1
|
Rauter M, Kasprzak J, Becker K, Riechen J, Worch S, Hartmann A, Mascher M, Scholz U, Baronian K, Bode R, Schauer F, Matthias Vorbrodt H, Kunze G. Aadh2p: an Arxula adeninivorans alcohol dehydrogenase involved in the first step of the 1-butanol degradation pathway. Microb Cell Fact 2016; 15:175. [PMID: 27733155 PMCID: PMC5062937 DOI: 10.1186/s12934-016-0573-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 09/28/2016] [Indexed: 11/24/2022] Open
Abstract
Background The non-conventional yeast Arxula adeninivorans uses 1-butanol as a carbon source and has recently attracted attention as a promising organism for 1-butanol production. Alcohol dehydrogenases (adhp) are important catalysts in 1-butanol metabolism, but only Aadh1p from Arxula has been characterized. This enzyme is involved in ethanol synthesis but has a low impact on 1-butanol degradation. Results In this study, we identified and characterized a second adhp from A. adeninivorans (Aadh2p). Compared to Saccharomyces cerevisiae ADHs’ (ScAdh) protein sequences it originates from the same ancestral node as ScAdh6p, 7p and 4p. It is also localized in the cytoplasm and uses NAD(H) as cofactor. The enzyme has its highest activity with medium chain-length alcohols and maximum activity with 1-butanol with the catalytic efficiency of the purified enzyme being 42 and 43,000 times higher than with ethanol and acetaldehyde, respectively. Arxula adeninivorans strain G1212/YRC102-AADH2, which expresses the AADH2 gene under the control of the strong constitutive TEF1 promoter was constructed. It achieved an ADH activity of up to 8000 U/L and 500 U/g dry cell weight (dcw) which is in contrast to the control strain G1212/YRC102 which had an ADH activity of up to 1400 U/L and 200 U/g dcw. Gene expression analysis showed that AADH2 derepression or induction using non-fermentable carbon-sources such as ethanol, pyruvate, glycerol or 1-butanol did occur. Compared to G1212/YRC102 AADH2 knock-out strain had a slower growth rate and lower 1-butanol consumption if 1-butanol was used as sole carbon source and AADH2-transformants did not grow at all in the same conditions. However, addition of the branched-chain amino acids leucine, isoleucine and valine allowed the transformants to use 1-butanol as carbon source. The addition of these amino acids to the control strain and Δaadh2 mutant cultures had the effect of accelerating 1-butanol consumption. Conclusions Our results confirm that Aadh2p plays a major role in A. adeninivorans 1-butanol metabolism. It is upregulated by up to 60-fold when the cells grow on 1-butanol, whereas only minor changes were found in the relative expression level for Aadh1p. Thus the constitutive overexpression of the AADH2 gene could be useful in the production of 1-butanol by A. adeninivorans, although it is likely that other ADHs will have to be knocked-out to prevent 1-butanol oxidation. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0573-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marion Rauter
- Orgentis Chemicals GmbH, Bahnhofstr. 3-5, 06466, Gatersleben, Germany
| | - Jakub Kasprzak
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466, Gatersleben, Saxony-Anhalt, Germany
| | - Karin Becker
- Orgentis Chemicals GmbH, Bahnhofstr. 3-5, 06466, Gatersleben, Germany
| | - Jan Riechen
- Jäckering Mühlen-und Nährmittelwerke GmbH, Vorsterhauser Weg 46, 59007, Hamm, Germany
| | - Sebastian Worch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466, Gatersleben, Saxony-Anhalt, Germany
| | - Anja Hartmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466, Gatersleben, Saxony-Anhalt, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466, Gatersleben, Saxony-Anhalt, Germany
| | - Uwe Scholz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466, Gatersleben, Saxony-Anhalt, Germany
| | - Kim Baronian
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Rüdiger Bode
- Institute of Microbiology, University of Greifswald, Jahnstr. 15, 17487, Greifswald, Germany
| | - Frieder Schauer
- Institute of Microbiology, University of Greifswald, Jahnstr. 15, 17487, Greifswald, Germany
| | | | - Gotthard Kunze
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466, Gatersleben, Saxony-Anhalt, Germany.
| |
Collapse
|
2
|
Plapp BV, Charlier HA, Ramaswamy S. Mechanistic implications from structures of yeast alcohol dehydrogenase complexed with coenzyme and an alcohol. Arch Biochem Biophys 2016; 591:35-42. [PMID: 26743849 DOI: 10.1016/j.abb.2015.12.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 12/18/2015] [Accepted: 12/21/2015] [Indexed: 11/27/2022]
Abstract
Yeast alcohol dehydrogenase I is a homotetramer of subunits with 347 amino acid residues, catalyzing the oxidation of alcohols using NAD(+) as coenzyme. A new X-ray structure was determined at 3.0 Å where both subunits of an asymmetric dimer bind coenzyme and trifluoroethanol. The tetramer is a pair of back-to-back dimers. Subunit A has a closed conformation and can represent a Michaelis complex with an appropriate geometry for hydride transfer between coenzyme and alcohol, with the oxygen of 2,2,2-trifluoroethanol ligated at 2.1 Å to the catalytic zinc in the classical tetrahedral coordination with Cys-43, Cys-153, and His-66. Subunit B has an open conformation, and the coenzyme interacts with amino acid residues from the coenzyme binding domain, but not with residues from the catalytic domain. Coenzyme appears to bind to and dissociate from the open conformation. The catalytic zinc in subunit B has an alternative, inverted coordination with Cys-43, Cys-153, His-66 and the carboxylate of Glu-67, while the oxygen of trifluoroethanol is 3.5 Å from the zinc. Subunit B may represent an intermediate in the mechanism after coenzyme and alcohol bind and before the conformation changes to the closed form and the alcohol oxygen binds to the zinc and displaces Glu-67.
Collapse
Affiliation(s)
- Bryce V Plapp
- Department of Biochemistry, The University of Iowa, Iowa City, IA 52242, USA.
| | - Henry A Charlier
- Department of Biochemistry, The University of Iowa, Iowa City, IA 52242, USA.
| | - S Ramaswamy
- Department of Biochemistry, The University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
3
|
Monkenbusch M, Stadler A, Biehl R, Ollivier J, Zamponi M, Richter D. Fast internal dynamics in alcohol dehydrogenase. J Chem Phys 2015; 143:075101. [DOI: 10.1063/1.4928512] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
4
|
Chen F, Wang P, An Y, Huang J, Xu Y. Structural insight into the conformational change of alcohol dehydrogenase from Arabidopsis thaliana L. during coenzyme binding. Biochimie 2014; 108:33-9. [PMID: 25447145 DOI: 10.1016/j.biochi.2014.10.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 10/26/2014] [Indexed: 11/18/2022]
Abstract
Alcohol dehydrogenase (ADH, EC 1.1.1.1) plays important roles in the metabolism of alcohols and aldehydes. They are often subjected to conformational changes that are critical for the enzymatic activity and have received intensive investigation for horse liver ADH. However, for the large plant ADH members, little is known regarding both the conformational change and its relationship to catalytic activity as plant ADH structures were rarely available. Here we describe three Arabidopsis ADH conformations obtained from two crystals, the apo crystal that was free of ligand, and the complex crystal that was with NAD. The NAD-complexed crystal yielded two different structural forms for the two subunits, one was occupied by the coenzyme, and the other was free and open. Structural comparisons demonstrate that the occupied subunit is in a closed conformation while the free subunit is fully open, and the apo structure in intermediate. Though all the forms have an overall fold similar to that of horse and human ADHs, the catalytic domain has an over 10° rotation. Additionally, unlike horse liver ADH, the loop (295-302aa) adopts different conformation. It does not rearrange upon the binding of the coenzyme norVal297 side chain experiences a flipping. Instead it always remains in the active site. His48 plays a switching role in the structure. Its imidazole ring has to swim away from the binding site to permit NAD binding. These together with the large differences in the substrate binding pocket, as well as in the proton relay system demonstrate that AtADH adopts a different catalysis mechanism from horse liver ADH.
Collapse
Affiliation(s)
- FangFang Chen
- The Nurturing Station for the State Key Laboratory of Subtropical Sylviculture, Zhejiang Agriculture and Forestry University, Lin'an, Zhejiang 311300, China
| | - Ping Wang
- The Nurturing Station for the State Key Laboratory of Subtropical Sylviculture, Zhejiang Agriculture and Forestry University, Lin'an, Zhejiang 311300, China
| | - Yan An
- The Nurturing Station for the State Key Laboratory of Subtropical Sylviculture, Zhejiang Agriculture and Forestry University, Lin'an, Zhejiang 311300, China
| | - JianQin Huang
- The Nurturing Station for the State Key Laboratory of Subtropical Sylviculture, Zhejiang Agriculture and Forestry University, Lin'an, Zhejiang 311300, China
| | - YingWu Xu
- The Nurturing Station for the State Key Laboratory of Subtropical Sylviculture, Zhejiang Agriculture and Forestry University, Lin'an, Zhejiang 311300, China.
| |
Collapse
|
5
|
Raj S, Ramaswamy S, Plapp BV. Yeast alcohol dehydrogenase structure and catalysis. Biochemistry 2014; 53:5791-803. [PMID: 25157460 PMCID: PMC4165444 DOI: 10.1021/bi5006442] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 08/22/2014] [Indexed: 11/30/2022]
Abstract
Yeast (Saccharomyces cerevisiae) alcohol dehydrogenase I (ADH1) is the constitutive enzyme that reduces acetaldehyde to ethanol during the fermentation of glucose. ADH1 is a homotetramer of subunits with 347 amino acid residues. A structure for ADH1 was determined by X-ray crystallography at 2.4 Å resolution. The asymmetric unit contains four different subunits, arranged as similar dimers named AB and CD. The unit cell contains two different tetramers made up of "back-to-back" dimers, AB:AB and CD:CD. The A and C subunits in each dimer are structurally similar, with a closed conformation, bound coenzyme, and the oxygen of 2,2,2-trifluoroethanol ligated to the catalytic zinc in the classical tetrahedral coordination with Cys-43, Cys-153, and His-66. In contrast, the B and D subunits have an open conformation with no bound coenzyme, and the catalytic zinc has an alternative, inverted coordination with Cys-43, Cys-153, His-66, and the carboxylate of Glu-67. The asymmetry in the dimeric subunits of the tetramer provides two structures that appear to be relevant for the catalytic mechanism. The alternative coordination of the zinc may represent an intermediate in the mechanism of displacement of the zinc-bound water with alcohol or aldehyde substrates. Substitution of Glu-67 with Gln-67 decreases the catalytic efficiency by 100-fold. Previous studies of structural modeling, evolutionary relationships, substrate specificity, chemical modification, and site-directed mutagenesis are interpreted more fully with the three-dimensional structure.
Collapse
Affiliation(s)
| | | | - Bryce V. Plapp
- Department of Biochemistry, The University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
6
|
Zhang M, Karra S, Gorski W. Rapid Electrochemical Enzyme Assay with Enzyme-Free Calibration. Anal Chem 2013; 85:6026-32. [DOI: 10.1021/ac4008557] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Maogen Zhang
- Department
of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249-0698, United States
| | - Sushma Karra
- Department
of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249-0698, United States
| | - Waldemar Gorski
- Department
of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249-0698, United States
| |
Collapse
|
7
|
Wang X, Li L, Wang Y, Xu C, Zhao B, Yang X. Application of reduced graphene oxide and carbon nanotube modified electrodes for measuring the enzymatic activity of alcohol dehydrogenase. Food Chem 2013; 138:2195-200. [DOI: 10.1016/j.foodchem.2012.11.137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/28/2012] [Accepted: 11/30/2012] [Indexed: 01/24/2023]
|
8
|
Kang C, Hayes R, Sanchez EJ, Webb BN, Li Q, Hooper T, Nissen MS, Xun L. Furfural reduction mechanism of a zinc-dependent alcohol dehydrogenase from Cupriavidus necator JMP134. Mol Microbiol 2011; 83:85-95. [PMID: 22081946 DOI: 10.1111/j.1365-2958.2011.07914.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
FurX is a tetrameric Zn-dependent alcohol dehydrogenase (ADH) from Cupriavidus necator JMP134. The enzyme rapidly reduces furfural with NADH as the reducing power. For the first time among characterized ADHs, the high-resolution structures of all reaction steps were obtained in a time-resolved manner, thereby illustrating the complete catalytic events of NADH-dependent reduction of furfural and the dynamic Zn(2+) coordination among Glu66, water, substrate and product. In the fully closed conformation of the NADH complex, the catalytic turnover proved faster than observed for the partially closed conformation due to an effective proton transfer network. The domain motion triggered by NAD(H) association/dissociation appeared to facilitate dynamic interchanges in Zn(2+) coordination with substrate and product molecules, ultimately increasing the enzymatic turnover rate. NAD(+) dissociation appeared to be a slow process, involving multiple steps in concert with a domain opening and reconfiguration of Glu66. This agrees with the report that the cofactor is not dissociated from FurX during ethanol-dependent reduction of furfural, in which ethanol reduces NAD(+) to NADH that is subsequently used for furfural reduction.
Collapse
Affiliation(s)
- ChulHee Kang
- School of Molecular Biosciences Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Zsila F. Circular dichroism spectroscopy is a sensitive tool for investigation of bilirubin-enzyme interactions. Biomacromolecules 2010; 12:221-7. [PMID: 21141881 DOI: 10.1021/bm1012103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Noncovalent complex formation of unconjugated bilirubin with various enzymes has been demonstrated by measuring induced circular dichroism (ICD) peaks associated with the pigment VIS absorption band. Preferential binding of the P- or M-helical conformer of bilirubin to dehydrogenases, catalase, alkaline phosphatase, and α-chymotrypsin is responsible for the characteristic exciton CD couplet that undergoes remarkable changes upon the addition of enzymatic cofactors (NADH, AMP) and an inhibitor (acridine). Alterations of the ICD spectra refer to a direct binding competition between bilirubin and NADH for a common binding site on alcohol dehydrogenase and catalase, suggesting a potential mechanism for the inhibitory effect of BR reported on NAD(P)H dependent enzymes. NADH and bilirubin form a ternary complex with glutamate dehydrogenase indicated by peculiar CD spectral changes that are proposed to be generated by allosteric mechanism. α-chymotrypsin binds bilirubin in its catalytic site, as indicated by CD displacement experiments performed with the competitive inhibitor acridine. Surprisingly, the closely related trypsin does not induce any CD signal with bilirubin. Taking into consideration the clinically relevant but controversial and poorly understood areas of bilirubin biochemistry, the fast and simple CD spectroscopic approach presented here may help to unfold diverse physiological and pathophysiological roles of BR on a molecular level.
Collapse
Affiliation(s)
- Ferenc Zsila
- Department of Molecular Pharmacology, Institute of Biomolecular Chemistry, Chemical Research Center, H-1025 Budapest, Pusztaszeri út 59-67, Hungary.
| |
Collapse
|
10
|
Ahmad SS, Dalby PA. Thermodynamic parameters for salt-induced reversible protein precipitation from automated microscale experiments. Biotechnol Bioeng 2010; 108:322-32. [DOI: 10.1002/bit.22957] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Monsalve LN, Cerrutti P, Galvagno MA, Baldessari A. Rhodotorula minuta-mediated bioreduction of 1,2-diketones. BIOCATAL BIOTRANSFOR 2010. [DOI: 10.3109/10242420903515445] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Persson B, Hedlund J, Jörnvall H. Medium- and short-chain dehydrogenase/reductase gene and protein families : the MDR superfamily. Cell Mol Life Sci 2009; 65:3879-94. [PMID: 19011751 PMCID: PMC2792335 DOI: 10.1007/s00018-008-8587-z] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The MDR superfamily with ~350-residue subunits contains the classical liver alcohol dehydrogenase (ADH), quinone reductase, leukotriene B4 dehydrogenase and many more forms. ADH is a dimeric zinc metalloprotein and occurs as five different classes in humans, resulting from gene duplications during vertebrate evolution, the first one traced to ~500 MYA (million years ago) from an ancestral formaldehyde dehydrogenase line. Like many duplications at that time, it correlates with enzymogenesis of new activities, contributing to conditions for emergence of vertebrate land life from osseous fish. The speed of changes correlates with function, as do differential evolutionary patterns in separate segments. Subsequent recognitions now define at least 40 human MDR members in the Uniprot database (corresponding to 25 genes when excluding close homologues), and in all species at least 10888 entries. Overall, variability is large, but like for many dehydrogenases, subdivided into constant and variable forms, corresponding to household and emerging enzyme activities, respectively. This review covers basic facts and describes eight large MDR families and nine smaller families. Combined, they have specific substrates in metabolic pathways, some with wide substrate specificity, and several with little known functions.
Collapse
Affiliation(s)
- B Persson
- IFM Bioinformatics, Linköping University, Sweden.
| | | | | |
Collapse
|
13
|
Inhibition of a Zn(II)-containing enzyme, alcohol dehydrogenase, by anticancer antibiotics, mithramycin and chromomycin A3. J Biol Inorg Chem 2008; 14:347-59. [DOI: 10.1007/s00775-008-0451-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 10/20/2008] [Indexed: 11/26/2022]
|
14
|
Biehl R, Hoffmann B, Monkenbusch M, Falus P, Préost S, Merkel R, Richter D. Direct observation of correlated interdomain motion in alcohol dehydrogenase. PHYSICAL REVIEW LETTERS 2008; 101:138102. [PMID: 18851497 DOI: 10.1103/physrevlett.101.138102] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Indexed: 05/26/2023]
Abstract
Interdomain motions in proteins are essential to enable or promote biochemical function. Neutron spin-echo spectroscopy is used to directly observe the domain dynamics of the protein alcohol dehydrogenase. The collective motion of domains as revealed by their coherent form factor relates to the cleft opening dynamics between the binding and the catalytic domains enabling binding and release of the functional important cofactor. The cleft opening mode hardens as a result of an overall stiffening of the domain complex due to the binding of the cofactor.
Collapse
Affiliation(s)
- Ralf Biehl
- Institut für Festkörperforschung, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Markossian KA, Golub NV, Khanova HA, Levitsky DI, Poliansky NB, Muranov KO, Kurganov BI. Mechanism of thermal aggregation of yeast alcohol dehydrogenase I. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1286-93. [DOI: 10.1016/j.bbapap.2008.04.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 04/14/2008] [Accepted: 04/24/2008] [Indexed: 11/17/2022]
|
16
|
Brouns SJJ, Turnbull AP, Willemen HLDM, Akerboom J, van der Oost J. Crystal structure and biochemical properties of the D-arabinose dehydrogenase from Sulfolobus solfataricus. J Mol Biol 2007; 371:1249-60. [PMID: 17610898 DOI: 10.1016/j.jmb.2007.05.097] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 05/01/2007] [Accepted: 05/30/2007] [Indexed: 11/19/2022]
Abstract
Sulfolobus solfataricus metabolizes the five-carbon sugar d-arabinose to 2-oxoglutarate by an inducible pathway consisting of dehydrogenases and dehydratases. Here we report the crystal structure and biochemical properties of the first enzyme of this pathway: the d-arabinose dehydrogenase. The AraDH structure was solved to a resolution of 1.80 A by single-wavelength anomalous diffraction and phased using the two endogenous zinc ions per subunit. The structure revealed a catalytic and cofactor binding domain, typically present in mesophilic and thermophilic alcohol dehydrogenases. Cofactor modeling showed the presence of a phosphate binding pocket sequence motif (SRS-X2-H), which is likely to be responsible for the enzyme's preference for NADP+. The homo-tetrameric enzyme is specific for d-arabinose, l-fucose, l-galactose and d-ribose, which could be explained by the hydrogen bonding patterns of the C3 and C4 hydroxyl groups observed in substrate docking simulations. The enzyme optimally converts sugars at pH 8.2 and 91 degrees C, and displays a half-life of 42 and 26 min at 85 and 90 degrees C, respectively, indicating that the enzyme is thermostable at physiological operating temperatures of 80 degrees C. The structure represents the first crystal structure of an NADP+-dependent member of the medium-chain dehydrogenase/reductase (MDR) superfamily from Archaea.
Collapse
Affiliation(s)
- Stan J J Brouns
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Hesselink van Suchtelenweg 4, 6703 CT Wageningen, Netherlands.
| | | | | | | | | |
Collapse
|
17
|
Abstract
Homotetrameric proteins can assemble by several different pathways, but have only been observed to use one, in which two monomers associate to form a homodimer, and then two homodimers associate to form a homotetramer. To determine why this pathway should be so uniformly dominant, we have modeled the kinetics of tetramerization for the possible pathways as a function of the rate constants for each step. We have found that competition with the other pathways, in which homotetramers can be formed either by the association of two different types of homodimers or by the successive addition of monomers to homodimers and homotrimers, can cause substantial amounts of protein to be trapped as intermediates of the assembly pathway. We propose that this could lead to undesirable consequences for an organism, and that selective pressure may have caused homotetrameric proteins to evolve to assemble by a single pathway.
Collapse
Affiliation(s)
- Evan T Powers
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|
18
|
Leskovac V, Trivić S, Pericin D. The three zinc-containing alcohol dehydrogenases from baker's yeast, Saccharomyces cerevisiae. FEMS Yeast Res 2002; 2:481-94. [PMID: 12702265 DOI: 10.1111/j.1567-1364.2002.tb00116.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
This review is a summary of our current knowledge of the structure, function and mechanism of action of the three zinc-containing alcohol dehydrogenases, YADH-1, YADH-2 and YADH-3, in baker's yeast, Saccharomyces cerevisiae. The opening section deals with the substrate specificity of the enzymes, covering the steady-state kinetic data for its most known substrates. In the following sections, the kinetic mechanism for this enzyme is reported, along with the values of all rate constants in the mechanism. The complete primary structures of the three isoenzymes of YADH are given, and the model of the 3D structure of the active site is presented. All known artificial mutations in the primary structure of the YADH are covered in full and described in detail. Further, the chemical mechanism of action for YADH is presented along with the complement of steady-state and ligand-binding data supporting this mechanism. Finally, the bio-organic chemistry of the hydride-transfer reactions catalyzed by the enzyme is covered: this chemistry explains the narrow substrate specificity and the enantioselectivity of the yeast enzyme.
Collapse
Affiliation(s)
- Vladimir Leskovac
- Faculty of Technology, The University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Yugoslavia.
| | | | | |
Collapse
|
19
|
Cavaletto M, Pessione E, Vanni A, Giunta C. Improved resistance to transition metals of a cobalt-substituted alcohol dehydrogenase 1 from Saccharomyces cerevisiae. J Biotechnol 2001; 84:87-91. [PMID: 11035192 DOI: 10.1016/s0168-1656(00)00344-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cobalt-substituted alcohol dehydrogenase 1 was purified from a yeast culture of Saccharomyces cerevisiae. Its reactivity towards different transition metals was tested and compared with the native zinc enzyme. The cobalt enzyme displayed a catalytic efficiency 100-fold higher than that of the zinc enzyme. Copper, nickel and cadmium exerted a mixed-type inhibition, with a scale of inhibition efficiency: Cu(2+)>Ni(2+)>Cd(2+). In general, a higher resistance of the modified protein to the inhibitory action of transition metals was observed, with two orders of magnitude for copper I(50). The presence of nickel in the complexes enzyme-coenzyme-inhibitor-substrate resulted in a decrease of the ampholytic nature of the catalytic site. On the contrary, cadmium and copper exerted an enhancement of this parameter. Electrostatic or other types of interactions may be involved in conferring a good resistance in the basic pH range, making cobalt enzyme very suitable for biotechnological processes.
Collapse
Affiliation(s)
- M Cavaletto
- Dipartimento di Biologia Animale e dell'Uomo, Università di Torino, Via Accademia Albertina 13, 10123, Torino, Italy.
| | | | | | | |
Collapse
|
20
|
Abstract
Crystallization has recently emerged as a suitable process for the manufacture of biocatalysts in the form of cross-linked enzyme crystals (CLECs) or for the recovery of proteins from fermentation broths. In both instances it is essential to define conditions which control crystal size and habit, and that yield a reliable recovery of the active protein. Experiments to define the crystallization conditions usually depend on a factorial design (either incomplete or sparse matrix) or reverse screening techniques. In this work, we describe a simple procedure that allows the effect of three factors, for example protein concentration, precipitant concentration and pH, to be varied simultaneously and smoothly over a wide range. The results are mapped onto a simple triangular diagram where a 'window of crystallization' is immediately apparent, and that conveniently describes variations either in the crystal features, such as their yield, size, and habit, or in the recovery of biological activity. The approach is illustrated with two enzymes, yeast alcohol dehydrogenase (ADH I) and Candida rugosa lipase. For ADH the formation of two crystal habits (rod and hexagonal) could be controlled as a function of pH (6.5-10) and temperature (4-25 degrees C). At pH 7, in 10 to 16% w/v polyethylene glycol (PEG) 4000, only rod-shaped crystals formed whereas at pH 8, in 10 to 14% w/v PEG, only hexagonal crystals existed. For both enzymes, catalyst recovery was greatest at high crystallization agent concentrations and low protein concentration. For ADH, the greatest activity recovery was 87% whereas for the lipase crystals, by using 45% v/v 2-methyl-2,4-pentanediol (MPD) as the crystallization agent, a crystal recovery of 250 crystals per µl was obtained. For the lipase system, the use of crystal seeding was also shown to increase the crystal recovery by up to a factor of four. From the crystallization windows, the original conditions based on literature precedent (35% v/v MPD, 1 mM CaCl(2), 1.8 mg protein/ml) were altered (47.5% v/v MPD, 2 mM CaCl(2), 3 mg protein/ml). This led to an improved recovery of the lipase under conditions that scale reliably from 0.5 ml to 500 ml with no change in size, shape or recovery of the crystals themselves. Finally, these crystals were crosslinked with 5% v/v glutaraldehyde and mass and activity balances were calculated for the entire process of CLEC production. Up to 35% of the lipase activity present in the crude solid was finally recovered in the lipase CLECs after propan-2-ol fractionation, crystallization, and crosslinking.
Collapse
|
21
|
Vanni A, Pessione E, Anfossi L, Baggiani C, Cavaletto M, Gulmini M, Giunta C. Properties of a cobalt-reactivated form of yeast alcohol dehydrogenase. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1381-1177(99)00108-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
|
23
|
De Bolle X, Vinals C, Fastrez J, Feytmans E. Bivalent cations stabilize yeast alcohol dehydrogenase I. Biochem J 1997; 323 ( Pt 2):409-13. [PMID: 9163331 PMCID: PMC1218334 DOI: 10.1042/bj3230409] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The thermostability of yeast alcohol dehydrogenase (ADH) I is strongly dependent on the presence of NaCl, a salt that is almost neutral on the Hofmeister scale, which suggests that solvent-accessible electrostatic repulsion might play a role in the inactivation of the enzyme. Moreover, CaCl2 and MgCl2 are able to stabilize the enzyme at millimolar concentrations. Ca2+ stabilizes yeast ADH I by preventing the dissociation of the reduced form of the enzyme and by preventing the unfolding of the oxidized form of the enzyme. An analysis of several chimaeric ADHs suggests that Ca2+ is fixed by the Asp-236 and Glu-101 side chains in yeast ADH I, but that Ca2+ can be displaced by replacing Met-168 by an Arg residue, as suggested by a three-dimensional model of the enzyme structure. These results indicate that electrostatic repulsion can cause protein unfolding and/or dissociation. It is proposed that yeast ADH I binds Mg2+ in vivo.
Collapse
Affiliation(s)
- X De Bolle
- Laboratoire de Biologie Moléculaire Structurale, Unité de Recherche en Biologie Moléculaire, Facultés Universitaires Notre-Dame de la Paix, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | | | | | | |
Collapse
|
24
|
Chen YW, Dekker EE, Somerville RL. Functional analysis of E. coli threonine dehydrogenase by means of mutant isolation and characterization. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1253:208-14. [PMID: 8519804 DOI: 10.1016/0167-4838(95)00162-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The oxidation of L-threonine to 2-amino-ketobutyrate, as catalyzed by L-threonine dehydrogenase, is the first step in the major pathway for threonine catabolism in both eukaryotes and prokaryotes. Threonine dehydrogenase of E. coli has considerable amino-acid sequence homology with a number of Zn(2+)-containing, medium-chain alcohol dehydrogenases. In order to further explore structure/function interrelationships of E. coli threonine dehydrogenase, 35 alleles of tdh that imparted a no-growth or slow-growth phenotype on appropriate indicator media were isolated after mutagenesis with hydroxylamine. Within this collection, 14 mutants had single amino-acid changes that were divided into 4 groups: (a) amino-acid changes associated with proposed ligands to Zn2+; (b) a substitution of one of several conserved glycine residues; (c) mutations at the substrate or coenzyme binding site; (d) alterations that resulted in a change of charge near the active site. These findings uncover previously unidentified amino-acid residues that are important for threonine dehydrogenase catalysis and also indicate that the three-dimensional structure of tetrameric E. coli threonine dehydrogenase has considerable similarity with the dimeric horse liver alcohol dehydrogenase.
Collapse
Affiliation(s)
- Y W Chen
- Department of Biological Chemistry, University of Michigan, Ann Arbor 48109-0606, USA
| | | | | |
Collapse
|
25
|
De Bolle X, Vinals C, Prozzi D, Paquet JY, Leplae R, Depiereux E, Vandenhaute J, Feytmans E. Identification of residues potentially involved in the interactions between subunits in yeast alcohol dehydrogenases. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 231:214-9. [PMID: 7628473 DOI: 10.1111/j.1432-1033.1995.tb20689.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The lack of crystal structure for tetrameric yeast alcohol dehydrogenases (ADHs) has precluded, until now, the identification of the residues involved in subunit contacts. In order to address this question, we have characterized the thermal stability and dissociation propensity of native ADH I and ADH II isozymes as well as of several chimeric (ADH I-ADH II) enzymes. Three groups of substitutions affecting the thermostability have been identified among the 24 substitutions observed between isozymes I and II. The first group contains a Cys277-->Ser substitution, located at the interface between subunits in a three-dimensional model of ADH I, based on the crystallographic structure of the dimeric horse liver ADH. In the second group, the Asp236-->Asn substitution is located in the same interaction zone on the model. The stabilizing effect of this substitution can result from the removal of a charge repulsion between subunits. It is shown that the effect of these two groups of substitutions correlates with changes in dissociation propensities. The third group contains the Met168-->Arg substitution that increases the thermal stability, probably by the formation of an additional salt bridge between subunits through the putative interface. These data suggest that at least part of the subunit contacts observed in horse liver ADH are located at homologous positions in yeast ADHs.
Collapse
Affiliation(s)
- X De Bolle
- Département de Biologie, Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Eklund H, Ramaswamy S, Plapp BV, el-Ahmad M, Danielsson O, Höög JO, Jörnvall H. Crystallographic investigations of alcohol dehydrogenases. EXS 1994; 71:269-77. [PMID: 8032158 DOI: 10.1007/978-3-0348-7330-7_27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The structures of horse liver alcohol dehydrogenase class I in its apoenzyme form and in different ternary complexes have been determined at high resolution. The complex with NAD+ and the substrate analogue pentafluorobenzyl alcohol gives a detailed picture of the interactions in an enzyme-substrate complex. The alcohol is bound to the zinc and positioned so that the hydrogen atom can be directly transferred to the C4 atom of the nicotinamide ring. The structure of cod liver alcohol dehydrogenase with hybrid properties (functionally of class I but structurally overall closer to class III) has been determined by molecular replacement methods to 3 A resolution. Yeast alcohol dehydrogenase has been crystallized, and native data have been collected to 3 A resolution.
Collapse
Affiliation(s)
- H Eklund
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Uppsala
| | | | | | | | | | | | | |
Collapse
|