1
|
Armitage IM, Drakenberg T, Reilly B. Use of (113)Cd NMR to probe the native metal binding sites in metalloproteins: an overview. Met Ions Life Sci 2013; 11:117-44. [PMID: 23430773 PMCID: PMC5245840 DOI: 10.1007/978-94-007-5179-8_6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Our laboratories have actively published in this area for several years and the objective of this chapter is to present as comprehensive an overview as possible. Following a brief review of the basic principles associated with (113)Cd NMR methods, we will present the results from a thorough literature search for (113)Cd chemical shifts from metalloproteins. The updated (113)Cd chemical shift figure in this chapter will further illustrate the excellent correlation of the (113)Cd chemical shift with the nature of the coordinating ligands (N, O, S) and coordination number/geometry, reaffirming how this method can be used not only to identify the nature of the protein ligands in uncharacterized cases but also the dynamics at the metal binding site. Specific examples will be drawn from studies on alkaline phosphatase, Ca(2+) binding proteins, and metallothioneins.In the case of Escherichia coli alkaline phosphatase, a dimeric zinc metalloenzyme where a total of six metal ions (three per monomer) are involved directly or indirectly in providing the enzyme with maximal catalytic activity and structural stability, (113)Cd NMR, in conjunction with (13)C and (31)P NMR methods, were instrumental in separating out the function of each class of metal binding sites. Perhaps most importantly, these studies revealed the chemical basis for negative cooperativity that had been reported for this enzyme under metal deficient conditions. Also noteworthy was the fact that these NMR studies preceded the availability of the X-ray crystal structure.In the case of the calcium binding proteins, we will focus on two proteins: calbindin D(9k) and calmodulin. For calbindin D(9k) and its mutants, (113)Cd NMR has been useful both to follow actual changes in the metal binding sites and the cooperativity in the metal binding. Ligand binding to calmodulin has been studied extensively with (113)Cd NMR showing that the metal binding sites are not directly involved in the ligand binding. The (113)Cd chemical shifts are, however, exquisitely sensitive to minute changes in the metal ion environment.In the case of metallothionein, we will reflect upon how (113)Cd substitution and the establishment of specific Cd to Cys residue connectivity by proton-detected heteronuclear (1)H-(113)Cd multiple-quantum coherence methods (HMQC) was essential for the initial establishment of the 3D structure of metallothioneins, a protein family deficient in the regular secondary structural elements of α-helix and β-sheet and the first native protein identified with bound Cd. The (113)Cd NMR studies also enabled the characterization of the affinity of the individual sites for (113)Cd and, in competition experiments, for other divalent metal ions: Zn, Cu, and Hg.
Collapse
Affiliation(s)
- Ian M Armitage
- Department of Biochemistry, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
2
|
Mitsuda N, Hisabori T, Takeyasu K, Sato MH. VOZ; Isolation and Characterization of Novel Vascular Plant Transcription Factors with a One-Zinc Finger from Arabidopsis thaliana. ACTA ACUST UNITED AC 2004; 45:845-54. [PMID: 15295067 DOI: 10.1093/pcp/pch101] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
AbstractA 38-bp pollen-specific cis-acting region of the AVP1 gene is involved in the expression of the Arabidopsis thaliana V-PPase during pollen development. Here, we report the isolation and structural characterization of AtVOZ1 and AtVOZ2, novel transcription factors that bind to the 38-bp cis-acting region of A. thaliana V-PPase gene, AVP1. AtVOZ1 and AtVOZ2 show 53% amino acid sequence similarity. Homologs of AtVOZ1 and AtVOZ2 are found in various vascular plants as well as a moss, Physcomitrella patens. Promoter-β-glucuronidase reporter analysis shows that AtVOZ1 is specifically expressed in the phloem tissue and AtVOZ2 is strongly expressed in the root. In vivo transient effector-reporter analysis in A. thaliana suspension-cultured cells demonstrates that AtVOZ1 and AtVOZ2 function as transcriptional activators in the Arabidopsis cell. Two conserved regions termed Domain-A and Domain-B were identified from an alignment of AtVOZ proteins and their homologs of O. sativa and P. patens. AtVOZ2 binds as a dimer to the specific palindromic sequence, GCGTNx7ACGC, with Domain-B, which is comprised of a functional novel zinc coordinating motif and a conserved basic region. Domain-B is shown to function as both the DNA-binding and the dimerization domains of AtVOZ2. From highly the conservative nature among all identified VOZ proteins, we conclude that Domain-B is responsible for the DNA binding and dimerization of all VOZ-family proteins and designate it as the VOZ-domain.
Collapse
Affiliation(s)
- Nobutaka Mitsuda
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshidanihonmatsu, Sakyo-ku, Kyoto, 606-8501 Japan
| | | | | | | |
Collapse
|
3
|
Felenbok B, Flipphi M, Nikolaev I. Ethanol catabolism in Aspergillus nidulans: a model system for studying gene regulation. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 69:149-204. [PMID: 11550794 DOI: 10.1016/s0079-6603(01)69047-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This article reviews our knowledge of the ethanol utilization pathway (alc system) in the hyphal fungus Aspergillus nidulans. We discuss the progress made over the past decade in elucidating the two regulatory circuits controlling ethanol catabolism at the level of transcription, specific induction, and carbon catabolite repression, and show how their interplay modulates the utilization of nutrient carbon sources. The mechanisms featuring in this regulation are presented and their modes of action are discussed: First, AlcR, the transcriptional activator, which demonstrates quite remarkable structural features and an original mode of action; second, the physiological inducer acetaldehyde, whose intracellular accumulation induces the alc genes and thereby a catabolic flux while avoiding intoxification; third, CreA, the transcriptional repressor mediating carbon catabolite repression in A. nidulans, which acts in different ways on the various alc genes; Fourth, the promoters of the structural genes for alcohol dehydrogenase (alcA) and aldehyde dehydrogenase (aldA) and the regulatory alcR gene, which exhibit exceptional strength compared to other genes of the respective classes. alc gene expression depends on the number and localization of regulatory cis-acting elements and on the particular interaction between the two regulator proteins, AlcR and CreA, binding to them. All these characteristics make the ethanol regulon a suitable system for induced expression of heterologous protein in filamentous fungi.
Collapse
Affiliation(s)
- B Felenbok
- Institut de Génétique et Microbiologie, Université Paris-Sud, Centre Universitaire d'Orsay, France.
| | | | | |
Collapse
|
4
|
Cahuzac B, Cerdan R, Felenbok B, Guittet E. The solution structure of an AlcR-DNA complex sheds light onto the unique tight and monomeric DNA binding of a Zn(2)Cys(6) protein. Structure 2001; 9:827-36. [PMID: 11566132 DOI: 10.1016/s0969-2126(01)00640-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND In Aspergillus nidulans, the transcription activator AlcR mediates specific induction of a number of the genes of the alc cluster. This cluster includes genes involved in the oxidation of ethanol and other alcohols to acetate. The pattern of binding and of transactivation of AlcR is unique within the Zn(2)Cys(6) family. The structural bases for these specificities have not been analyzed at the atomic level until now. RESULTS We have used NMR spectroscopy and restrained molecular dynamics to determine a set of structures of the AlcR DNA binding domain [AlcR(1-60)] in complex with a 10-mer DNA duplex. Analysis of the structures reveals specific interactions between AlcR and DNA common to the other known zinc clusters. In addition, the involvement of the N-terminal residues upstream of the AlcR zinc cluster in DNA binding is clearly highlighted, and the pivotal role of R6 is confirmed. Totally unprecedented specific and nonspecific contacts of two additional regions of the protein with the DNA are demonstrated. The differences with the available crystallographic structures of other zinc binuclear cluster proteins-DNA complexes are analyzed. CONCLUSIONS The structures of the AlcR(1-60)-DNA complex provide the basis for a better understanding of some of the specificities of the AlcR system: the DNA consensus recognition sequence--usually the triplet CGG--is extended to five base pairs, AlcR acts as a monomer, and additional contacts inside and outside the DNA binding domain in the major and minor groove are observed. These extensive interactions stabilize the AlcR monomer to its cognate DNA site.
Collapse
Affiliation(s)
- B Cahuzac
- Laboratoire de Résonance Magnétique Nucléaire, ICSN-CNRS, 1 Avenue de la Terrasse, Gif-sur-Yvette F-91190, France
| | | | | | | |
Collapse
|
5
|
Lombardía LJ, Cadahía-Rodríguez JL, Freire-Picos MA, González-Siso MI, Rodríguez-Torres AM, Cerdán ME. Transcript analysis of 203 novel genes from Saccharomyces cerevisiae in hap1 and rox1 mutant backgrounds. Genome 2000; 43:881-6. [PMID: 11081979 DOI: 10.1139/g00-049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hap1 and Rox1 are transcriptional regulators that bind regulatory sites in the promoters of oxygen-regulated genes in Saccharomyces cerevisiae. Hap1 is a heme-responsive activator of genes induced in aerobic conditions and Rox1 is a repressor of hypoxic genes in aerobic conditions. We have studied transcriptional regulation of a pool of 203 open reading frames (ORFs) from chromosomes IV, VII, and XIV in wild-type, hap1, and rox1 mutant genetic backgrounds in an attempt to extend the family of oxygen and heme regulated genes. Only three ORFs are significantly repressed by Rox1 but they cannot be considered as typical hypoxic genes because they are not overexpressed during hypoxia.
Collapse
Affiliation(s)
- L J Lombardía
- Departamento de Biología Celular y Molecular, Universidad de La Coruña, Spain
| | | | | | | | | | | |
Collapse
|
6
|
Polevoda B, Martzen MR, Das B, Phizicky EM, Sherman F. Cytochrome c methyltransferase, Ctm1p, of yeast. J Biol Chem 2000; 275:20508-13. [PMID: 10791961 DOI: 10.1074/jbc.m001891200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochromes c from plants and fungi, but not higher animals, contain methylated lysine residues at specific positions, including for example, the trimethylated lysine at position 72 in iso-1-cytochrome c of the yeast Saccharomyces cerevisiae. Testing of 6,144 strains of S. cerevisiae, each overproducing a different open reading frame fused to glutathione S-transferase, previously revealed that YHR109w was associated with an activity that methylated horse cytochrome c. We show here that this open reading frame, denoted Ctm1p, is specifically responsible for trimethylating lysine 72 of iso-1-cytochrome c. Unmethylated forms of cytochrome c but not other proteins or nucleic acids are methylated in vitro by Ctm1p produced in S. cerevisiae or Escherichia coli. Iso-1-cytochrome c purified from a ctm1-Delta strain is not trimethylated in vivo, whereas the K72R mutant form, or the trimethylated Lys-72 form of iso-1-cytochrome c, are not significantly methylated by Ctm1p in vitro. Like apocytochrome c, but in contrast to holocytochrome c, Ctm lp is located in the cytosol, consistent with the view that the natural substrate is apocytochrome c. The ctm1-Delta strain lacking the methyltransferase did not exhibit any growth defect on a variety of media and growth conditions, and the unmethylated iso-1-cytochrome c was produced at the normal level and exhibited the normal activity in vivo. Ctm1p and cytochrome c were coordinately regulated during anaerobic to aerobic transition, a finding consistent with the view that this methyltransferase evolved to act on cytochrome c.
Collapse
Affiliation(s)
- B Polevoda
- Department of Biochemistry and Biophysics, University of Rochester Medical School, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
7
|
Cerdan R, Cahuzac B, Félenbok B, Guittet E. NMR solution structure of AlcR (1-60) provides insight in the unusual DNA binding properties of this zinc binuclear cluster protein. J Mol Biol 2000; 295:729-36. [PMID: 10656785 DOI: 10.1006/jmbi.1999.3417] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The three-dimensional structure of the DNA-binding domain (residues 1-60) of the ethanol regulon transcription factor AlcR from Aspergillus nidulans has been solved by NMR. This domain belongs to the zinc binuclear cluster class. Although the core of the protein is similar to previously characterized structures, consisting of two helices organized around a Zn(2)Cys(6 )motif, the present structure presents important variations, among them the presence of two supplementary helices. This structure gives new insight into the understanding of the AlcR specificities in DNA binding such as longer consensus half-sites, in vitro monomeric binding but in vivo multiple repeat transcriptional activation, either in direct or inverse orientations. The presence of additional contacts of the protein with its DNA target can be predicted from a model proposed for the interaction with the consensus DNA target. The clustering of accessible negative charges on helix 2 delineates a possible interaction site for other determinants of the transcriptional machinery, responsible for the fine tuning of the selection of the AlcR cognate sites.
Collapse
Affiliation(s)
- R Cerdan
- Laboratoire de RMN, ICSN-CNRS, 1 av. de la Terrasse, Gif-sur-Yvette, F-91190, France
| | | | | | | |
Collapse
|
8
|
Junker M, Rodgers KK, Coleman JE. Zinc as a structural and folding element of proteins which interact with DNA. Inorganica Chim Acta 1998. [DOI: 10.1016/s0020-1693(98)00128-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Swaminathan K, Flynn P, Reece RJ, Marmorstein R. Crystal structure of a PUT3-DNA complex reveals a novel mechanism for DNA recognition by a protein containing a Zn2Cys6 binuclear cluster. NATURE STRUCTURAL BIOLOGY 1997; 4:751-9. [PMID: 9303004 DOI: 10.1038/nsb0997-751] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PUT3 is a member of a family of at least 79 fungal transcription factors that contain a six-cysteine, two-zinc domain called a 'Zn2Cys6 binuclear cluster'. We have determined the crystal structure of the DNA binding region from the PUT3 protein bound to its cognate DNA target. The structure reveals that the PUT3 homodimer is bound asymmetrically to the DNA site. This asymmetry orients a beta-strand from one protein subunit into the minor groove of the DNA resulting in a partial amino acid-base pair intercalation and extensive direct and water-mediated protein interactions with the minor groove of the DNA. These interactions facilitate a sequence dependent kink at the centre of the DNA site and specify the intervening base pairs separating two DNA half-sites that are contacted in the DNA major groove. A comparison with the GAL4-DNA and PPR1-DNA complexes shows how a family of related DNA binding proteins can use a diverse set of mechanisms to discriminate between the base pairs separating conserved DNA half-sites.
Collapse
Affiliation(s)
- K Swaminathan
- Wistar Institute, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | |
Collapse
|
10
|
|
11
|
Walters KJ, Dayie KT, Reece RJ, Ptashne M, Wagner G. Structure and mobility of the PUT3 dimer. NATURE STRUCTURAL BIOLOGY 1997; 4:744-50. [PMID: 9303003 DOI: 10.1038/nsb0997-744] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The solution structure and backbone dynamics of the transcriptional activator PUT3 (31-100) has been characterized using NMR spectroscopy. PUT3 (31-100) contains three distinct domains: a cysteine zinc cluster, linker, and dimerization domain. The cysteine zinc cluster of PUT3 closely resembles the solution structure of GAL4, while the dimerization domain forms a long coiled-coil similar to that observed in the crystal structures of GAL4 and PPR1. However, the residues at the N-terminal end of the coiled-coil behave very differently in each of these proteins. A comparison of the structural elements within this region provides a model for the DNA binding specificity of these proteins. Furthermore, we have characterized the dynamics of PUT3 to find that the zinc cluster and dimerization domains have very diverse dynamics in solution. The dimerization domain behaves as a large protein, while the peripheral cysteine zinc clusters have dynamic properties similar to small proteins.
Collapse
Affiliation(s)
- K J Walters
- Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | |
Collapse
|
12
|
Vuidepot AL, Bontems F, Gervais M, Guiard B, Shechter E, Lallemand JY. NMR analysis of CYP1(HAP1) DNA binding domain-CYC1 upstream activation sequence interactions: recognition of a CGG trinucleotide and of an additional thymine 5 bp downstream by the zinc cluster and the N-terminal extremity of the protein. Nucleic Acids Res 1997; 25:3042-50. [PMID: 9224603 PMCID: PMC146857 DOI: 10.1093/nar/25.15.3042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The DNA binding domain of the yeast transcriptional activator CYP1(HAP1) contains a zinc-cluster structure. The structures of the DNA binding domain-DNA complexes of two other zinc-cluster proteins (GAL4 and PPR1) have been studied by X-ray crystallography. Their binding domains present, besides the zinc cluster, a short linker peptide and a dimerization element. They recognize, as homodimers, two rotationally symmetric CGG trinucleotides, the linker peptide and the dimerization element playing a crucial role in binding specificity. Surprisingly, CYP1 recognizes degenerate forms of a direct repeat, CGGnnnTAnCGGnnnTA, and the role of its linker is under discussion. To better understand the binding specificity of CYP1, we have studied, by NMR, the interaction between the CYP1(55-126) peptide and two DNA fragments derived from the CYC1 upstream activation sequence 1B. Our data indicate that CYP1(55-126) interacts with a CGG and with a thymine 5 bp downstream. The CGG trinucleotide is recognized by the zinc cluster in the major groove, as for GAL4 and PPR1, and the thymine is bound in the minor groove by the N-terminal region, which possesses a basic stretch of arginyl and lysyl residues. This suggests that the CYP1(55-126) N-terminal region could play a role in the affinity and/or specificity of the interaction with its DNA targets, in contrast to GAL4 and PPR1.
Collapse
Affiliation(s)
- A L Vuidepot
- Groupe de RMN, DCSO, Ecole Polytechnique, F91128 Palaiseau, France
| | | | | | | | | | | |
Collapse
|
13
|
Bellon SF, Rodgers KK, Schatz DG, Coleman JE, Steitz TA. Crystal structure of the RAG1 dimerization domain reveals multiple zinc-binding motifs including a novel zinc binuclear cluster. NATURE STRUCTURAL BIOLOGY 1997; 4:586-91. [PMID: 9228952 DOI: 10.1038/nsb0797-586] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The crystal structure of the dimerization domain of the V(D)J recombination-activating protein, RAG1, was solved using zinc anomalous scattering. The structure reveals an unusual combination of multi-class zinc-binding motifs, including a zinc RING finger and a C2H2 zinc finger, that together from a single structural domain. The domain also contains a unique zinc binuclear cluster in place of a normally mononuclear zinc site in the RING finger. Together, four zinc ions help organize the entire domain, including the two helices that form the dimer interface.
Collapse
Affiliation(s)
- S F Bellon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| | | | | | | | | |
Collapse
|
14
|
Lenouvel F, Nikolaev I, Felenbok B. In vitro recognition of specific DNA targets by AlcR, a zinc binuclear cluster activator different from the other proteins of this class. J Biol Chem 1997; 272:15521-6. [PMID: 9182587 DOI: 10.1074/jbc.272.24.15521] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
AlcR is the transactivator mediating transcriptional induction of the alc gene cluster in Aspergillus nidulans. The AlcR DNA-binding domain consists of a zinc binuclear cluster different from the other members of the Zn2Cys6 family by several features. In particular, it is able to bind to symmetric and asymmetric sites with the same affinity, with both sites being functional in A. nidulans. Here, we show that unlike the other proteins of the Zn2Cys6 binuclear cluster family, AlcR binds most probably as a monomer to its cognate targets. Two molecules of the AlcR protein can simultaneously bind in a noncooperative manner to inverted repeats. The consensus core has been determined precisely (5'-CCGCN-3'), and the AlcR-binding site in the aldA promoter has been localized. The sequence downstream of the zinc cluster is necessary for high affinity binding. Furthermore, our data show that the use of the carrier protein glutathione S-transferase in AlcR binding experiments introduces an important bias in the recognition of DNA sites due to its tertiary dimeric structure.
Collapse
Affiliation(s)
- F Lenouvel
- Institut de Génétique et Microbiologie, Université Paris-Sud, URA CNRS D 2225, Bâtiment 409, Centre Universitaire d'Orsay, F-91405 Orsay Cedex, France
| | | | | |
Collapse
|
15
|
Todd RB, Andrianopoulos A. Evolution of a fungal regulatory gene family: the Zn(II)2Cys6 binuclear cluster DNA binding motif. Fungal Genet Biol 1997; 21:388-405. [PMID: 9290251 DOI: 10.1006/fgbi.1997.0993] [Citation(s) in RCA: 206] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The coevolution of DNA binding proteins and their cognate binding sites is essential for the maintenance of function. As a result, comparison of DNA binding proteins of unknown function in one species with characterized DNA binding proteins in another can identify potential targets and functions. The Zn(II)2Cys6 (or C6 zinc) binuclear cluster DNA binding domain has thus far been identified exclusively in fungal proteins, generally transcriptional regulators, and there are more than 80 known or predicted proteins which contain this motif, the best characterized of which are GAL4, PPR1, LEU3, HAP1, LAC9, and PUT3. Here we review all known proteins containing the Zn(II)2Cys6 motif, along with their function, DNA binding, dimerization, and zinc(II) coordination properties and DNA binding sites. In addition, we have identified all of the Zn(II)2Cys6 motif-containing proteins in the sequence databases, including a large number with unknown function from the completed Saccharomyces cerevisiae and ongoing Schizosaccharomyces pombe genome projects, and examined the phylogenetic relationships of all the Zn(II)2Cys6 motifs from these proteins. Based on these relationships, we have assigned potential functions to a number of these unknown proteins.
Collapse
Affiliation(s)
- R B Todd
- Department of Genetics, University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
16
|
Cerdan R, Collin D, Lenouvel F, Felenbok B, Guittet E. The Aspergillus nidulans transcription factor AlcR forms a stable complex with its half-site DNA: a NMR study. FEBS Lett 1997; 408:235-40. [PMID: 9187374 DOI: 10.1016/s0014-5793(97)00430-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Aspergillus nidulans transcription factor AlcR is shown by NMR and gel retardation assay to form a stable complex with oligonucleotide sequences comprising the consensus half-site 5'-TGCGG-3'. Apparent microM dissociation constants are evaluated by both methods. The measured lifetime of the complex is 74+/-7 ms at 20 degrees C with the following DNA sequence: 5'-C1G2T3G4C5G6G7A8T9C10-3'. The major chemical shift variations upon binding involve both the two adjacent GC pairs (G6 and G7) and, clearly, the AT pairs at both ends of the consensus sequence (T3 and A8), suggesting additional contacts of the protein with the DNA. This extensive and strong interaction with the half-site is another example of the variability in contacts of the fungal DNA-binding proteins containing Zn2Cys6 domains with their consensus sites. It is the first demonstration that a binuclear cluster protein can bind to DNA as a monomer with strong affinity.
Collapse
Affiliation(s)
- R Cerdan
- Laboratoire de RMN, ICSN-CNRS, Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
17
|
Näit-Kaoudjt R, Williams R, Guiard B, Gervais M. Some DNA targets of the yeast CYP1 transcriptional activator are functionally asymmetric--evidence of two half-sites with different affinities. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 244:301-9. [PMID: 9118994 DOI: 10.1111/j.1432-1033.1997.00301.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
CYP1 protein is a yeast transcriptional regulator which contains a zinc cluster in its DNA-binding domain. It was recently shown by selecting random CYP1 binding sites that CYP1 protein recognizes with a higher affinity targets containing the CGGNNNTANCGG consensus sequence. Notably, this ideal sequence is however not found in wild-type CYP1 target sites. In order to investigate how CYP1 protein actually binds to its targets, mutations were introduced in three of them (UAS1-A/CYC1, UAS1-A/CYB2, UAS/CYC7) and the consequences towards the binding of purified CYP1-(1-200)-peptide were analyzed. Our data support the following conclusions: (a) When the sequence element contains two CGGs and no TA, both CGGs are essential for binding. (b) If the sequence element contains only the right CGG and the TA, both are sufficient but indispensable for the binding of CYP1. (c) When two CGCs and the TA are present, the right CGC, and not the left one, is essential for the binding of CYP1. (d) CYP1-(1-200)-peptide is usually a monomer in solution but binds DNA as a dimer. Finally, we found evidence for the presence of two half-sites with different measured affinities in the asymmetric sequences of some CYP1 targets.
Collapse
Affiliation(s)
- R Näit-Kaoudjt
- Centre de Génétique Moléculaire, Laboratoire propre du Centre Nationalde la Recherche Scientifique associé à l'Universite Pierre etMarie Curie, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|