts and their corresponding worts was observed. Differences were also found between free ferulic acid levels from identical malt varieties originating from different malt houses. During mashing, free hydroxycinnamic acids in wort are both water-extracted and enzymatically released by cinnamoyl esterase activity. Esterase activities clearly differ between different barley malt varieties. Multiple linear regression analysis showed that the release of ferulic acid during mashing did not depend only on the barley malt esterase activity but also on the amount of ester-bound ferulic acid initially present in the wort and on its endoxylanase activity. The study demonstrates the importance of selecting a suitable malt variety as the first means of controlling the final volatile phenol levels in beer.
Collapse
Affiliation(s)
- Nele Vanbeneden
- Centre for Malting and Brewing Science, Department of Microbial and Molecular Systems-Food and Microbial Technology, Catholic University of Leuven, Belgium.
| | | | | | | |
Collapse
|
29
|
Polyhydroxybutyrate production from a novel feedstock derived from a wheat-based biorefinery. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2006.08.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Mathew S, Abraham TE. Ferulic acid: an antioxidant found naturally in plant cell walls and feruloyl esterases involved in its release and their applications. Crit Rev Biotechnol 2005; 24:59-83. [PMID: 15493526 DOI: 10.1080/07388550490491467] [Citation(s) in RCA: 276] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Ferulic acid is the most abundant hydroxycinnamic acid in the plant world and maize bran with 3.1% (w/w) ferulic acid is one of the most promising sources of this antioxidant. The dehydrodimers of ferulic acid are important structural components in the plant cell wall and serve to enhance its rigidity and strength. Feruloyl esterases are a subclass of the carboxylic acid esterases that hydrolyze the ester bond between hydroxycinnamic acids and sugars present in plant cell walls and they have been isolated from a wide range of microorganisms, when grown on complex substrates such as cereal brans, sugar beet pulp, pectin and xylan. These enzymes perform a function similar to alkali in the deesterification of plant cell wall and differ in their specificities towards the methyl esters of cinnamic acids and ferulolylated oligosaccharides. They act synergistically with xylanases and pectinases and facilitate the access of hydrolases to the backbone of cell wall polymers. The applications of ferulic acid and feruloyl esterase enzymes are many and varied. Ferulic acid obtained from agricultural byproducts is a potential precursor for the production of natural vanillin, due to the lower production cost.
Collapse
Affiliation(s)
- Sindhu Mathew
- Biochemical Processing Section, Regional Research Laboratory (CSIR), Trivandrum, Kerala, India
| | | |
Collapse
|
31
|
|
32
|
Coghe S, Benoot K, Delvaux F, Vanderhaegen B, Delvaux FR. Ferulic acid release and 4-vinylguaiacol formation during brewing and fermentation: indications for feruloyl esterase activity in Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2004; 52:602-8. [PMID: 14759156 DOI: 10.1021/jf0346556] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The release of ferulic acid and the subsequent thermal or enzymatic decarboxylation to 4-vinylguaiacol are inherent to the beer production process. Phenolic, medicinal, or clove-like flavors originating from 4-vinylguaiacol frequently occur in beer made with wheat or wheat malt. To evaluate the release of ferulic acid and the transformation to 4-vinylguaiacol, beer was brewed with different proportions of barley malt, wheat, and wheat malt. Ferulic acid as well as 4-vinylguaiacol levels were determined by HPLC at several stages of the beer production process. During brewing, ferulic acid was released at the initial mashing phase, whereas moderate levels of 4-vinylguaiacol were formed by wort boiling. Higher levels of the phenolic flavor compound were produced during fermentations with brewery yeast strains of the Pof(+) phenotype. In beer made with barley malt, ferulic acid was mainly released during the brewing process. Conversely, 60-90% of ferulic acid in wheat or wheat malt beer was hydrolyzed during fermentation, causing higher 4-vinylguaiacol levels in these beers. As cereal enzymes are most likely inactivated during wort boiling, the additional release of ferulic acid during fermentation suggests the activity of feruloyl esterases produced by brewer's yeast.
Collapse
Affiliation(s)
- Stefan Coghe
- Centre for Malting and Brewing Science, Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium.
| | | | | | | | | |
Collapse
|
33
|
Affiliation(s)
- Robert E. Ward
- Dept. Food Science & Technology, University of California, Davis, CA 95616
| | - Charles W. Bamforth
- Dept. Food Science & Technology, University of California, Davis, CA 95616
- Corresponding author. E-mail: . Phone: 530-752-1467. Fax: 530-752-4759
| |
Collapse
|
34
|
|