1
|
Yu H, Zhou B, Meng J, Xu J, Liu TX, Wang D. Recombinant Helicoverpa armigera nucleopolyhedrovirus with arthropod-specific neurotoxin gene RjAa17f from Rhopalurus junceus enhances the virulence against the host larvae. INSECT SCIENCE 2017; 24:397-408. [PMID: 26541901 DOI: 10.1111/1744-7917.12289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/30/2015] [Indexed: 06/05/2023]
Abstract
A recombinant Helicoverpa armigera nucleopolyhedrovirus (HearNPV) expressing the insect-selective neurotoxin (RjAa17f) from Cuban scorpion Rhopalurus junceus was constructed by replacing the UDP-glucosyltransferase gene (egt) using λ-red homologous recombination system. Another egt deleted control HearNPV was constructed in a similar way by inserting egfp gene into the egt locus. One-step viral growth curve and viral DNA replication curve analysis confirmed that the recombination did not affect the viral growth and DNA replication in host cells. There is no discernable difference in occlusion-body morphogenesis between RjAa17f-HearNPV, Egfp-HearNPV and HZ8-HearNPV, which was confirmed by transmission electron microscopy analysis. However, the insecticidal activity of RjAa17f-HearNPV is enhanced against the third instar H. armigera larvae according to the bioassay on virulence comparison. There is a dramatic reduction (56.9%) in median lethal dose (LD50 ) and also a reduction (13.4%) in median survival time (ST50 ) for the recombinant RjAa17f-HearNPV compared to the HZ8-HearNPV, but only a 27.5% reduction in LD50 and 10.1% reduction in ST50 value when Egfp-HearNPV is compared with HZ8-HearNPV. The daily diet consumption analysis showed that the RjAa17f-HearNPV was able to inhibit the infected larvae feeding compared with the egt minus HearNPV. These results demonstrated that this novel recombinant RjAa17f-HearNPV could improve the insecticidal effect against its host insects and RjAa17f could be a considerable candidate for other recombinant baculovirus constructions.
Collapse
Affiliation(s)
- Huan Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, China
- Key Laboratory of Applied Entomology, Northwest A&F University, Yangling, Shaanxi, China
| | - Bin Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, China
| | - Jiao Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, China
| | - Jian Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, China
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, China
- Key Laboratory of Applied Entomology, Northwest A&F University, Yangling, Shaanxi, China
| | - Dun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, China
| |
Collapse
|
2
|
Chikhalya A, Luu DD, Carrera M, De La Cruz A, Torres M, Martinez EN, Chen T, Stephens KD, Haas-Stapleton EJ. Pathogenesis of Autographa californica multiple nucleopolyhedrovirus in fifth-instar Anticarsia gemmatalis larvae. J Gen Virol 2009; 90:2023-2032. [PMID: 19423548 DOI: 10.1099/vir.0.011718-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have investigated infection and pathogenesis of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) in Anticarsia gemmatalis (velvetbean caterpillar) larvae using a lacZ recombinant virus (AcMNPV-hsp70/lacZ) to track the temporal progression of infection in the midgut intestine and haemocoel. A. gemmatalis was highly resistant to fatal infection by occlusion bodies (OBs; LD(50)>5.5 x 10(5) OB) and budded virus (BV; LD(50)>3 x 10(5) BV) administered via oral and systemic routes, respectively. Orally administered occlusion-derived virus (ODV) efficiently attached and fused to midgut cells; however, high levels of infection-induced apoptosis limited infection in the midgut. Transcriptional analysis of AcMNPV genes expressed in the midgut of OB-inoculated A. gemmatalis larvae showed high levels of mRNA encoding the major capsid protein VP39 in the absence of immediate-early transactivator 1 (ie-1) expression. In the midgut, virus was efficiently transferred from infected midgut epithelial cells to nearby tracheolar cells and circulating haemocytes to initiate systemic infection in the haemocoel. However, haemocoelic BV did not efficiently disseminate infection and only cuticular epidermal cells displayed high levels of viral infection. Flow cytometry analysis of haemocytes isolated from BV-inoculated A. gemmatalis larvae showed low-level expression of the BV envelope protein GP64 on the cell surface, suggesting that A. gemmatalis haemocytes have a limited capacity for amplifying virus. These results show that AcMNPV is not an effective biological control agent for limiting crop damage caused by A. gemmatalis larvae.
Collapse
Affiliation(s)
- Aniska Chikhalya
- Department of Biological Sciences, California State University, 1250 Bellflower Road, Long Beach, CA 90840, USA
| | - Dee Dee Luu
- Department of Biological Sciences, California State University, 1250 Bellflower Road, Long Beach, CA 90840, USA
| | - Maggie Carrera
- Department of Biological Sciences, California State University, 1250 Bellflower Road, Long Beach, CA 90840, USA
| | - Alisa De La Cruz
- Department of Biological Sciences, California State University, 1250 Bellflower Road, Long Beach, CA 90840, USA
| | - Marianne Torres
- Department of Biological Sciences, California State University, 1250 Bellflower Road, Long Beach, CA 90840, USA
| | - Elisa N Martinez
- Department of Biological Sciences, California State University, 1250 Bellflower Road, Long Beach, CA 90840, USA
| | - Tiffany Chen
- Department of Biological Sciences, California State University, 1250 Bellflower Road, Long Beach, CA 90840, USA
| | - Kimberly D Stephens
- Department of Biological Sciences, California State University, 1250 Bellflower Road, Long Beach, CA 90840, USA
| | - Eric J Haas-Stapleton
- Department of Biological Sciences, California State University, 1250 Bellflower Road, Long Beach, CA 90840, USA
| |
Collapse
|
3
|
Holmes SB, Fick WE, Kreutzweiser DP, Ebling PM, England LS, Trevors JT. Persistence of naturally occurring and genetically modified Choristoneura fumiferana nucleopolyhedroviruses in outdoor aquatic microcosms. PEST MANAGEMENT SCIENCE 2008; 64:1015-1023. [PMID: 18470960 DOI: 10.1002/ps.1600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
BACKGROUND To assess the persistence of genetically modified and naturally occurring baculoviruses in an aquatic environment, replicate (three) outdoor, aquatic microcosms were spiked with spruce budworm viruses [Ireland strain of Choristoneura fumiferana multiple nucleopolyhedrovirus (CfMNPV) and the recombinant CfMNPVegt(-)/lacZ(+)] at a rate of 1.86 x 10(10) occlusion bodies (OBs) m(-2) of surface area. The presence of virus in water samples collected at various times after inoculation was determined by PCR amplification of baculoviral DNA extracted from OBs. RESULTS Although UV radiation rapidly degrades baculoviruses under natural conditions, both viruses persisted above the level of detection (>100 OBs 450 microL(-1) of natural pond water) for at least 1 year post-inoculation, with little difference between the viruses in their patterns of persistence. CONCLUSION The present microcosm study suggests that occlusion bodies of baculoviruses can persist in the flocculent layer of natural ponds. On disturbance, OBs could re-enter the main water column and thus be available for transport to new locations. Implications for environmental risk assessment are discussed.
Collapse
Affiliation(s)
- Stephen B Holmes
- Natural Resources Canada, Canadian Forest Service, Sault Ste. Marie, ON P6A 2E5, Canada.
| | | | | | | | | | | |
Collapse
|
4
|
England LS, Trevors JT, Holmes SB. Extraction and detection of baculoviral DNA from lake water, detritus and forest litter. J Appl Microbiol 2001; 90:630-6. [PMID: 11309076 DOI: 10.1046/j.1365-2672.2001.01289.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS This paper describes a quick, reproducible, sensitive method for baculoviral DNA extraction, purification and detection from freshwater and forest litter environments. METHODS AND RESULTS The extraction protocol utilizes enzymatic and chemical lysis and physical disruption. To assess the efficiency of the extraction and purification protocol, PCR was used to detect a 530 bp DNA fragment from the genome of a genetically-modified baculovirus, Choristoneura fumiferana NPVegt-/lacZ+. The detection limit of PCR amplification was routinely about 4.1 x 102 occlusion bodies (OBs) 450 microl-1 lake water. Template DNA from the detritus and forest litter samples required 100-fold dilutions before use in PCR reactions. The detection limits for detritus and forest litter samples were routinely about 7.41 x 103 and 2.08 x 104 OBs 0.5 g-1 dry weight, respectively. CONCLUSION The DNA extraction and purification methodology is reproducible, sensitive and can be used in lieu of, or in conjunction with, insect bioassays. SIGNIFICANCE AND IMPACT OF THE STUDY The DNA extraction and purification protocol described in this paper will facilitate risk assessment and ecological studies of both wild-type and genetically-modified baculoviruses.
Collapse
Affiliation(s)
- L S England
- Department of Natural Resources, Canadian Forest Service, Great Lakes Forestry Centre, Sault Ste Marie, Ontario, Canada
| | | | | |
Collapse
|
5
|
D'Amico V, Elkinton JS, Podgwaite JD, Slavicek JM, McManus ML, Burand JP. A field release of genetically engineered gypsy moth (Lymantria dispar L.) nuclear polyhedrosis virus (LdNPV). J Invertebr Pathol 1999; 73:260-8. [PMID: 10222179 DOI: 10.1006/jipa.1999.4847] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The gypsy moth (Lymantria dispar L.) nuclear polyhedrosis virus was genetically engineered for nonpersistence by removal of the gene coding for polyhedrin production and stabilized using a coocclusion process. A beta-galactosidase marker gene was inserted into the genetically engineered virus (LdGEV) so that infected larvae could be tested for its presence using a colorimetric assay. In 1993, LdGEV-infected gypsy moths were released in a forested plot in Massachusetts to test for spread and persistence. A similar forested plot 2 km away served as a control. For 3 years (1993-1995), gypsy moths were established in the two plots in Massachusetts to serve as test and control populations. Each week, larvae were collected from both plots. These field-collected larvae were reared individually, checked for mortality, and then tested for the presence of beta-galactosidase. Other gypsy moth larvae were confined on LdGEV-contaminated foliage for 1 week and then treated as the field-collected larvae. The LdGEV was sought in bark, litter, and soil samples collected from each plot. To verify the presence of the LdGEV, polymerase chain reaction, slot blot DNA hybridization, and restriction enzyme analysis were also used on larval samples. Field-collected larvae infected with the engineered virus were recovered in the release plot in 1993, but not in subsequent years; no field-collected larvae from the control plot contained the engineered virus. Larvae confined on LdGEV-contaminated foliage were killed by the virus. No LdGEV was recovered from bark, litter, or soil samples from either of the plots.
Collapse
Affiliation(s)
- V D'Amico
- Department of Entomology, University of Massachusetts at Amherst, Amherst, Massachusetts 01003, USA.
| | | | | | | | | | | |
Collapse
|
6
|
Moscardi F. Assessment of the application of baculoviruses for control of Lepidoptera. ANNUAL REVIEW OF ENTOMOLOGY 1999; 44:257-289. [PMID: 15012374 DOI: 10.1146/annurev.ento.44.1.257] [Citation(s) in RCA: 274] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Baculoviruses, among other insect viruses, are regarded as safe and selective bioinsecticides, restricted to invertebrates. They have been used worldwide against many insect pests, mainly Lepidoptera. Their application as microbial pesticides, however, has not met their potential to control pests in crops, forests, and pastures, with the exception of the nuclear polyhedrosis virus of the soybean caterpillar (Anticarsia gemmatalis), which is used on approximately 1 million ha annually in Brazil. Problems that have limited expansion of baculovirus use include narrow host range, slow killing speed, technical and economical difficulties for in vitro commercial production, timing of application based on frequent host population monitoring, variability of field efficacy due to climatic conditions, and farmers' attitudes toward pest control, which have been based on application of fast-killing chemical insecticides. Farmer education regarding use of biological insecticides and their characteristics is considered one of the major actions necessary for increased use of baculoviruses. Strategies to counteract some of the limitations of baculoviruses, especially their slow killing activity, have been investigated and are promising. These include the use of chemical or biological substances added to virus formulations and genetic engineering of the viruses themselves to express insect toxins or hormones. Such strategies can enhance viral activity and increase speed of kill as well as reduce larval feeding activity. The use of baculoviruses against Lepidoptera is reviewed, with the utilization of the nuclear polyhedrosis virus of A. gemmatalis in Brazil serving as a case-study.
Collapse
Affiliation(s)
- F Moscardi
- Embrapa-National Soybean Research Center, C postal 231, Londrina, PR 86001-970, Brazil.
| |
Collapse
|