1
|
Hollar A, Bursey H, Jabbari H. Pseudoknots in RNA Structure Prediction. Curr Protoc 2023; 3:e661. [PMID: 36779804 DOI: 10.1002/cpz1.661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
RNA molecules play active roles in the cell and are important for numerous applications in biotechnology and medicine. The function of an RNA molecule stems from its structure. RNA structure determination is time consuming, challenging, and expensive using experimental methods. Thus, much research has been directed at RNA structure prediction through computational means. Many of these methods focus primarily on the secondary structure of the molecule, ignoring the possibility of pseudoknotted structures. However, pseudoknots are known to play functional roles in many RNA molecules or in their method of interaction with other molecules. Improving the accuracy and efficiency of computational methods that predict pseudoknots is an ongoing challenge for single RNA molecules, RNA-RNA interactions, and RNA-protein interactions. To improve the accuracy of prediction, many methods focus on specific applications while restricting the length and the class of the pseudoknotted structures they can identify. In recent years, computational methods for structure prediction have begun to catch up with the impressive developments seen in biotechnology. Here, we provide a non-comprehensive overview of available pseudoknot prediction methods and their best-use cases. © 2023 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Andrew Hollar
- Department of Computer Science, University of Victoria, Victoria, Canada
| | - Hunter Bursey
- Department of Computer Science, University of Victoria, Victoria, Canada
| | - Hosna Jabbari
- Department of Computer Science, University of Victoria, Victoria, Canada
| |
Collapse
|
2
|
Saon MS, Kirkpatrick CC, Znosko BM. Identification and characterization of RNA pentaloop sequence families. NAR Genom Bioinform 2023; 5:lqac102. [PMID: 36632613 PMCID: PMC9830547 DOI: 10.1093/nargab/lqac102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/28/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
One of the current methods for predicting RNA tertiary structure is fragment-based homology, which predicts tertiary structure from secondary structure. For a successful prediction, this method requires a library of the tertiary structures of small motifs clipped from previously solved RNA 3D structures. Because of the limited number of available tertiary structures, it is not practical to find structures for all sequences of all motifs. Identifying sequence families for motifs can fill the gaps because all sequences within a family are expected to have similar structural features. Currently, a collection of well-characterized sequence families has been identified for tetraloops. Because of their prevalence and biological functions, pentaloop structures should also be well-characterized. In this study, 10 pentaloop sequence families are identified. For each family, the common and distinguishing structural features are highlighted. These sequence families can be used to predict the tertiary structure of pentaloop sequences for which a solved structure is not available.
Collapse
Affiliation(s)
- Md Sharear Saon
- Department of Chemistry, Saint Louis University, Saint Louis, MO 63103, USA
| | | | - Brent M Znosko
- To whom correspondence should be addressed. Tel: +1 314 977 8567; Fax: +1 314 977 2521;
| |
Collapse
|
3
|
Saon MS, Znosko BM. Thermodynamic characterization of naturally occurring RNA pentaloops. RNA (NEW YORK, N.Y.) 2022; 28:832-841. [PMID: 35318243 PMCID: PMC9074901 DOI: 10.1261/rna.078915.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 03/02/2022] [Indexed: 06/03/2023]
Abstract
RNA folding is hierarchical; therefore, predicting RNA secondary structure from sequence is an intermediate step in predicting tertiary structure. Secondary structure prediction is based on a nearest neighbor model using free energy minimization. To improve secondary structure prediction, all types of naturally occurring secondary structure motifs need to be thermodynamically characterized. However, not all secondary structure motifs are well characterized. Pentaloops, the second most abundant hairpin size, is one such uncharacterized motif. In fact, the current thermodynamic model used to predict the stability of pentaloops was derived from a small data set of pentaloops and from data for other hairpins of different sizes. Here, the most commonly occurring pentaloops were identified and optically melted. New experimental data for 22 pentaloop sequences were combined with previously published data for nine pentaloop sequences. Using linear regression, a pentaloop-specific model was derived. This new model is simpler and more accurate than the current model. The new experimental data and improved model can be incorporated into software that is used to predict RNA secondary structure from sequence.
Collapse
Affiliation(s)
- Md Sharear Saon
- Department of Chemistry, Saint Louis University, Saint Louis, Missouri 63103, USA
| | - Brent M Znosko
- Department of Chemistry, Saint Louis University, Saint Louis, Missouri 63103, USA
| |
Collapse
|
4
|
Joo M, Yeom JH, Choi Y, Jun H, Song W, Kim HL, Lee K, Shin E. Specialised ribosomes as versatile regulators of gene expression. RNA Biol 2022; 19:1103-1114. [PMID: 36255182 PMCID: PMC9586635 DOI: 10.1080/15476286.2022.2135299] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The ribosome has long been thought to be a homogeneous cellular machine that constitutively and globally synthesises proteins from mRNA. However, recent studies have revealed that ribosomes are highly heterogeneous, dynamic macromolecular complexes with specialised roles in translational regulation in many organisms across the kingdoms. In this review, we summarise the current understanding of ribosome heterogeneity and the specialised functions of heterogeneous ribosomes. We also discuss specialised translation systems that utilise orthogonal ribosomes.
Collapse
Affiliation(s)
- Minju Joo
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Ji-Hyun Yeom
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Younkyung Choi
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Hyeon Jun
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Wooseok Song
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Hyun-Lee Kim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Eunkyoung Shin
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Prossliner T, Gerdes K, Sørensen MA, Winther KS. Hibernation factors directly block ribonucleases from entering the ribosome in response to starvation. Nucleic Acids Res 2021; 49:2226-2239. [PMID: 33503254 PMCID: PMC7913689 DOI: 10.1093/nar/gkab017] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/03/2021] [Accepted: 01/11/2021] [Indexed: 11/18/2022] Open
Abstract
Ribosome hibernation is a universal translation stress response found in bacteria as well as plant plastids. The term was coined almost two decades ago and despite recent insights including detailed cryo-EM structures, the physiological role and underlying molecular mechanism of ribosome hibernation has remained unclear. Here, we demonstrate that Escherichia coli hibernation factors RMF, HPF and RaiA (HFs) concurrently confer ribosome hibernation. In response to carbon starvation and resulting growth arrest, we observe that HFs protect ribosomes at the initial stage of starvation. Consistently, a deletion mutant lacking all three factors (ΔHF) is severely inhibited in regrowth from starvation. ΔHF cells increasingly accumulate 70S ribosomes harbouring fragmented rRNA, while rRNA in wild-type 100S dimers is intact. RNA fragmentation is observed to specifically occur at HF-associated sites in 16S rRNA of assembled 70S ribosomes. Surprisingly, degradation of the 16S rRNA 3′-end is decreased in cells lacking conserved endoribonuclease YbeY and exoribonuclease RNase R suggesting that HFs directly block these ribonucleases from accessing target sites in the ribosome.
Collapse
Affiliation(s)
- Thomas Prossliner
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | | | - Michael Askvad Sørensen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | | |
Collapse
|
6
|
Song W, Joo M, Yeom JH, Shin E, Lee M, Choi HK, Hwang J, Kim YI, Seo R, Lee JE, Moore CJ, Kim YH, Eyun SI, Hahn Y, Bae J, Lee K. Divergent rRNAs as regulators of gene expression at the ribosome level. Nat Microbiol 2019; 4:515-526. [DOI: 10.1038/s41564-018-0341-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/05/2018] [Indexed: 01/21/2023]
|
7
|
Chiu JKH, Dillon TS, Chen YPP. Large-scale frequent stem pattern mining in RNA families. J Theor Biol 2018; 455:131-139. [PMID: 30036526 DOI: 10.1016/j.jtbi.2018.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 11/19/2022]
Abstract
Functionally similar non-coding RNAs are expected to be similar in certain regions of their secondary structures. These similar regions are called common structure motifs, and are structurally conserved throughout evolution to maintain their functional roles. Common structure motif identification is one of the critical tasks in RNA secondary structure analysis. Nevertheless, current approaches suffer several limitations, and/or do not scale with both structure size and the number of input secondary structures. In this work, we present a method to transform the conserved base pair stems into transaction items and apply frequent itemset mining to identify common structure motifs existing in a majority of input structures. Our experimental results on telomerase and ribosomal RNA secondary structures report frequent stem patterns that are of biological significance. Moreover, the algorithms utilized in our method are scalable and frequent stem patterns can be identified efficiently among many large structures.
Collapse
Affiliation(s)
- Jimmy Ka Ho Chiu
- Department of Computer Science and Information, Technology, La Trobe University, Melbourne VIC 3086, Australia.
| | - Tharam S Dillon
- Department of Computer Science and Information, Technology, La Trobe University, Melbourne VIC 3086, Australia.
| | - Yi-Ping Phoebe Chen
- Department of Computer Science and Information, Technology, La Trobe University, Melbourne VIC 3086, Australia.
| |
Collapse
|
8
|
Luo J, Liu L, Venkateswaran S, Song Q, Zhou X. RPI-Bind: a structure-based method for accurate identification of RNA-protein binding sites. Sci Rep 2017; 7:614. [PMID: 28377624 PMCID: PMC5429624 DOI: 10.1038/s41598-017-00795-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/13/2017] [Indexed: 01/11/2023] Open
Abstract
RNA and protein interactions play crucial roles in multiple biological processes, while these interactions are significantly influenced by the structures and sequences of protein and RNA molecules. In this study, we first performed an analysis of RNA-protein interacting complexes, and identified interface properties of sequences and structures, which reveal the diverse nature of the binding sites. With the observations, we built a three-step prediction model, namely RPI-Bind, for the identification of RNA-protein binding regions using the sequences and structures of both proteins and RNAs. The three steps include 1) the prediction of RNA binding regions on protein, 2) the prediction of protein binding regions on RNA, and 3) the prediction of interacting regions on both RNA and protein simultaneously, with the results from steps 1) and 2). Compared with existing methods, most of which employ only sequences, our model significantly improves the prediction accuracy at each of the three steps. Especially, our model outperforms the catRAPID by >20% at the 3rd step. All of these results indicate the importance of structures in RNA-protein interactions, and suggest that the RPI-Bind model is a powerful theoretical framework for studying RNA-protein interactions.
Collapse
Affiliation(s)
- Jiesi Luo
- Center for Bioinformatics and Systems Biology and Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Liang Liu
- Center for Bioinformatics and Systems Biology and Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Suresh Venkateswaran
- Center for Bioinformatics and Systems Biology and Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Qianqian Song
- Center for Bioinformatics and Systems Biology and Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Xiaobo Zhou
- Center for Bioinformatics and Systems Biology and Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
9
|
Chiu JKH, Chen YPP. A comprehensive study of RNA secondary structure alignment algorithms. Brief Bioinform 2017; 18:291-305. [PMID: 26984617 DOI: 10.1093/bib/bbw009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Indexed: 01/04/2023] Open
Abstract
RNA secondary structure alignment has received more attention since the discovery of the structure-function relationships in some non-protein-encoding RNAs. However, unlike the pure sequence alignment problem, which has been solved in polynomial time, secondary structure alignment incorporates the base pairings as another information dimension in addition to the base sequence. This problem therefore becomes more challenging. In this study, we classify the selected approaches, and algorithmically illustrate how these methods address the alignment problems with different structure types. Other features such as the types of base pair edit operations supported and the time complexity are also compared.
Collapse
Affiliation(s)
- Jimmy Ka Ho Chiu
- Department of Computer Science and Information Technology, La Trobe University, Melbourne, Victoria, Australia
| | - Yi-Ping Phoebe Chen
- Department of Computer Science and Information Technology, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Baker KA, Lamichhane R, Lamichhane T, Rueda D, Cunningham PR. Protein-RNA Dynamics in the Central Junction Control 30S Ribosome Assembly. J Mol Biol 2016; 428:3615-31. [PMID: 27192112 DOI: 10.1016/j.jmb.2016.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/02/2016] [Accepted: 05/07/2016] [Indexed: 11/18/2022]
Abstract
Interactions between ribosomal proteins (rproteins) and ribosomal RNA (rRNA) facilitate the formation of functional ribosomes. S15 is a central domain primary binding protein that has been shown to trigger a cascade of conformational changes in 16S rRNA, forming the functional structure of the central domain. Previous biochemical and structural studies in vitro have revealed that S15 binds a three-way junction of helices 20, 21, and 22, including nucleotides 652-654 and 752-754. All junction nucleotides except 653 are highly conserved among the Bacteria. To identify functionally important motifs within the junction, we subjected nucleotides 652-654 and 752-754 to saturation mutagenesis and selected and analyzed functional mutants. Only 64 mutants with greater than 10% ribosome function in vivo were isolated. S15 overexpression complemented mutations in the junction loop in each of the partially active mutants, although mutations that produced inactive ribosomes were not complemented by overexpression of S15. Single-molecule Förster or fluorescence resonance energy transfer (smFRET) was used to study the Mg(2+)- and S15-induced conformational dynamics of selected junction mutants. Comparison of the structural dynamics of these mutants with the wild type in the presence and absence of S15 revealed specific sequence and structural motifs in the central junction that are important in ribosome function.
Collapse
MESH Headings
- DNA Mutational Analysis
- Escherichia coli/chemistry
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Fluorescence Resonance Energy Transfer
- Genetic Complementation Test
- Macromolecular Substances/metabolism
- Magnesium/metabolism
- Models, Biological
- Models, Molecular
- Protein Binding
- Protein Conformation
- Protein Interaction Maps
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Ribosomal Proteins/metabolism
- Ribosome Subunits, Small, Bacterial/metabolism
Collapse
Affiliation(s)
- Kris Ann Baker
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Rajan Lamichhane
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | - Tek Lamichhane
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA; Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | - David Rueda
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA; Section of Virology, Department of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK; Single Molecule Imaging Group, MRC Clinical Sciences Centre (CSC), Du Cane Road, London W12 0NN, UK.
| | - Philip R Cunningham
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
11
|
Jabbari H, Aminpour M, Montemagno C. Computational Approaches to Nucleic Acid Origami. ACS COMBINATORIAL SCIENCE 2015; 17:535-47. [PMID: 26348196 DOI: 10.1021/acscombsci.5b00079] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recent advances in experimental DNA origami have dramatically expanded the horizon of DNA nanotechnology. Complex 3D suprastructures have been designed and developed using DNA origami with applications in biomaterial science, nanomedicine, nanorobotics, and molecular computation. Ribonucleic acid (RNA) origami has recently been realized as a new approach. Similar to DNA, RNA molecules can be designed to form complex 3D structures through complementary base pairings. RNA origami structures are, however, more compact and more thermodynamically stable due to RNA's non-canonical base pairing and tertiary interactions. With all these advantages, the development of RNA origami lags behind DNA origami by a large gap. Furthermore, although computational methods have proven to be effective in designing DNA and RNA origami structures and in their evaluation, advances in computational nucleic acid origami is even more limited. In this paper, we review major milestones in experimental and computational DNA and RNA origami and present current challenges in these fields. We believe collaboration between experimental nanotechnologists and computer scientists are critical for advancing these new research paradigms.
Collapse
Affiliation(s)
- Hosna Jabbari
- Ingenuity Lab, 11421 Saskatchewan
Drive, Edmonton, Alberta T6G 2M9, Canada
- Department
of Chemical and Materials Engineering, University of Alberta, Edmonton T6G 2V4, Canada
| | - Maral Aminpour
- Ingenuity Lab, 11421 Saskatchewan
Drive, Edmonton, Alberta T6G 2M9, Canada
- Department
of Chemical and Materials Engineering, University of Alberta, Edmonton T6G 2V4, Canada
| | - Carlo Montemagno
- Ingenuity Lab, 11421 Saskatchewan
Drive, Edmonton, Alberta T6G 2M9, Canada
- Department
of Chemical and Materials Engineering, University of Alberta, Edmonton T6G 2V4, Canada
| |
Collapse
|
12
|
Dedduwa-Mudalige GNP, Chow CS. Cisplatin Targeting of Bacterial Ribosomal RNA Hairpins. Int J Mol Sci 2015; 16:21392-409. [PMID: 26370969 PMCID: PMC4613259 DOI: 10.3390/ijms160921392] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 08/26/2015] [Accepted: 08/29/2015] [Indexed: 01/11/2023] Open
Abstract
Cisplatin is a clinically important chemotherapeutic agent known to target purine bases in nucleic acids. In addition to major deoxyribonucleic acid (DNA) intrastrand cross-links, cisplatin also forms stable adducts with many types of ribonucleic acid (RNA) including siRNA, spliceosomal RNAs, tRNA, and rRNA. All of these RNAs play vital roles in the cell, such as catalysis of protein synthesis by rRNA, and therefore serve as potential drug targets. This work focused on platination of two highly conserved RNA hairpins from E. coli ribosomes, namely pseudouridine-modified helix 69 from 23S rRNA and the 790 loop of helix 24 from 16S rRNA. RNase T1 probing, MALDI mass spectrometry, and dimethyl sulfate mapping revealed platination at GpG sites. Chemical probing results also showed platination-induced RNA structural changes. These findings reveal solvent and structural accessibility of sites within bacterial RNA secondary structures that are functionally significant and therefore viable targets for cisplatin as well as other classes of small molecules. Identifying target preferences at the nucleotide level, as well as determining cisplatin-induced RNA conformational changes, is important for the design of more potent drug molecules. Furthermore, the knowledge gained through studies of RNA-targeting by cisplatin is applicable to a broad range of organisms from bacteria to human.
Collapse
Affiliation(s)
| | - Christine S Chow
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
13
|
Chiu JKH, Chen YPP. Pairwise RNA secondary structure alignment with conserved stem pattern. Bioinformatics 2015; 31:3914-21. [PMID: 26275897 DOI: 10.1093/bioinformatics/btv471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 08/07/2015] [Indexed: 12/23/2022] Open
Abstract
MOTIVATION The regulatory functions performed by non-coding RNAs are related to their 3D structures, which are, in turn, determined by their secondary structures. Pairwise secondary structure alignment gives insight into the functional similarity between a pair of RNA sequences. Numerous exact or heuristic approaches have been proposed for computational alignment. However, the alignment becomes intractable when arbitrary pseudoknots are allowed. Also, since non-coding RNAs are, in general, more conserved in structures than sequences, it is more effective to perform alignment based on the common structural motifs discovered. RESULTS We devised a method to approximate the true conserved stem pattern for a secondary structure pair, and constructed the alignment from it. Experimental results suggest that our method identified similar RNA secondary structures better than the existing tools, especially for large structures. It also successfully indicated the conservation of some pseudoknot features with biological significance. More importantly, even for large structures with arbitrary pseudoknots, the alignment can usually be obtained efficiently. AVAILABILITY AND IMPLEMENTATION Our algorithm has been implemented in a tool called PSMAlign. The source code of PSMAlign is freely available at http://homepage.cs.latrobe.edu.au/ypchen/psmalign/.
Collapse
Affiliation(s)
- Jimmy Ka Ho Chiu
- Department of Computer Science and Information Technology, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Yi-Ping Phoebe Chen
- Department of Computer Science and Information Technology, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
14
|
van der Sluis EO, Bauerschmitt H, Becker T, Mielke T, Frauenfeld J, Berninghausen O, Neupert W, Herrmann JM, Beckmann R. Parallel Structural Evolution of Mitochondrial Ribosomes and OXPHOS Complexes. Genome Biol Evol 2015; 7:1235-51. [PMID: 25861818 PMCID: PMC4453056 DOI: 10.1093/gbe/evv061] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2015] [Indexed: 01/06/2023] Open
Abstract
The five macromolecular complexes that jointly mediate oxidative phosphorylation (OXPHOS) in mitochondria consist of many more subunits than those of bacteria, yet, it remains unclear by which evolutionary mechanism(s) these novel subunits were recruited. Even less well understood is the structural evolution of mitochondrial ribosomes (mitoribosomes): while it was long thought that their exceptionally high protein content would physically compensate for their uniquely low amount of ribosomal RNA (rRNA), this hypothesis has been refuted by structural studies. Here, we present a cryo-electron microscopy structure of the 73S mitoribosome from Neurospora crassa, together with genomic and proteomic analyses of mitoribosome composition across the eukaryotic domain. Surprisingly, our findings reveal that both structurally and compositionally, mitoribosomes have evolved very similarly to mitochondrial OXPHOS complexes via two distinct phases: A constructive phase that mainly acted early in eukaryote evolution, resulting in the recruitment of altogether approximately 75 novel subunits, and a reductive phase that acted during metazoan evolution, resulting in gradual length-reduction of mitochondrially encoded rRNAs and OXPHOS proteins. Both phases can be well explained by the accumulation of (slightly) deleterious mutations and deletions, respectively, in mitochondrially encoded rRNAs and OXPHOS proteins. We argue that the main role of the newly recruited (nuclear encoded) ribosomal- and OXPHOS proteins is to provide structural compensation to the mutationally destabilized mitochondrially encoded components. While the newly recruited proteins probably provide a selective advantage owing to their compensatory nature, and while their presence may have opened evolutionary pathways toward novel mitochondrion-specific functions, we emphasize that the initial events that resulted in their recruitment was nonadaptive in nature. Our framework is supported by population genetic studies, and it can explain the complete structural evolution of mitochondrial ribosomes and OXPHOS complexes, as well as many observed functions of individual proteins.
Collapse
Affiliation(s)
- Eli O van der Sluis
- Gene Center and Center for integrated Protein Science Munich (CiPSM), Department of Biochemistry, University of Munich, Germany
| | | | - Thomas Becker
- Gene Center and Center for integrated Protein Science Munich (CiPSM), Department of Biochemistry, University of Munich, Germany
| | - Thorsten Mielke
- Max Planck Institute for Molecular Genetics, UltraStrukturNetzwerk, Berlin, Germany Institut für Medizinische Physik und Biophysik, Charité, Berlin, Germany
| | - Jens Frauenfeld
- Gene Center and Center for integrated Protein Science Munich (CiPSM), Department of Biochemistry, University of Munich, Germany Present address: Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Otto Berninghausen
- Gene Center and Center for integrated Protein Science Munich (CiPSM), Department of Biochemistry, University of Munich, Germany
| | - Walter Neupert
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | - Roland Beckmann
- Gene Center and Center for integrated Protein Science Munich (CiPSM), Department of Biochemistry, University of Munich, Germany
| |
Collapse
|
15
|
Harrison R, Li Y, Măndoiu I. Predicting RNA Secondary Structures: One-grammar-fits-all Solution. BIOINFORMATICS RESEARCH AND APPLICATIONS 2015. [PMCID: PMC7121278 DOI: 10.1007/978-3-319-19048-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
RNA secondary structures are known to be important in many biological processes. Many available programs have been developed for RNA secondary structure prediction. Based on our knowledge, however, there still exist secondary structures of known RNA sequences which cannot be covered by these algorithms. In this paper, we provide an efficient algorithm that can handle all RNA secondary structures found in Rfam database. We designed a new stochastic context-free grammar named Rectangle Tree Grammar (RTG) which significantly expands the classes of structures that can be modelled. Our algorithm runs in O(n6) time and the accuracy is reasonably high, with average PPV and sensitivity over 75%. In addition, the structures that RTG predicts are very similar to the real ones.
Collapse
Affiliation(s)
| | | | - Ion Măndoiu
- University of Connecticut, Storrs, Connecticut USA
| |
Collapse
|
16
|
Chiu JKH, Chen YPP. Efficient conversion of RNA pseudoknots to knot-free structures using a graphical model. IEEE Trans Biomed Eng 2014; 62:1265-71. [PMID: 25474805 DOI: 10.1109/tbme.2014.2375360] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RNA secondary structures are vital in determining the 3-D structures of noncoding RNA molecules, which in turn affect their functions. Computational RNA secondary structure alignment and analysis are biologically significant, because they help identify numerous functionally important motifs. Unfortunately, many analysis methods suffer from computational intractability in the presence of pseudoknots. The conversion of knotted to knot-free secondary structures is an essential preprocessing step, and is regarded as pseudoknot removal. Although exact methods have been proposed for this task, their computational complexities are undetermined, and so their efficiencies in processing complex pseudoknots are currently unknown. We transformed the pseudoknot removal problem into a circle graph maximum weight independent set (MWIS) problem, in which each MWIS represents a unique optimal deknotted structure. An existing circle graph MWIS algorithm was extended to report either single or all solutions. Its time complexity depends on the number of MWISs, and is guaranteed to report one solution in polynomial time. Experimental results suggest that our extended algorithm is much more efficient than the state-of-the-art tool. We also devised a novel concept called the structural scoring function, and investigated its effectiveness in more accurate solution candidate selection for a certain criteria.
Collapse
|
17
|
Sim M, Lim B, Sim SH, Kim D, Jung E, Lee Y, Lee K. Two tandem RNase III cleavage sites determine betT mRNA stability in response to osmotic stress in Escherichia coli. PLoS One 2014; 9:e100520. [PMID: 24956275 PMCID: PMC4067347 DOI: 10.1371/journal.pone.0100520] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 05/28/2014] [Indexed: 11/19/2022] Open
Abstract
While identifying genes regulated by ribonuclease III (RNase III) in Escherichia coli, we observed that steady-state levels of betT mRNA, which encodes a transporter mediating the influx of choline, are dependent on cellular concentrations of RNase III. In the present study, we also observed that steady-state levels of betT mRNA are dependent on RNase III activity upon exposure to osmotic stress, indicating the presence of cis-acting elements controlled by RNase III in betT mRNA. Primer extension analyses of betT mRNA revealed two tandem RNase III cleavage sites in its stem-loop region, which were biochemically confirmed via in vitro cleavage assays. Analyses of cleavage sites suggested the stochastic selection of cleavage sites by RNase III, and mutational analyses indicated that RNase III cleavage at either site individually is insufficient for efficient betT mRNA degradation. In addition, both the half-life and abundance of betT mRNA were significantly increased in association with decreased RNase III activity under hyper-osmotic stress conditions. Our findings demonstrate that betT mRNA stability is controlled by RNase III at the post-transcriptional level under conditions of osmotic stress.
Collapse
Affiliation(s)
- Minji Sim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Boram Lim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Se-Hoon Sim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Daeyoung Kim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Euihan Jung
- Department of Chemistry, KAIST, Daejeon, Republic of Korea
| | - Younghoon Lee
- Department of Chemistry, KAIST, Daejeon, Republic of Korea
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
18
|
Jabbari H, Condon A. A fast and robust iterative algorithm for prediction of RNA pseudoknotted secondary structures. BMC Bioinformatics 2014; 15:147. [PMID: 24884954 PMCID: PMC4064103 DOI: 10.1186/1471-2105-15-147] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 05/08/2014] [Indexed: 12/12/2022] Open
Abstract
Background Improving accuracy and efficiency of computational methods that predict pseudoknotted RNA secondary structures is an ongoing challenge. Existing methods based on free energy minimization tend to be very slow and are limited in the types of pseudoknots that they can predict. Incorporating known structural information can improve prediction accuracy; however, there are not many methods for prediction of pseudoknotted structures that can incorporate structural information as input. There is even less understanding of the relative robustness of these methods with respect to partial information. Results We present a new method, Iterative HFold, for pseudoknotted RNA secondary structure prediction. Iterative HFold takes as input a pseudoknot-free structure, and produces a possibly pseudoknotted structure whose energy is at least as low as that of any (density-2) pseudoknotted structure containing the input structure. Iterative HFold leverages strengths of earlier methods, namely the fast running time of HFold, a method that is based on the hierarchical folding hypothesis, and the energy parameters of HotKnots V2.0. Our experimental evaluation on a large data set shows that Iterative HFold is robust with respect to partial information, with average accuracy on pseudoknotted structures steadily increasing from roughly 54% to 79% as the user provides up to 40% of the input structure. Iterative HFold is much faster than HotKnots V2.0, while having comparable accuracy. Iterative HFold also has significantly better accuracy than IPknot on our HK-PK and IP-pk168 data sets. Conclusions Iterative HFold is a robust method for prediction of pseudoknotted RNA secondary structures, whose accuracy with more than 5% information about true pseudoknot-free structures is better than that of IPknot, and with about 35% information about true pseudoknot-free structures compares well with that of HotKnots V2.0 while being significantly faster. Iterative HFold and all data used in this work are freely available at http://www.cs.ubc.ca/~hjabbari/software.php.
Collapse
Affiliation(s)
- Hosna Jabbari
- Department of Computer Science, University of British Columbia, 2366 Main Mall, Vancouver, Canada.
| | | |
Collapse
|
19
|
Calidas D, Lyon H, Culver GM. The N-terminal extension of S12 influences small ribosomal subunit assembly in Escherichia coli. RNA (NEW YORK, N.Y.) 2014; 20:321-30. [PMID: 24442609 PMCID: PMC3923127 DOI: 10.1261/rna.042432.113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The small subunit (SSU) of the ribosome of E. coli consists of a core of ribosomal RNA (rRNA) surrounded peripherally by ribosomal proteins (r-proteins). Ten of the 15 universally conserved SSU r-proteins possess nonglobular regions called extensions. The N-terminal noncanonically structured extension of S12 traverses from the solvent to intersubunit surface of the SSU and is followed by a more C-terminal globular region that is adjacent to the decoding center of the SSU. The role of the globular region in maintaining translational fidelity is well characterized, but a role for the S12 extension in SSU structure and function is unknown. We examined the effect of stepwise truncation of the extension of S12 in SSU assembly and function in vitro and in vivo. Examination of in vitro assembly in the presence of sequential N-terminal truncated variants of S12 reveals that N-terminal deletions of greater than nine amino acids exhibit decreased tRNA-binding activity and altered 16S rRNA architecture particularly in the platform of the SSU. While wild-type S12 expressed from a plasmid can rescue a genomic deletion of the essential gene for S12, rpsl; N-terminal deletions of S12 exhibit deleterious phenotypic consequences. Partial N-terminal deletions of S12 are slow growing and cold sensitive. Strains bearing these truncations as the sole copy of S12 have increased levels of free SSUs and immature 16S rRNA as compared with the wild-type S12. These differences are hallmarks of SSU biogenesis defects, indicating that the extension of S12 plays an important role in SSU assembly.
Collapse
Affiliation(s)
- Deepika Calidas
- Department of Biology, Center for RNA Biology: From Genome to Therapeutics, University of Rochester Medical Center, Rochester, New York 14627, USA
| | - Hiram Lyon
- Department of Biology, Center for RNA Biology: From Genome to Therapeutics, University of Rochester Medical Center, Rochester, New York 14627, USA
| | - Gloria M. Culver
- Department of Biology, Center for RNA Biology: From Genome to Therapeutics, University of Rochester Medical Center, Rochester, New York 14627, USA
- Corresponding authorE-mail
| |
Collapse
|
20
|
Ishii TM, Kotlova N, Tapsoba F, Steinberg SV. The long D-stem of the selenocysteine tRNA provides resilience at the expense of maximal function. J Biol Chem 2013; 288:13337-44. [PMID: 23525102 DOI: 10.1074/jbc.m112.434704] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The selenocysteine tRNA (tRNASec) has a uniquely long D-stem containing 6 base pairs. RESULTS The extended D-stem is not essential for function but is required for stability. CONCLUSION Enhanced secondary structure in selenocysteine tRNA compensates for the absence of canonical tertiary interactions. SIGNIFICANCE The flexibility due to the absence of tertiary interactions is required for tRNASec function, whereas the enhanced secondary structure compensates for the decreased stability. The D-stem of the selenocysteine tRNA (tRNA(Sec)) contains 2 additional base pairs, which replace tertiary interactions 8-14 and 15-48 universally present in all other cytosolic tRNAs. To study the role of these additional base pairs in the tRNA(Sec) function, we used the instant evolution approach. In vivo screening of six combinatorial gene libraries provided 158 functional variants of the Escherichia coli tRNA(Sec). Analysis of these variants showed that the additional base pairs in the D-stem were not required for the tRNA(Sec) function. Moreover, at lower temperatures, these base pairs notably harmed the tRNA(Sec) activity. However, at elevated temperatures, these base pairs became essential as they made the tRNA structure more stable. The alternative way to stabilize the structure through formation of the standard tertiary interactions was not an option for tRNA(Sec) variants, which suggests that the absence of these interactions and the resulting flexibility of the tertiary structure are essential for tRNA(Sec) function.
Collapse
Affiliation(s)
- Tetsu M Ishii
- Department of Biochemistry, Université de Montréal, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| | | | | | | |
Collapse
|
21
|
Chiu JKH, Chen YPP. Conformational features of topologically classified RNA secondary structures. PLoS One 2012; 7:e39907. [PMID: 22792195 PMCID: PMC3390330 DOI: 10.1371/journal.pone.0039907] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 05/29/2012] [Indexed: 11/18/2022] Open
Abstract
Background Current RNA secondary structure prediction approaches predict prevalent pseudoknots such as the H-pseudoknot and kissing hairpin. The number of possible structures increases drastically when more complex pseudoknots are considered, thus leading to computational limitations. On the other hand, the enormous population of possible structures means not all of them appear in real RNA molecules. Therefore, it is of interest to understand how many of them really exist and the reasons for their preferred existence over the others, as any new findings revealed by this study might enhance the capability of future structure prediction algorithms for more accurate prediction of complex pseudoknots. Methodology/Principal Findings A novel algorithm was devised to estimate the exact number of structural possibilities for a pseudoknot constructed with a specified number of base pair stems. Then, topological classification was applied to classify RNA pseudoknotted structures from data in the RNA STRAND database. By showing the vast possibilities and the real population, it is clear that most of these plausible complex pseudoknots are not observed. Moreover, from these classified motifs that exist in nature, some features were identified for further investigation. It was found that some features are related to helical stacking. Other features are still left open to discover underlying tertiary interactions. Conclusions Results from topological classification suggest that complex pseudoknots are usually some well-known motifs that are themselves complex or the interaction results of some special motifs. Heuristics can be proposed to predict the essential parts of these complex motifs, even if the required thermodynamic parameters are currently unknown.
Collapse
Affiliation(s)
- Jimmy Ka Ho Chiu
- Department of Computer Science and Computer Engineering, La Trobe University, Melbourne, Victoria, Australia
| | - Yi-Ping Phoebe Chen
- Department of Computer Science and Computer Engineering, La Trobe University, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
22
|
Abstract
In Escherichia coli, the corA gene encodes a transporter that mediates the influx of Co(2+), Mg(2+), and Ni(2+) into the cell. During the course of experiments aimed at identifying RNase III-dependent genes in E. coli, we observed that steady-state levels of corA mRNA as well as the degree of cobalt influx into the cell were dependent on cellular concentrations of RNase III. In addition, changes in corA expression levels by different cellular concentrations of RNase III were closely correlated with degrees of resistance of E. coli cells to Co(2+) and Ni(2+). In vitro and in vivo cleavage analyses of corA mRNA identified RNase III cleavage sites in the 5'-untranslated region of the corA mRNA. The introduction of nucleotide substitutions at the identified RNase III cleavage sites abolished RNase III cleavage activity on corA mRNA and resulted in prolonged half-lives of the mRNA, which demonstrates that RNase III cleavage constitutes a rate-determining step for corA mRNA degradation. These findings reveal an RNase III-mediated regulatory pathway that functions to modulate corA expression and, in turn, the influx of metal ions transported by CorA in E. coli.
Collapse
|
23
|
Identification of a hyperactive variant of the SecM motif involved in ribosomal arrest. Curr Microbiol 2011; 64:17-23. [PMID: 21971705 DOI: 10.1007/s00284-011-0027-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 09/17/2011] [Indexed: 10/17/2022]
Abstract
Recent studies in several organisms have shown that certain nascent sticky peptides stall in the ribosome during their own translation. Amino acid sequences present at the C-terminal part of Escherichia coli SecM ((150)FSTPVWISQAQGIRAGP(166)) have a well-characterized role in ribosome stalling. To investigate the determinants of the SecM motif responsible for ribosome stalling, we performed a genetic screen for mutants with an altered SecM motif that resulted in altered ribosome stalling. To do this, we used a cat fusion construct containing the SecM motif and a myc-tag (cat'-'myc-secM). This construct expresses cat'-'myc-secM mRNA transcripts predominantly translated by a subset of ribosomes called specialized ribosomes that recognize an altered ribosome binding sequence in the mRNA. While all of the isolated mutants containing mutations at the functionally conserved amino acid residues at positions between 161 and 166 showed decreased ribosome stalling, one mutant sequence containing an amino acid substitution from serine to lysine at position 157 (S157K) showed enhanced ribosome stalling that consequently increased mRNA cleavage. Our results reveal that a functionally not conserved amino acid residue at position 157 of SecM can also affect ribosome stalling and provide additional insight into the molecular mechanisms underlying sticky-peptide-induced ribosome arrest.
Collapse
|
24
|
Calidas D, Culver GM. Interdependencies govern multidomain architecture in ribosomal small subunit assembly. RNA (NEW YORK, N.Y.) 2011; 17:263-277. [PMID: 21156960 PMCID: PMC3022276 DOI: 10.1261/rna.2332511] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 11/05/2010] [Indexed: 05/27/2023]
Abstract
The 30S subunit is composed of four structural domains, the body, platform, head, and penultimate/ultimate stems. The functional integrity of the 30S subunit is dependent upon appropriate assembly and precise orientation of all four domains. We examined 16S rRNA conformational changes during in vitro assembly using directed hydroxyl radical probing mediated by Fe(II)-derivatized ribosomal protein (r-protein) S8. R-protein S8 binds the central domain of 16S rRNA directly and independently and its iron derivatized substituents have been shown to mediate cleavage in three domains of 16S rRNA, thus making it an ideal probe to monitor multidomain orientation during assembly. Cleavages in minimal ribonucleoprotein (RNP) particles formed with Fe(II)-S8 and 16S rRNA alone were compared with that in the context of the fully assembled subunit. The minimal binding site of S8 at helix 21 exists in a structure similar to that observed in the mature subunit, in the absence of other r-proteins. However, the binding site of S8 at the junction of helices 25-26a, which is transcribed after helix 21, is cleaved with differing intensities in the presence and absence of other r-proteins. Also, assembly of the body helps establish an architecture approximating, but perhaps not identical, to the 30S subunit at helix 12 and the 5' terminus. Moreover, the assembly or orientation of the neck is dependent upon assembly of both the head and the body. Thus, a complex interrelationship is observed between assembly events of independent domains and the incorporation of primary binding proteins during 30S subunit formation.
Collapse
Affiliation(s)
- Deepika Calidas
- Department of Biology, University of Rochester, Rochester, New York 14627, USA
| | | |
Collapse
|
25
|
Xu Z, Culver GM. Differential assembly of 16S rRNA domains during 30S subunit formation. RNA (NEW YORK, N.Y.) 2010; 16:1990-2001. [PMID: 20736336 PMCID: PMC2941107 DOI: 10.1261/rna.2246710] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 07/14/2010] [Indexed: 05/29/2023]
Abstract
Rapid and accurate assembly of the ribosomal subunits, which are responsible for protein synthesis, is required to sustain cell growth. Our best understanding of the interaction of 30S ribosomal subunit components (16S ribosomal RNA [rRNA] and 20 ribosomal proteins [r-proteins]) comes from in vitro work using Escherichia coli ribosomal components. However, detailed information regarding the essential elements involved in the assembly of 30S subunits still remains elusive. Here, we defined a set of rRNA nucleotides that are critical for the assembly of the small ribosomal subunit in E. coli. Using an RNA modification interference approach, we identified 54 nucleotides in 16S rRNA whose modification prevents the formation of a functional small ribosomal subunit. The majority of these nucleotides are located in the head and interdomain junction of the 30S subunit, suggesting that these regions are critical for small subunit assembly. In vivo analysis of specific identified sites, using engineered mutations in 16S rRNA, revealed defective protein synthesis capability, aberrant polysome profiles, and abnormal 16S rRNA processing, indicating the importance of these residues in vivo. These studies reveal that specific segments of 16S rRNA are more critical for small subunit assembly than others, and suggest a hierarchy of importance.
Collapse
MESH Headings
- Base Sequence
- DNA Primers/genetics
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Models, Molecular
- Mutagenesis, Site-Directed
- Nucleic Acid Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Ribosome Subunits, Small, Bacterial/chemistry
- Ribosome Subunits, Small, Bacterial/genetics
- Ribosome Subunits, Small, Bacterial/metabolism
Collapse
Affiliation(s)
- Zhili Xu
- Department of Biology, University of Rochester, Rochester, New York 14624, USA
| | | |
Collapse
|
26
|
Sim SH, Yeom JH, Shin C, Song WS, Shin E, Kim HM, Cha CJ, Han SH, Ha NC, Kim SW, Hahn Y, Bae J, Lee K. Escherichia coli ribonuclease III activity is downregulated by osmotic stress: consequences for the degradation of bdm mRNA in biofilm formation. Mol Microbiol 2009; 75:413-25. [PMID: 19943899 DOI: 10.1111/j.1365-2958.2009.06986.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
During the course of experiments aimed at identifying genes with ribonuclease III (RNase III)-dependent expression in Escherichia coli, we found that steady state levels of bdm mRNA were dependent on cellular concentrations of RNase III. The half-lives of adventitiously overexpressed bdm mRNA and the activities of a transcriptional bdm'-'cat fusion were observed to be dependent on cellular concentrations of RNase III, indicating the existence of cis-acting elements in bdm mRNA responsive to RNase III. In vitro and in vivo cleavage analyses of bdm mRNA identified two RNase III cleavage motifs, one in the 5'-untranslated region and the other in the coding region of bdm mRNA, and indicated that RNase III cleavages in the coding region constitute a rate-determining step for bdm mRNA degradation. We also discovered that downregulation of the ribonucleolytic activity of RNase III is required for the sustained elevation of RcsB-induced bdm mRNA levels during osmotic stress and that cells overexpressing bdm form biofilms more efficiently. These findings indicate that the Rcs signalling system has an additional regulatory pathway that functions to modulate bdm expression and consequently, adapt E. coli cells to osmotic stress.
Collapse
Affiliation(s)
- Se-Hoon Sim
- Department of Life Science (BK21 program), Chung-Ang University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Functional study of the residue C899 in the 900 tetraloop of Escherichia coli small subunit ribosomal RNA. Biosci Biotechnol Biochem 2009; 73:2544-6. [PMID: 19897894 DOI: 10.1271/bbb.90460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A mutant ribosome bearing C899G in the 900 tetraloop of Escherichia coli 16S rRNA, one implicated in a conformational switch in the dynamic movements of the ribosome, showed defects in subunit association and 30S initiation complex formation. Our results explain the basis of the loss of protein synthesis ability caused by a perturbation of the 900 tetraloop.
Collapse
|
28
|
Chen HL, Condon A, Jabbari H. An O(n(5)) algorithm for MFE prediction of kissing hairpins and 4-chains in nucleic acids. J Comput Biol 2009; 16:803-15. [PMID: 19522664 DOI: 10.1089/cmb.2008.0219] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Efficient methods for prediction of minimum free energy (MFE) nucleic secondary structures are widely used, both to better understand structure and function of biological RNAs and to design novel nano-structures. Here, we present a new algorithm for MFE secondary structure prediction, which significantly expands the class of structures that can be handled in O(n(5)) time. Our algorithm can handle H-type pseudoknotted structures, kissing hairpins, and chains of four overlapping stems, as well as nested substructures of these types.
Collapse
Affiliation(s)
- Ho-Lin Chen
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California, USA
| | | | | |
Collapse
|
29
|
Genetic analysis of the invariant residue G791 in Escherichia coli 16S rRNA implicates RelA in ribosome function. J Bacteriol 2009; 191:2042-50. [PMID: 19168615 DOI: 10.1128/jb.00904-08] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies identified G791 in Escherichia coli 16S rRNA as an invariant residue for ribosome function. In order to establish the functional role of this residue in protein synthesis, we searched for multicopy suppressors of the mutant ribosomes that bear a G-to-U substitution at position 791. We identified relA, a gene whose product has been known to interact with ribosomes and trigger a stringent response. Overexpression of RelA resulted in the synthesis of approximately 1.5 times more chloramphenicol acetyltransferase (CAT) protein than could be synthesized by the mutant ribosomes in the absence of RelA overexpression. The ratio of mutant rRNA to the total ribosome pool was not changed, and the steady-state level of CAT mRNA was decreased by RelA overexpression. These data confirmed that the phenotype of RelA as a multicopy suppressor of the mutant ribosome did not result from the enhanced synthesis of mutant rRNA or CAT mRNA from the plasmid. To test whether the phenotype of RelA was related to the stringent response induced by the increased cellular level of (p)ppGpp, we screened for mutant RelA proteins whose overexpression enhances CAT protein synthesis by the mutant ribosomes as effectively as wild-type RelA overexpression and then screened for those whose overexpression does not produce sufficiently high levels of (p)ppGpp to trigger the stringent response under the condition of amino acid starvation. Overexpression of the isolated mutant RelA proteins resulted in the accumulation of (p)ppGpp in cells, which was amounted to approximately 18.2 to 38.9% of the level of (p)ppGpp found in cells that overexpress the wild-type RelA. These findings suggest that the function of RelA as a multicopy suppressor of the mutant ribosome does not result from its (p)ppGpp synthetic activity. We conclude that RelA has a previously unrecognized role in ribosome function.
Collapse
|
30
|
Dulude D, Théberge-Julien G, Brakier-Gingras L, Heveker N. Selection of peptides interfering with a ribosomal frameshift in the human immunodeficiency virus type 1. RNA (NEW YORK, N.Y.) 2008; 14:981-91. [PMID: 18367719 PMCID: PMC2327360 DOI: 10.1261/rna.887008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 02/04/2008] [Indexed: 05/26/2023]
Abstract
The human immunodeficiency virus of type 1 (HIV-1) uses a programmed -1 ribosomal frameshift to produce the precursor of its enzymes, and changes in frameshift efficiency reduce replicative fitness of the virus. We used a fluorescent two-reporter system to screen for peptides that reduce HIV-1 frameshift in bacteria, knowing that the frameshift can be reproduced in Escherichia coli. Expression of one reporter, the green fluorescent protein (GFP), requires the HIV-1 frameshift, whereas the second reporter, the red fluorescent protein (RFP), is used to assess normal translation. A peptide library biased for RNA binding was inserted into the sequence of the protein thioredoxin and expressed in reporter-containing bacteria, which were then screened by fluorescence-activated cell sorting (FACS). We identified peptide sequences that reduce frameshift efficiency by over 50% without altering normal translation. The identified sequences are also active against different frameshift stimulatory signals, suggesting that they bind a target important for frameshifting in general, probably the ribosome. Successful transfer of active sequences to a different scaffold in a eukaryotic test system demonstrates that the anti-frameshift activity of the peptides is neither due to scaffold-dependent conformation nor effects of the scaffold protein itself on frameshifting. The method we describe identifies peptides that will provide useful tools to further study the mechanism of frameshift and may permit the development of lead compounds of therapeutic interest.
Collapse
Affiliation(s)
- Dominic Dulude
- Département de Biochimie, Université de Montréal, Montréal H3T 1J4, Québec, Canada
| | | | | | | |
Collapse
|
31
|
Saraiya AA, Lamichhane TN, Chow CS, SantaLucia J, Cunningham PR. Identification and role of functionally important motifs in the 970 loop of Escherichia coli 16S ribosomal RNA. J Mol Biol 2007; 376:645-57. [PMID: 18177894 DOI: 10.1016/j.jmb.2007.11.102] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 11/26/2007] [Accepted: 11/30/2007] [Indexed: 10/22/2022]
Abstract
The 970 loop (helix 31) of Escherichia coli 16S ribosomal RNA contains two modified nucleotides, m(2)G966 and m(5)C967. Positions A964, A969, and C970 are conserved among the Bacteria, Archaea, and Eukarya. The nucleotides present at positions 965, 966, 967, 968, and 971, however, are only conserved and unique within each domain. All organisms contain a modified nucleoside at position 966, but the type of the modification is domain specific. Biochemical and structure studies have placed this loop near the P site and have shown it to be involved in the decoding process and in binding the antibiotic tetracycline. To identify the functional components of this ribosomal RNA hairpin, the eight nucleotides of the 970 loop of helix 31 were subjected to saturation mutagenesis and 107 unique functional mutants were isolated and analyzed. Nonrandom nucleotide distributions were observed at each mutated position among the functional isolates. Nucleotide identity at positions 966 and 969 significantly affects ribosome function. Ribosomes with single mutations of m(2)G966 or m(5)C967 produce more protein in vivo than do wild-type ribosomes. Overexpression of initiation factor 3 specifically restored wild-type levels of protein synthesis to the 966 and 967 mutants, suggesting that modification of these residues is important for initiation factor 3 binding and for the proper initiation of protein synthesis.
Collapse
Affiliation(s)
- Ashesh A Saraiya
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | | | | | | | |
Collapse
|
32
|
Taliaferro DL, Farabaugh PJ. Testing constraints on rRNA bases that make nonsequence-specific contacts with the codon-anticodon complex in the ribosomal A site. RNA (NEW YORK, N.Y.) 2007; 13:1279-86. [PMID: 17592040 PMCID: PMC1924888 DOI: 10.1261/rna.552007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
During protein synthesis, interactions between the decoding center of the ribosome and the codon-anticodon complexes maintain translation accuracy. Correct aminoacyl-tRNAs induce the ribosome to shift into a "closed" conformation that both blocks tRNA dissociation and accelerates the process of tRNA acceptance. As part of the ribosomal recognition of cognate tRNAs, the rRNA nucleotides G530 and A1492 form a hydrogen-bonded pair that interacts with the middle position of the codon.anticodon complex and recognizes correct Watson-Crick base pairs. Exchanging these two nucleotides (A530 and G1492) would not disrupt these interactions, suggesting that such a double mutant ribosome might properly recognize tRNAs and support viability. We find, however, that exchange mutants retain little ribosomal activity. We suggest that even though the exchanged nucleotides might function properly during tRNA recruitment, they might disrupt one or more other functions of the nucleotides during other stages of protein synthesis.
Collapse
Affiliation(s)
- Dwayne L Taliaferro
- Program in Molecular and Cell Biology, Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | | |
Collapse
|
33
|
Abstract
The ribosome is responsible for protein synthesis, the translation of the genetic code, in all living organisms. Ribosomes are composed of RNA (ribosomal RNA) and protein (ribosomal protein). Soluble protein factors bind to the ribosome and facilitate different phases of translation. Genetic approaches have proved useful for the identification and characterization of the structural and functional roles of specific nucleotides in ribosomal RNA and of specific amino acids in ribosomal proteins and in ribosomal factors. This chapter summarizes examples of mutations identified in ribosomal RNA, ribosomal proteins, and ribosomal factors.
Collapse
MESH Headings
- Animals
- Base Sequence
- DNA Mutational Analysis
- Humans
- Mutation
- Nucleic Acid Conformation
- Peptide Elongation Factors/genetics
- Peptide Initiation Factors/genetics
- Peptide Termination Factors/genetics
- Protein Subunits/genetics
- RNA, Ribosomal, 16S/analysis
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/physiology
- RNA, Ribosomal, 23S/analysis
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/physiology
- Ribosomal Proteins/genetics
- Ribosomes/genetics
- Sequence Analysis, RNA
Collapse
Affiliation(s)
- Kathleen L Triman
- Department of Biology, Franklin and Marshall College, Lancaster, PA 17604, USA
| |
Collapse
|
34
|
Gagnon MG, Mukhopadhyay A, Steinberg SV. Close Packing of Helices 3 and 12 of 16 S rRNA Is Required for the Normal Ribosome Function. J Biol Chem 2006; 281:39349-57. [PMID: 17060325 DOI: 10.1074/jbc.m607725200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The along-groove packing motif is a quasi-reciprocal arrangement of two RNA double helices in which a backbone of each helix is closely packed within the minor groove of the other helix. At the center of the inter-helix contact, a GU base pair in one helix packs against a Watson-Crick base pair in the other helix. Here, based on in vivo selection from a combinatorial gene library of 16 S rRNA and on functional characterization of the selected clones, we demonstrate that the normal ribosome performance requires that helices 3 and 12 be closely packed. In some clones the Watson-Crick and GU base pairs exchange in their positions between the two helices, which affects neither the quality of the helix packing, nor the ribosome function. On the other hand, perturbations in the close packing usually lead to a substantial drop in the ribosome activity. The functionality of the clones containing such perturbations may depend on the presence of particular elements in the vicinity of the area of contact between helices 3 and 12. Such cases do not exist in natural 16 S rRNA, and their selection enriches our knowledge of the constraints imposed on the structure of ribosomal RNA in functional ribosomes.
Collapse
Affiliation(s)
- Matthieu G Gagnon
- Département de Biochimie, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | | | | |
Collapse
|
35
|
Kieltyka JW, Chow CS. Probing RNA hairpins with cobalt(III)hexammine and electrospray ionization mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2006; 17:1376-1382. [PMID: 16904339 DOI: 10.1016/j.jasms.2006.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 07/03/2006] [Accepted: 07/06/2006] [Indexed: 05/11/2023]
Abstract
In this work, electrospray ionization mass spectrometry (ESI MS) was employed to study the interactions of cobalt(III) hexammine, Co(NH3)6(3+), with five RNA hairpins representing the 790 loop of 16S ribosomal RNA and 1920 loop of 23S ribosomal RNA. The RNAs varied in mismatch identity (G.U versus A.C) and level of base modification (pseudouridine versus uridine). Co(NH3)6(3+) binding was observed with the four RNA hairpins that contained a G.U wobble pair in the stem region. ESI MS revealed 1:1 and 1:2 complex formation with all RNAs. Weaker binding was observed with the fifth RNA hairpin that contained an A.C wobble pair in the stem region. The effects of pH on Co(NH3)6(3+) binding were also examined.
Collapse
Affiliation(s)
- Jason W Kieltyka
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, 48202, Detroit, MI, USA
| | - Christine S Chow
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, 48202, Detroit, MI, USA.
| |
Collapse
|
36
|
Rackham O, Wang K, Chin JW. Functional epitopes at the ribosome subunit interface. Nat Chem Biol 2006; 2:254-8. [PMID: 16582919 DOI: 10.1038/nchembio783] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Accepted: 03/14/2006] [Indexed: 11/09/2022]
Abstract
The ribosome is a 2.5-MDa molecular machine that synthesizes cellular proteins encoded in mRNAs. The 30S and 50S subunits of the ribosome associate through structurally defined intersubunit bridges burying 6,000 A(2), 80% of which is buried in conserved RNA-RNA interactions. Intersubunit bridges bind translation factors, may coordinate peptide bond formation and translocation and may be actively remodeled in the post-termination complex, but the functional importance of numerous 30S bridge nucleotides had been unknown. We carried out large-scale combinatorial mutagenesis and in vivo selections on 30S nucleotides that form RNA-RNA intersubunit bridges in the Escherichia coli ribosome. We determined the covariation and functional importance of bridge nucleotides, allowing comparison of the structural interface and phylogenetic data to the functional epitope. Our results reveal how information for ribosome function is partitioned across bridges, and suggest a subset of nucleotides that may have measurable effects on individual steps of the translational cycle.
Collapse
Affiliation(s)
- Oliver Rackham
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, England, UK
| | | | | |
Collapse
|
37
|
Yassin A, Fredrick K, Mankin AS. Deleterious mutations in small subunit ribosomal RNA identify functional sites and potential targets for antibiotics. Proc Natl Acad Sci U S A 2005; 102:16620-5. [PMID: 16269538 PMCID: PMC1283848 DOI: 10.1073/pnas.0508444102] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many clinically useful antibiotics interfere with protein synthesis in bacterial pathogens by inhibiting ribosome function. The sites of action of known drugs are limited in number, are composed primarily of ribosomal RNA (rRNA), and coincide with functionally critical centers of the ribosome. Nucleotide alterations within such sites are often deleterious. To identify functional sites and potential sites of antibiotic action in the ribosome, we prepared a random mutant library of rRNA genes and selected dominant mutations in 16S rRNA that interfere with cell growth. Fifty-three 16S rRNA positions were identified whose mutation inhibits protein synthesis. Mutations were ranked according to the severity of the phenotype, and the detrimental effect of several mutations on translation was verified in a specialized ribosome system. Analysis of the polysome profiles of mutants suggests that the majority of the mutations directly interfered with ribosome function, whereas a smaller fraction of mutations affected assembly of the small ribosomal subunit. Twelve of the identified mutations mapped to sites targeted by known antibiotics, confirming that deleterious mutations can be used to identify antibiotic targets. About half of the mutations coincided with known functional sites in the ribosome, whereas the rest of the mutations affected ribosomal sites with less clear functional significance. Four clusters of deleterious mutations in otherwise unremarkable ribosomal sites were identified, suggesting their functional importance and potential as antibiotic targets.
Collapse
Affiliation(s)
- Aymen Yassin
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, IL 60607, USA
| | | | | |
Collapse
|
38
|
Abdi NM, Fredrick K. Contribution of 16S rRNA nucleotides forming the 30S subunit A and P sites to translation in Escherichia coli. RNA (NEW YORK, N.Y.) 2005; 11:1624-32. [PMID: 16177132 PMCID: PMC1370848 DOI: 10.1261/rna.2118105] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Accepted: 07/20/2005] [Indexed: 05/04/2023]
Abstract
Many contacts between the ribosome and its principal substrates, tRNA and mRNA, involve universally conserved rRNA nucleotides, implying their functional importance in translation. Here, we measure the in vivo translation activity conferred by substitution of each 16S rRNA base believed to contribute to the A or P site. We find that the 30S P site is generally more tolerant of mutation than the 30S A site. In the A site, A1493C or any substitution of G530 or A1492 results in complete loss of translation activity, while A1493U and A1493G decrease translation activity by >20-fold. Among the P-site nucleotides, A1339 is most critical; any mutation of A1339 confers a >18-fold decrease in translation activity. Regarding all other P-site bases, ribosomes harboring at least one substitution retain considerable activity, >10% that of control ribosomes. Moreover, several sets of multiple substitutions within the 30S P site fail to inactivate the ribosome. The robust nature of the 30S P site indicates that its interaction with the codon-anticodon helix is less stringent than that of the 30S A site. In addition, we show that G1338A suppresses phenotypes conferred by m(2)G966A and several multiple P-site substitutions, suggesting that adenine at position 1338 can stabilize tRNA interaction in the P site.
Collapse
Affiliation(s)
- Nimo M Abdi
- Department of Microbiology, The Ohio State University, Columbus, 43210, USA
| | | |
Collapse
|
39
|
Bélanger F, Théberge-Julien G, Cunningham PR, Brakier-Gingras L. A functional relationship between helix 1 and the 900 tetraloop of 16S ribosomal RNA within the bacterial ribosome. RNA (NEW YORK, N.Y.) 2005; 11:906-13. [PMID: 15872184 PMCID: PMC1370775 DOI: 10.1261/rna.2160405] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The conserved 900 tetraloop that caps helix 27 of 16S ribosomal RNA (rRNA) interacts with helix 24 of 16S rRNA and also with helix 67 of 23S rRNA, forming the intersubunit bridge B2c, proximal to the decoding center. In previous studies, we investigated how the interaction between the 900 tetraloop and helix 24 participates in subunit association and translational fidelity. In the present study, we investigated whether the 900 tetraloop is involved in other undetected interactions with different regions of the Escherichia coli 16S rRNA. Using a genetic complementation approach, we selected mutations in 16S rRNA that compensate for a 900 tetraloop mutation, A900G, which severely impairs subunit association and translational fidelity. Mutations were randomly introduced in 16S rRNA, using either a mutagenic XL1-Red E. coli strain or an error-prone PCR strategy. Gain-offunction mutations were selected in vivo with a specialized ribosome system. Two mutations, the deletion of U12 and the U12C substitution, were thus independently selected in helix 1 of 16S rRNA. This helix is located in the vicinity of helix 27, but does not directly contact the 900 tetraloop in the crystal structures of the ribosome. Both mutations correct the subunit association and translational fidelity defects caused by the A900G mutation, revealing an unanticipated functional interaction between these two regions of 16S rRNA.
Collapse
MESH Headings
- Base Sequence
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Molecular Sequence Data
- Mutation
- Nucleic Acid Conformation
- Peptide Chain Initiation, Translational/genetics
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Ribosomes/metabolism
Collapse
|
40
|
Laios E, Waddington M, Saraiya AA, Baker KA, O'Connor E, Pamarathy D, Cunningham PR. Combinatorial Genetic Technology for the Development of New Anti-infectives. Arch Pathol Lab Med 2004; 128:1351-9. [PMID: 15578878 DOI: 10.5858/2004-128-1351-cgtftd] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Context.—We previously developed a novel technology known as instant evolution for high-throughput analysis of mutations in Escherichia coli ribosomal RNA.
Objective.—To develop a genetic platform for the isolation of new classes of antiinfectives that are not susceptible to drug resistance based on the instant evolution system.
Design.—Mutation libraries were constructed in the 16S rRNA gene of E coli and analyzed. In addition, the rRNA genes from a number of pathogenic bacteria were cloned and expressed in E coli. The 16S rRNA genes were incorporated into the instant-evolution system in E coli.
Setting.—The Department of Biological Sciences, Wayne State University, Detroit, Mich.
Main Outcome Measures.—Ribosome function was assayed by measuring the amount of green fluorescent protein produced by ribosomes containing mutant or foreign RNA in vivo.
Results.—We have developed a new combinatorial genetic technology (CGT) platform that allows high-throughput in vivo isolation and analysis of rRNA mutations that might lead to drug resistance. This information is being used to develop anti-infectives that recognize the wild type and all viable mutants of the drug target. CGT also provides a novel mechanism for identifying new drug targets.
Conclusions.—Antimicrobials produced using CGT will provide new therapies for the treatment of infections caused by human pathogens that are resistant to current antibiotics. The new therapeutics will be less susceptible to de novo resistance because CGT identifies all mutations of the target that might lead to resistance during the earliest stages of the drug discovery process.
Collapse
Affiliation(s)
- Eleftheria Laios
- First Department of Pediatrics, University of Athens, St Sophia Children's Hospital, Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
41
|
Léger M, Sidani S, Brakier-Gingras L. A reassessment of the response of the bacterial ribosome to the frameshift stimulatory signal of the human immunodeficiency virus type 1. RNA (NEW YORK, N.Y.) 2004; 10:1225-35. [PMID: 15247429 PMCID: PMC1370612 DOI: 10.1261/rna.7670704] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Accepted: 05/12/2004] [Indexed: 05/18/2023]
Abstract
HIV-1 uses a programmed -1 ribosomal frameshift to produce the precursor of its enzymes. This frameshift occurs at a specific slippery sequence followed by a stimulatory signal, which was recently shown to be a two-stem helix, for which a three-purine bulge separates the upper and lower stems. In the present study, we investigated the response of the bacterial ribosome to this signal, using a translation system specialized for the expression of a firefly luciferase reporter. The HIV-1 frameshift region was inserted at the beginning of the coding sequence of the luciferase gene, such that its expression requires a -1 frameshift. Mutations that disrupt the upper or the lower stem of the frameshift stimulatory signal or replace the purine bulge with pyrimidines decreased the frameshift efficiency, whereas compensatory mutations that re-form both stems restored the frame-shift efficiency to near wild-type level. These mutations had the same effect in a eukaryotic translation system, which shows that the bacterial ribosome responds like the eukaryote ribosome to the HIV-1 frameshift stimulatory signal. Also, we observed, in contrast to a previous report, that a stop codon immediately 3' to the slippery sequence does not decrease the frameshift efficiency, ruling out a proposal that the frameshift involves the deacylated-tRNA and the peptidyl-tRNA in the E and P sites of the ribosome, rather than the peptidyl-tRNA and the aminoacyl-tRNA in the P and A sites, as commonly assumed. Finally, mutations in 16S ribosomal RNA that facilitate the accommodation of the incoming aminoacyl-tRNA in the A site decreased the frameshift efficiency, which supports a previous suggestion that the frameshift occurs when the aminoacyl-tRNA occupies the A/T entry site.
Collapse
Affiliation(s)
- Mélissa Léger
- Département de Biochimie, Université de Montréal, 2900, boul. Edouard-Montpetit, D-353, Québec, H3T 1J4, Canada
| | | | | |
Collapse
|
42
|
Bélanger F, Gagnon MG, Steinberg SV, Cunningham PR, Brakier-Gingras L. Study of the Functional Interaction of the 900 Tetraloop of 16S Ribosomal RNA with Helix 24 within the Bacterial Ribosome. J Mol Biol 2004; 338:683-93. [PMID: 15099737 DOI: 10.1016/j.jmb.2004.03.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 03/08/2004] [Accepted: 03/10/2004] [Indexed: 10/26/2022]
Abstract
The 900 tetraloop that caps helix 27 of 16S ribosomal RNA (rRNA) is amongst the most conserved regions of rRNA. This tetraloop forms a GNRA motif that docks into the minor groove of three base-pairs at the bottom of helix 24 of 16S rRNA in the 30S subunit. Both the tetraloop and its receptor in helix 24 contact the 23S rRNA, forming the intersubunit bridge B2c. Here, we investigated the interaction between the 900 tetraloop and its receptor by genetic complementation. We used a specialized ribosome system in combination with an in vivo instant evolution approach to select mutations in helix 24 compensating for a mutation in the 900 tetraloop (A900G) that severely decreases ribosomal activity, impairing subunit association and translational fidelity. We selected two mutants where the G769-C810 base-pair of helix 24 was substituted with either U-A or C x A. When these mutations in helix 24 were investigated in the context of a wild-type 900 tetraloop, the C x A but not the U-A mutation severely impaired ribosome activity, interfering with subunit association and decreasing translational fidelity. In the presence of the A900G mutation, both mutations in helix 24 increased the ribosome activity to the same extent. Subunit association and translational fidelity were increased to the same level. Computer modeling was used to analyze the effect of the mutations in helix 24 on the interaction between the tetraloop and its receptor. This study demonstrates the functional importance of the interaction between the 900 tetraloop and helix 24.
Collapse
Affiliation(s)
- François Bélanger
- Département de Biochimie, Université de Montréal, Montréal, Qué., Canada H3T 1J4
| | | | | | | | | |
Collapse
|
43
|
Cochella L, Green R. Isolation of antibiotic resistance mutations in the rRNA by using an in vitro selection system. Proc Natl Acad Sci U S A 2004; 101:3786-91. [PMID: 15001709 PMCID: PMC374322 DOI: 10.1073/pnas.0307596101] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetic, biochemical, and structural data support an essential role for the ribosomal RNA in all steps of the translation process. Although in vivo genetic selection techniques have been used to identify mutations in the rRNAs that result in various miscoding phenotypes and resistance to known ribosome-targeted antibiotics, these are limited because the resulting mutant ribosomes must be only marginally disabled if they are able to support growth of the cell. Furthermore, in vivo, it is not possible to control the environment in precise ways that might allow for the isolation of certain types of rRNA variants. To overcome these limitations, we have developed an in vitro selection system for the isolation of functionally competent ribosomal particles from populations containing variant rRNAs. Here, we describe this system and present an example of its application to the selection of antibiotic resistance mutations. From a pool of 4,096 23S rRNA variants, a double mutant (A2058U/A2062G) was isolated after iteration of the selection process. This mutant was highly resistant to clindamycin in in vitro translation reactions and yet was not viable in Escherichia coli. These data establish that this system has the potential to identify mutations in the rRNA not readily accessed by comparable in vivo systems, thus allowing for more exhaustive ribosomal genetic screens.
Collapse
Affiliation(s)
- Luisa Cochella
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
44
|
Chow CS, Cunningham PR, Lee K, Meroueh M, SantaLucia J, Varma S. Photoinduced cleavage by a rhodium complex at G.U mismatches and exposed guanines in large and small RNAs. Biochimie 2002; 84:859-68. [PMID: 12458078 DOI: 10.1016/s0300-9084(02)01403-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoinduced cleavage reactions by the rhodium complex tris(4,7-diphenyl-1,10-phenanthroline)rhodium(III) [Rh(DIP)(3)(3+)] with three RNA hairpins, r(GGGGU UCGCUC CACCA) (16 nucleotide, tetraloop(Ala2)), r(GGGGCUAUAGCUCUAGCUC CACCA) (24 nucleotide, microhelix(Ala)), and r(GGCGGUUAGAUAUCGCC) (17 nucleotide, 790 loop), and full-length (1542 nucleotide) 16S rRNA from Escherichia coli were investigated. The cleavage reactions were monitored by gel electrophoresis and the sites of cleavage by Rh(DIP)(3)(3+) were determined by comparisons with chemical or enzymatic sequencing reactions. In general, RNA backbone scission by the metal complex was induced at G.U mismatches and at exposed G residues. The cleavage activity was observed on the three small RNA hairpins as well as on the isolated 1542-nucleotide ribosomal RNA.
Collapse
Affiliation(s)
- Christine S Chow
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Leontis NB, Stombaugh J, Westhof E. The non-Watson-Crick base pairs and their associated isostericity matrices. Nucleic Acids Res 2002; 30:3497-531. [PMID: 12177293 PMCID: PMC134247 DOI: 10.1093/nar/gkf481] [Citation(s) in RCA: 585] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
RNA molecules exhibit complex structures in which a large fraction of the bases engage in non-Watson-Crick base pairing, forming motifs that mediate long-range RNA-RNA interactions and create binding sites for proteins and small molecule ligands. The rapidly growing number of three-dimensional RNA structures at atomic resolution requires that databases contain the annotation of such base pairs. An unambiguous and descriptive nomenclature was proposed recently in which RNA base pairs were classified by the base edges participating in the interaction (Watson-Crick, Hoogsteen/CH or sugar edge) and the orientation of the glycosidic bonds relative to the hydrogen bonds (cis or trans). Twelve basic geometric families were identified and all 12 have been observed in crystal structures. For each base pairing family, we present here the 4 x 4 'isostericity matrices' summarizing the geometric relationships between the 16 pairwise combinations of the four standard bases, A, C, G and U. Whenever available, a representative example of each observed base pair from X-ray crystal structures (3.0 A resolution or better) is provided or, otherwise, theoretically plausible models. This format makes apparent the recurrent geometric patterns that are observed and helps identify isosteric pairs that co-vary or interchange in sequences of homologous molecules while maintaining conserved three-dimensional motifs.
Collapse
Affiliation(s)
- Neocles B Leontis
- Chemistry Department and Center for Biomolecular Sciences, Overman Hall, Bowling Green State University, Bowling Green, OH 43403, USA.
| | | | | |
Collapse
|
46
|
Mears JA, Cannone JJ, Stagg SM, Gutell RR, Agrawal RK, Harvey SC. Modeling a minimal ribosome based on comparative sequence analysis. J Mol Biol 2002; 321:215-34. [PMID: 12144780 DOI: 10.1016/s0022-2836(02)00568-5] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have determined the three-dimensional organization of ribosomal RNAs and proteins essential for minimal ribosome function. Comparative sequence analysis identifies regions of the ribosome that have been evolutionarily conserved, and the spatial organization of conserved domains is determined by mapping these onto structures of the 30S and 50S subunits determined by X-ray crystallography. Several functional domains of the ribosome are conserved in their three-dimensional organization in the Archaea, Bacteria, Eucaryotic nuclear, mitochondria and chloroplast ribosomes. In contrast, other regions from both subunits have shifted their position in three-dimensional space during evolution, including the L11 binding domain and the alpha-sarcin-ricin loop (SRL). We examined conserved bridge interactions between the two ribosomal subunits, giving an indication of which contacts are more significant. The tRNA contacts that are conserved were also determined, highlighting functional interactions as the tRNA moves through the ribosome during protein synthesis. To augment these studies of a large collection of comparative structural models sampled from all major branches on the phylogenetic tree, Caenorhabditis elegans mitochondrial rRNA is considered individually because it is among the smallest rRNA sequences known. The C.elegans model supports the large collection of comparative structure models while providing insight into the evolution of mitochondrial ribosomes.
Collapse
Affiliation(s)
- Jason A Mears
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35295-0005, USA
| | | | | | | | | | | |
Collapse
|
47
|
Bélanger F, Léger M, Saraiya AA, Cunningham PR, Brakier-Gingras L. Functional studies of the 900 tetraloop capping helix 27 of 16S ribosomal RNA. J Mol Biol 2002; 320:979-89. [PMID: 12126619 DOI: 10.1016/s0022-2836(02)00550-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The 900 tetraloop (positions 898-901) of Escherichia coli 16S rRNA caps helix 27, which is involved in a conformational switch crucial for the decoding function of the ribosome. This tetraloop forms a GNRA motif involved in intramolecular RNA-RNA interactions with its receptor in helix 24 of 16S rRNA. It is involved also in an intersubunit bridge, via an interaction with helix 67 in domain IV of 23S rRNA. Using a specialized ribosome system and an instant-evolution procedure, the four nucleotides of this loop were randomized and 15 functional mutants were selected in vivo. Positions 899 and 900, responsible for most of the tetraloop/receptor interactions, were found to be the most critical for ribosome activity. Functional studies showed that mutations in the 900 tetraloop impair subunit association and decrease translational fidelity. Computer modeling of the mutations allows correlation of the effect of mutations with perturbations of the tetraloop/receptor interactions.
Collapse
Affiliation(s)
- François Bélanger
- Département de Biochimie, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
48
|
Dolan MA, Babin P, Wollenzien P. Construction and analysis of base-paired regions of the 16S rRNA in the 30S ribosomal subunit determined by constraint satisfaction molecular modelling. J Mol Graph Model 2002; 19:495-513. [PMID: 11552678 DOI: 10.1016/s1093-3263(00)00097-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Structure models for each of the secondary structure regions from the Escherichia coli 16S rRNA (58 separate elements) were constructed using a constraint satisfaction modelling program to determine which helices deviated from classic A-form geometry. Constraints for each rRNA element included the comparative secondary structure, H-bonding conformations predicted from patterns of base-pair covariation, tertiary interactions predicted from covariation analysis, chemical probing data, rRNA-rRNA crosslinking information, and coordinates from solved structures. Models for each element were built using the MC-SYM modelling algorithm and subsequently were subjected to energy minimization to correct unfavorable geometry. Approximately two-thirds of the structures that result from the input data are very similar to A-form geometry. In the remaining instances, the presence of internal loops and bulges, some sequences (and sequence covariants) and accessory information require deviation from A-form geometry. The structures of regions containing more complex base-pairing arrangements including the central pseudoknot, the 530 region, and the pseudoknot involving base-pairing between G570-U571/A865-C866 and G861-C862/G867-C868 were predicted by this approach. These molecular models provide insight into the connection between patterns of H-bonding, the presence of unpaired nucleotides, and the overall geometry of each element.
Collapse
Affiliation(s)
- M A Dolan
- Department of Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-762, USA
| | | | | |
Collapse
|
49
|
Moine H, Ehresmann B, Ehresmann C. In vivo selection of functional variations in essential sites of ribosomal RNA. Methods 2001; 25:358-64. [PMID: 11860290 DOI: 10.1006/meth.2001.1248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The technique of "in vivo selection of functional ribosomes" is a genetic approach to dissecting the link between the structure and function of critical sites of rRNA. This method proceeds through selection of functional variants among cells that express ribosomes from a pool of rRNA-containing randomized sites. The selection of bacterial clones with functional ribosomes is based on the use of a plasmid carrying a rRNA operon in which a site of interest has been randomized and a point mutation conferring an antibiotic resistance has been introduced. Cells expressing functional ribosomes are then selected on medium containing the antibiotic. With this approach one can isolate at once all the possible variations at a given rRNA site that are able to sustain normal ribosome function. The identification of covariations in between several nucleotides that maintain wild-type ribosome activity can thus help demonstrate the function of specific interactions in rRNA.
Collapse
Affiliation(s)
- H Moine
- UPR 9002 du CNRS, 67084 Strasbourg, France.
| | | | | |
Collapse
|
50
|
Lee K, Holland-Staley CA, Cunningham PR. Genetic approaches to studying protein synthesis: effects of mutations at Psi516 and A535 in Escherichia coli 16S rRNA. J Nutr 2001; 131:2994S-3004S. [PMID: 11694635 DOI: 10.1093/jn/131.11.2994s] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A genetic system for the study of ribosomal RNA function and structure was developed. First, the ribosome binding sequence of the chloramphenicol acetyltransferase gene and the message binding sequence of 16S ribosomal RNA were randomly mutated and alternative highly functional sequences were selected and characterized. From this set of mutants, a single clone was chosen and subjected to a second round of mutagenesis to optimize the specificity of the system. In the resulting system, plasmid-encoded ribosomes efficiently and exclusively translate specific mRNA containing the appropriate ribosome binding sequences. This system allows facile isolation and analysis of mutations that would normally be lethal and allows direct selection of rRNA mutants with predetermined levels of ribosome function. The system was used to examine the effects of mutations at the sole pseudouridine (Psi) in Escherichia coli 16S rRNA which is located at position 516 of the conserved 530 loop. The nucleotide opposite Psi516 in the hairpin, A535, was also mutated. The data show that a pyrimidine (Psi or C) is required at position 516, while substitutions at position 535 reduce ribosome function by < 50%. A requirement for base pair formation between Psi516 and A535 was not indicated.
Collapse
Affiliation(s)
- K Lee
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | | | |
Collapse
|