1
|
Nair A, Kis Z. Bacteriophage RNA polymerases: catalysts for mRNA vaccines and therapeutics. Front Mol Biosci 2024; 11:1504876. [PMID: 39640848 PMCID: PMC11617373 DOI: 10.3389/fmolb.2024.1504876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
Decades of research on bacteriophage-derived RNA polymerases (RNAPs) were vital for synthesizing mRNA using the in vitro transcription (IVT) reaction for vaccines during the COVID-19 pandemic. The future success of mRNA-based products relies on the efficiency of its manufacturing process. mRNA manufacturing is a platform technology that complements the quality by design (QbD) paradigm. We applied the QbD framework in combination with key mechanistic insights on RNAP to assess the impact of IVT-associated critical process parameters (CPPs) and critical material attributes (CMAs) on the critical quality attributes (CQAs) of the mRNA drug substance and on manufacturing key performance indicators (KPIs). We also summarize the structure-function relationship of T7 RNAP and its engineered mutants aimed at enhancing the critical production of low-immunogenic mRNA therapeutics. Alternatives to the current set of standard RNAPs in large-scale IVTs are also discussed based on a phylogenetic background. Finally, the review dives into the economic implications of improving mRNA manufacturing based on the main enzyme, T7 RNAP, used to synthesize the mRNA drug substance. The review concludes by mapping the relationship between various CMAs and CPPs with different phases of the IVT reaction from a QbD perspective.
Collapse
Affiliation(s)
- Adithya Nair
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Zoltán Kis
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Sheffield, United Kingdom
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
2
|
Preinitiation Complex Loading onto mRNAs with Long versus Short 5' TLs. Int J Mol Sci 2022; 23:ijms232113369. [PMID: 36362157 PMCID: PMC9658832 DOI: 10.3390/ijms232113369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
The first step in translation initiation consists in the recruitment of the small ribosome onto the mRNA. This preinitiation complex (PIC) loads via interactions with eIF4F that has assembled on the 5' cap. It then scans the 5' TL (transcript leader) to locate a start site. The molecular architecture of the PIC-mRNA complex over the cap is beginning to be resolved. As part of this, we have been examining the role of the 5' TL length. We observed in vivo initiation events on AUG codons positioned within 3 nts of the 5' cap and robust initiation in vitro at start sites immediately downstream of the 5' end. Ribosomal toe-printing confirmed the positioning of these codons within the P site, indicating that the ribosome reads from the +1 position. To explore differences in the eIF4E-5' cap interaction in the context of long versus short TL, we followed the fate of the eIF4E-cap interaction using a novel solid phase in vitro expression assay. We observed that ribosome recruitment onto a short TL disrupts the eIF4E-cap contact releasing all the mRNA from the solid phase, whereas with a long the mRNA distributes between both phases. These results are discussed in the context of current recruitment models.
Collapse
|
3
|
Promoter Length Affects the Initiation of T7 RNA Polymerase In Vitro: New Insights into Promoter/Polymerase Co-evolution. J Mol Evol 2019; 88:179-193. [PMID: 31863129 DOI: 10.1007/s00239-019-09922-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 11/28/2019] [Indexed: 10/25/2022]
Abstract
Polymerases are integral factors of gene expression and are essential for the maintenance and transmission of genetic information. RNA polymerases (RNAPs) differ from other polymerases in that they can bind promoter sequences and initiate transcription de novo and this promoter recognition requires the presence of specific DNA binding domains in the polymerase. Bacteriophage T7 RNA polymerase (T7RNAP) is the prototype for single subunit RNA polymerases which include bacteriophage and mitochondrial RNAPs, and the structure and mechanistic aspects of transcription by T7 RNAP are well characterized. Here, we describe experiments to determine whether the prototype T7 RNAP is able to recognize and initiate at truncated promoters similar to mitochondrial promoters. Using an in vitro oligonucleotide transcriptional system, we have assayed transcription initiation activity by T7 RNAP. These assays have not only defined the limits of conventional de novo initiation on truncated promoters, but have identified novel activities of initiation of RNA synthesis. We propose that these novel activities may be vestigial activities surviving from the transition of single subunit polymerase initiation using primers to de novo initiation using promoters.
Collapse
|
4
|
Parlea L, Bindewald E, Sharan R, Bartlett N, Moriarty D, Oliver J, Afonin KA, Shapiro BA. Ring Catalog: A resource for designing self-assembling RNA nanostructures. Methods 2016; 103:128-37. [PMID: 27090005 PMCID: PMC6319925 DOI: 10.1016/j.ymeth.2016.04.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/14/2016] [Accepted: 04/14/2016] [Indexed: 01/02/2023] Open
Abstract
Designing self-assembling RNA ring structures based on known 3D structural elements connected via linker helices is a challenging task due to the immense number of motif combinations, many of which do not lead to ring-closure. We describe an in silico solution to this design problem by combinatorial assembly of RNA 3-way junctions, bulges, and kissing loops, and tabulating the cases that lead to ring formation. The solutions found are made available in the form of a web-accessible Ring Catalog. As an example of a potential use of this resource, we chose a predicted RNA square structure consisting of five RNA strands and demonstrate experimentally that the self-assembly of those five strands leads to the formation of a square-like complex. This is a demonstration of a novel "design by catalog" approach to RNA nano-structure generation. The URL https://rnajunction.ncifcrf.gov/ringdb can be used to access the resource.
Collapse
Affiliation(s)
- Lorena Parlea
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Eckart Bindewald
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Rishabh Sharan
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Nathan Bartlett
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Daniel Moriarty
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Jerome Oliver
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Kirill A Afonin
- Department of Chemistry, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| | - Bruce A Shapiro
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
5
|
Vahia AV, Martin CT. Direct tests of the energetic basis of abortive cycling in transcription. Biochemistry 2011; 50:7015-22. [PMID: 21776950 DOI: 10.1021/bi200620q] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although the synthesis of RNA from a DNA template is (and must be) a generally very stable process to enable transcription of kilobase transcripts, it has long been known that during initial transcription of the first 8-10 bases of RNA complexes are relatively unstable, leading to the release of short abortive RNA transcripts. A wealth of structural data in the past decade has led to specific mechanistic models elaborating an earlier "stressed intermediate" model for initial transcription. In this study, we test fundamental predictions of each of these models in the simple model enzyme T7 RNA polymerase. Nicking or gapping the nontranscribed template DNA immediately upstream of the growing hybrid yields no systematic reduction in abortive falloff, demonstrating clearly that compaction or "scrunching" of this DNA is not a source of functional instability. Similarly, transcription on DNA in which the nontemplate strand in the initially transcribed region is either mismatched or removed altogether leads to at most modest reductions in abortive falloff, indicating that expansion or "scrunching" of the bubble is not the primary driving force for abortive cycling. Finally, energetic stress derived from the observed steric clash of the growing hybrid against the N-terminal domain contributes at most mildly to abortive cycling, as the addition of steric bulk (additional RNA bases) at the upstream end of the hybrid does not lead to predicted positional shifts in observed abortive patterns. We conclude that while structural changes (scrunching) clearly occur in initial transcription, stress from these changes is not the primary force driving abortive cycling.
Collapse
Affiliation(s)
- Ankit V Vahia
- Program in Molecular & Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | | |
Collapse
|
6
|
Turingan RS, Liu C, Hawkins ME, Martin CT. Structural confirmation of a bent and open model for the initiation complex of T7 RNA polymerase. Biochemistry 2007; 46:1714-23. [PMID: 17253774 PMCID: PMC2517905 DOI: 10.1021/bi061905d] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
T7 RNA polymerase is known to induce bending of its promoter DNA upon binding, as evidenced by gel-shift assays and by recent end-to-end fluorescence energy transfer distance measurements. Crystal structures of promoter-bound and initially transcribing complexes, however, lack downstream DNA, providing no information on the overall path of the DNA through the protein. Crystal structures of the elongation complex do include downstream DNA and provide valuable guidance in the design of models for the complete melted bubble structure at initiation. In the current study, we test a specific structural model for the initiation complex, obtained by alignment of the C-terminal regions of the protein structures from both initiation and elongation and then simple transferal of the downstream DNA from the elongation complex onto the initiation complex. Fluorescence resonance energy transfer measurement of distances from a point upstream on the promoter DNA to various points along the downstream helix reproduce the expected helical periodicity in the distances and support the model's orientation and phasing of the downstream DNA. The model also makes predictions about the extent of melting downstream of the active site. By monitoring fluorescent base analogues incorporated at various positions in the DNA, we have mapped the downstream edge of the bubble, confirming the model. The initially melted bubble, in the absence of substrate, encompasses 7-8 bases and is sufficient to allow synthesis of a three base transcript before further melting is required. The results demonstrate that despite massive changes in the N-terminal portion of the protein and in the DNA upstream of the active site, the DNA downstream of the active site is virtually identical in both initiation and elongation complexes.
Collapse
Affiliation(s)
| | - Cuihua Liu
- Department of Chemistry, University of Massachusetts, Amherst
| | | | - Craig T. Martin
- Department of Chemistry, University of Massachusetts, Amherst
- *To whom correspondence should be addressed. Phone (413) 545-3299. Fax: (413) 545-4490. E–mail:
| |
Collapse
|
7
|
Martin CT, Esposito EA, Theis K, Gong P. Structure and function in promoter escape by T7 RNA polymerase. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 80:323-47. [PMID: 16164978 DOI: 10.1016/s0079-6603(05)80008-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
MESH Headings
- Bacteriophage T7/genetics
- Bacteriophage T7/metabolism
- Base Sequence
- DNA, Viral/chemistry
- DNA, Viral/genetics
- DNA, Viral/metabolism
- DNA-Directed RNA Polymerases/chemistry
- DNA-Directed RNA Polymerases/genetics
- DNA-Directed RNA Polymerases/metabolism
- Models, Biological
- Models, Molecular
- Nucleic Acid Conformation
- Peptide Chain Elongation, Translational
- Peptide Chain Initiation, Translational
- Promoter Regions, Genetic
- Protein Conformation
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Transcription, Genetic
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Craig T Martin
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | |
Collapse
|
8
|
Weitzke EL, Ortoleva PJ. Simulating cellular dynamics through a coupled transcription, translation, metabolic model. Comput Biol Chem 2004; 27:469-80. [PMID: 14642755 DOI: 10.1016/j.compbiolchem.2003.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In order to predict cell behavior in response to changes in its surroundings or to modifications of its genetic code, the dynamics of a cell are modeled using equations of metabolism, transport, transcription and translation implemented in the Karyote software. Our methodology accounts for the organelles of eukaryotes and the specialized zones in prokaryotes by dividing the volume of the cell into discrete compartments. Each compartment exchanges mass with others either through membrane transport or with a time delay effect associated with molecular migration. Metabolic and macromolecular reactions take place in user-specified compartments. Coupling among processes are accounted for and multiple scale techniques allow for the computation of processes that occur on a wide range of time scales. Our model is implemented to simulate the evolution of concentrations for a user-specifiable set of molecules and reactions that participate in cellular activity. The underlying equations integrate metabolic, transcription and translation reaction networks and provide a framework for simulating whole cells given a user-specified set of reactions. A rate equation formulation is used to simulate transcription from an input DNA sequence while the resulting mRNA is used via ribosome-mediated polymerization kinetics to accomplish translation. Feedback associated with the creation of species necessary for metabolism by the mRNA and protein synthesis modifies the rates of production of factors (e.g. nucleotides and amino acids) that affect the dynamics of transcription and translation. The concentrations of predicted proteins are compared with time series or steady state experiments. The expression and sequence of the predicted proteins are compared with experimental data via the construction of synthetic tryptic digests and associated mass spectra. We present the mathematical model showing the coupling of transcription, translation and metabolism in Karyote and illustrate some of its unique characteristics.
Collapse
|
9
|
Kuzmine I, Gottlieb PA, Martin CT. Binding of the priming nucleotide in the initiation of transcription by T7 RNA polymerase. J Biol Chem 2003; 278:2819-23. [PMID: 12427761 DOI: 10.1074/jbc.m208405200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Unlike DNA polymerases, an RNA polymerase must initiate transcription de novo, that is binding of the initiating (+1) nucleoside triphosphate must be achieved without benefit of the cooperative binding energetics of an associated primer. Since a single Watson-Crick base pair is not stable in solution, RNA polymerases might be expected to provide additional stabilizing interactions to facilitate binding and positioning of the initiating (priming) nucleoside triphosphate at position +1. Consistent with base-specific stabilizing interactions, of the 17 T7 RNA polymerase promoters in the phage genome, 15 begin with guanine. In this work, we demonstrate that the purine N-7 is important in the utilization of the initial substrate GTP. The fact that on a template encoding AG as the first two bases in the transcript (as in the remaining two of the T7 genome) transcription starts predominantly (but not exclusively) at the G at position +2 additionally implicates the purine O-6 as an important recognition element in the major groove. Finally, results suggest that these interactions serve primarily to position the initiating base in the active site. It is proposed that T7 RNA polymerase interacts directly with the Hoogsteen side of the initial priming GTP (most likely via an interaction with an arginine side chain in the protein) to provide the extra stability required at this unique step in transcription.
Collapse
Affiliation(s)
- Iaroslav Kuzmine
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | |
Collapse
|
10
|
Kukarin A, Rong M, McAllister WT. Exposure of T7 RNA polymerase to the isolated binding region of the promoter allows transcription from a single-stranded template. J Biol Chem 2003; 278:2419-24. [PMID: 12441338 DOI: 10.1074/jbc.m210058200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
While the binding region of the T7 promoter must be double-stranded (ds) to function, the non-template strand in the initiation region is dispensable, and a promoter that lacks this element allows efficient initiation. To determine whether the binding region serves merely to recruit the RNA polymerase (RNAP) to the vicinity of a melted initiation region or provides other functions, we utilized a GAL4-T7 RNAP fusion protein to provide an independent binding capacity to the RNAP. When the GAL4-T7 RNAP was recruited to a single-stranded (ss) promoter via a nearby Gal4 recognition sequence, no transcription was observed. However, transcription from the ss promoter could be activated by the addition, in trans, of a ds hairpin loop that contains only the binding region of the promoter. The same results were obtained in the absence of the GAL4 recognition sequence in the template and were also observed with wild type enzyme. Gel-shift experiments indicate that exposure of the RNAP to the isolated binding region facilitates recruitment of the ss template, but that the binding region is displaced from the complex prior to initiation. We conclude that exposure of the RNAP to the isolated binding region reorganizes the enzyme, allowing it to bind to the ss template. These findings have potential implications with regard to mechanisms of promoter binding and melting.
Collapse
Affiliation(s)
- Alexander Kukarin
- Morse Institute of Molecular Genetics, Department of Microbiology and Immunology, SUNY Downstate Medical Center, Brooklyn, New York 11203, USA
| | | | | |
Collapse
|
11
|
Stano NM, Levin MK, Patel SS. The +2 NTP binding drives open complex formation in T7 RNA polymerase. J Biol Chem 2002; 277:37292-300. [PMID: 12151383 DOI: 10.1074/jbc.m201600200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription initiation as catalyzed by T7 RNA polymerase consists primarily of promoter binding, strand separation, nucleotide binding, and synthesis of the first phosphodiester bond. The promoter strand separation process occurs at a very fast rate, but promoter opening is incomplete in the absence of the initiating NTPs. In this paper, we investigate how initiating NTPs affect the kinetics and thermodynamics of open complex formation. Transient state kinetic studies show that the open complex, ED(o), is formed via an intermediate ED(c), and the conversion of ED(c) to ED(o) occurs with an unfavorable equilibrium constant. In the presence of the initiating NTP that base-pairs with the template at position +2, the process of open complex formation is nearly complete. Our studies reveal that the nucleotide that drives open complex formation needs to be a triphosphate and to be correctly base-paired with the template. These results indicate that the melted template DNA in the open complex is positioned to bind the +2 NTP. The addition of +1 NTP alone does not stabilize the open complex; nor is it required for +2 NTP binding. However, there appears to be cooperativity in initiating NTP binding in that the binding of +2 NTP facilitates +1 NTP binding. The dissection of the initiation pathway provides insights into how open complex formation steps that are sensitive to the promoter sequence upstream from the initiation start site modulate the affinity of initiating NTPs and allow transcription initiation to be regulated by initiating NTP concentration.
Collapse
Affiliation(s)
- Natalie M Stano
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
12
|
Brieba LG, Padilla R, Sousa R. Role of T7 RNA polymerase His784 in start site selection and initial transcription. Biochemistry 2002; 41:5144-9. [PMID: 11955062 DOI: 10.1021/bi016057v] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The role of steric constraints vs sequence preference in start site selection by T7 RNA polymerase was investigated by using a series of synthetic promoters in which the preferred template strand 'CC' initiation sequence was moved away from its normal position relative to the -17 to -6 element of the T7 promoter. It was found that the CC sequence directs efficient initiation if placed 1 or 2 nt downstream of its normal position, but not if placed upstream, or more than 2 nt downstream, of +1. Mutagenesis revealed that part of the bias to initiate with GTP is due to an interaction between histidine 784 and the 2-amino group of a guanosine bound in the initiating triphosphate position. This interaction is also important for holding short transcripts within the transcription complex during initial transcription.
Collapse
Affiliation(s)
- Luis G Brieba
- Department of Biochemistry, University of Texas Health Sciences Center, 7703 Floyd Curl Drive, San Antonio, Texas 78284-7760, USA
| | | | | |
Collapse
|
13
|
Grove A, Adessa MS, Geiduschek E, Kassavetis GA. Marking the start site of RNA polymerase III transcription: the role of constraint, compaction and continuity of the transcribed DNA strand. EMBO J 2002; 21:704-14. [PMID: 11847118 PMCID: PMC125851 DOI: 10.1093/emboj/21.4.704] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2001] [Revised: 12/13/2001] [Accepted: 12/13/2001] [Indexed: 01/22/2023] Open
Abstract
The effects of breaks in the individual strands of an RNA polymerase III promoter on initiation of transcription have been examined. Single breaks have been introduced at 2 bp intervals in a 24 bp segment that spans the transcriptional start site of the U6 snRNA gene promoter. Their effects on transcription are asymmetrically distributed: transcribed (template) strand breaks downstream of bp-14 (relative to the normal start as +1) systematically shift the start site, evidently by disrupting the normal mechanism that measures distance from DNA-bound TBP. Breaks placed close to the normal start site very strongly inhibit transcription. Breaks in the non-transcribed strand generate only minor effects on transcription. A structure-based model interprets these observations and explains how the transcribed strand is used to locate the transcriptional start site.
Collapse
Affiliation(s)
- Anne Grove
- Division of Biology and Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA
Present address: Louisiana State University, Division of Biochemistry and Molecular Biology, 534 Choppin Hall, Baton Rouge, LA 70803, USA Corresponding authors e-mail: or
| | | | | | - George A. Kassavetis
- Division of Biology and Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA
Present address: Louisiana State University, Division of Biochemistry and Molecular Biology, 534 Choppin Hall, Baton Rouge, LA 70803, USA Corresponding authors e-mail: or
| |
Collapse
|
14
|
McIntosh CM, Esposito EA, Boal AK, Simard JM, Martin CT, Rotello VM. Inhibition of DNA transcription using cationic mixed monolayer protected gold clusters. J Am Chem Soc 2001; 123:7626-9. [PMID: 11480984 DOI: 10.1021/ja015556g] [Citation(s) in RCA: 232] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Efficient recognition of DNA is a prerequisite for the development of biological effectors, including transcription and translation regulators, transfection vectors, and DNA sensors. To provide an effective scaffold for multivalent interactions with DNA, we have fabricated mixed monolayer protected gold clusters (MMPCs) functionalized with tetraalkylammonium ligands that can interact with the DNA backbone via charge complementarity. Binding studies indicate that the MMPCs and DNA form a charge-neutralized, nonaggregated assembly. The interactions controlling these assemblies are highly efficient, completely inhibiting transcription by T7 RNA polymerase in vitro.
Collapse
Affiliation(s)
- C M McIntosh
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | | | | | |
Collapse
|
15
|
Jiang M, Rong M, Martin C, McAllister WT. Interrupting the template strand of the T7 promoter facilitates translocation of the DNA during initiation, reducing transcript slippage and the release of abortive products. J Mol Biol 2001; 310:509-22. [PMID: 11439019 DOI: 10.1006/jmbi.2001.4793] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have explored the effects of a variety of structural and sequence changes in the initiation region of the phage T7 promoter on promoter function. At promoters in which the template strand (T strand) is intact, initiation is directed a minimal distance of 5 nt downstream from the binding region. Although the sequence of the DNA surrounding the start site is not critical for correct initiation, it is important for melting of the promoter and stabilization of the initiation complex. At promoters in which the integrity of T strand is interrupted by nicks or gaps between -5 and -2 the enzyme continues to initiate predominately at +1. However, under these conditions there is a decrease in the release of abortive products of 8-10 nt, a decrease in the synthesis of poly(G) products (which arise by slippage of the nascent transcript), and a defect in displacement of the RNA. We propose that unlinking the binding and initiation regions of the T strand changes the manner in which this strand is retained in the abortive complex, reducing or eliminating the need to pack or "scrunch" the strand into the complex during initiation and lowering a thermodynamic barrier to its translocation.
Collapse
Affiliation(s)
- M Jiang
- Morse Institute of Molecular Genetics, Department of Microbiology and Immunology, SUNY Health Science Center at Brooklyn, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
| | | | | | | |
Collapse
|
16
|
Liu C, Martin CT. Fluorescence characterization of the transcription bubble in elongation complexes of T7 RNA polymerase. J Mol Biol 2001; 308:465-75. [PMID: 11327781 DOI: 10.1006/jmbi.2001.4601] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The various kinetic and thermodynamic models for transcription elongation all require an understanding of the nature of the melted bubble which moves with the RNA polymerase active site. Is the general nature of the bubble system-dependent or are there common energetic requirements which constrain a bubble in any RNA polymerases? T7 RNA polymerase is one of the simplest RNA polymerases and is the system for which we have the highest-resolution structural information. However, there is no high-resolution information available for a stable elongation complex. In order to directly map melted regions of the DNA in a functionally paused elongation complex, we have introduced fluorescent probes site-specifically into the DNA. Like 2-aminopurine, which substitutes for adenine bases, the fluorescence intensity of the new probe, pyrrolo-dC, which substitutes for cytosine bases, is sensitive to its environment. Specifically, the fluorescence is quenched in duplex DNA relative to its fluorescence in single-stranded DNA, such that the probe provides direct information on local melting of the DNA. Placement of this new probe at specific positions in the non-template strand shows clearly that the elongation bubble extends about eight bases upstream of the pause site, while 2-aminopurine probes show that the elongation bubble extends only about one nucleotide downstream of the last base incorporated. The positioning of the active site very close to the downstream edge of the bubble is consistent with previous studies and with similar studies of the promoter-bound, pre-initiation complex. The results show clearly that the RNA:DNA hybrid can be no more than eight nucleotides in length, and characterization of different paused species suggests preliminarily that these dimensions are not sequence or position dependent. Finally, the results confirm that the ternary complex is not stable with short lengths of transcript, but persists for a substantial time when paused in the middle or at the (runoff) end of duplex DNA.
Collapse
Affiliation(s)
- C Liu
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | | |
Collapse
|
17
|
Kim MJ, Zhong W, Hong Z, Kao CC. Template nucleotide moieties required for de novo initiation of RNA synthesis by a recombinant viral RNA-dependent RNA polymerase. J Virol 2000; 74:10312-22. [PMID: 11044075 PMCID: PMC110905 DOI: 10.1128/jvi.74.22.10312-10322.2000] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The recombinant RNA-dependent RNA polymerase of the bovine viral diarrhea virus specifically requires a cytidylate at the 3' end for the de novo initiation of RNA synthesis (C. C. Kao, A. M. Del Vecchio, and W. Zhong, Virology 253:1-7, 1999). Using RNAs containing nucleotide analogs, we found that the N3 and C4-amino group at the initiation cytidine were required for RNA synthesis. However, the ribose C2'-hydroxyl of the initiating cytidylate can accept several modifications and retain the ability to direct synthesis. The only unacceptable modification is a protonated C2'-amino group. Quite strikingly, the recognition of the functional groups for the initiation cytidylate and other template nucleotides are different. For example, a C5-methyl group in cytidine can direct RNA synthesis at all template positions except at the initiation cytidylate and C2'-amino modifications are tolerated better after the +11 position. When a 4-thiouracil (4sU) base analog that allows only imperfect base pairing with the nascent RNA is placed at different positions in the template, the efficiency of synthesis is correlated with the calculated stability of the template-nascent RNA duplex adjacent to the position of the 4sU. These results define the requirements for the specific interactions required for the initiation of RNA synthesis and will be compared to the mechanisms of initiation by other RNA-dependent and DNA-dependent RNA polymerases.
Collapse
Affiliation(s)
- M J Kim
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | | | | | |
Collapse
|
18
|
Imburgio D, Rong M, Ma K, McAllister WT. Studies of promoter recognition and start site selection by T7 RNA polymerase using a comprehensive collection of promoter variants. Biochemistry 2000; 39:10419-30. [PMID: 10956032 DOI: 10.1021/bi000365w] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have examined the behavior of T7 RNA polymerase (RNAP) at a set of promoter variants having all possible single base pair (bp) substitutions. The polymerase exhibits an absolute requirement for initiation with a purine and a strong preference for initiation with GTP vs ATP. Promoter variants that would require initiation at the normal start site (+1) with CTP or UTP result in a shift in initiation to +2 (with GTP). However, the choice of start site is little affected by base substitutions elsewhere in the initiation region. Furthermore, when the initiation region is shifted either one nucleotide (nt) closer or 1 nt further away from the binding region, transcription still begins the same distance downstream. These results indicate that the sequence around the start site is of little importance in start site selection and that initiation is directed a minimum distance of 5 nt downstream from the binding region. At promoters that initiate with +1 GGG, T7 RNAP synthesizes a ladder of poly(G) products as a result of slippage of the transcript on the three C residues in the template strand from +1 to +3. At promoter variants in which there is an opportunity to form a longer RNA-DNA hybrid, this G-ladder is enhanced and extended. This observation is not in agreement with recent suggestions that the RNA-DNA hybrid in the initiation complex cannot extend further than 3 bps upstream from the active site [Cheetham, G., Jeruzalmi, D., and Steitz, T. A. (1999) Nature 399, 80-83].
Collapse
Affiliation(s)
- D Imburgio
- Morse Institute of Molecular Genetics, Department of Microbiology and Immunology, State University of New York, Health Science Center at Brooklyn, 450 Clarkson Avenue, Brooklyn, New York 11203-2098, USA
| | | | | | | |
Collapse
|
19
|
Abstract
Transcription is the fundamental process by which RNA is synthesized by RNA polymerases on double-stranded DNA templates. One structurally simple RNA polymerase is encoded by bacteriophage T7. T7 RNA polymerase is an excellent candidate for studying structural aspects of transcription, because unlike the eucaryotic and bacterial RNA polymerases, it is a single subunit enzyme and does not require additional factors to carry out the entire process of transcription from start to finish. An important advantage of studying transcription using this enzyme is that the high-resolution crystal structure of T7 RNA polymerase has been solved. However, a cocrystal structure of the polymerase complexed with promoter has not yet been published. Here, we have used cross-linking techniques to understand the interaction of promoter with T7 RNA polymerase. We constructed promoters that were substituted with the photo-cross-linkable nucleotide 5-iodo uracil at every dT in the promoter from -17 to -1. This substitution replaces the 5-methyl in dT with an iodine atom. The substituted promoters were photo-cross-linked to T7 RNAP, and the efficiency of cross-linking was quantitated at every position. In the melting domain, the strongest contacts occurred at -3 and at -1 on the template strand while very weak cross-linking was seen at -2 and at -4 on the nontemplate strand. In the binding domain, the strongest contacts were seen at -16, -15, and -13 and at -10 on the template strand while at -17 and -14 on the nontemplate strand very weak cross-linking was observed. Cross-linking was poor in the intervening region between the binding and the melting domains. These results suggested that, in the T7 RNA polymerase-promoter complex, the polymerase molecule mainly contacts the template bases in the TATA box while the upstream contacts are used as an anchor for DNA binding. For a systematic study designed to probe the nature of base-specific interactions in the polymerase-promoter complex, we used neutral salts from the Hofmeister series. In general, the order of perturbation was sulfate > citrate > acetate for anions and ammonium > magnesium > potassium for cations. Using acrylamide, a neutral hydrophobic agent to probe for nonionic contacts, we observed that at -2, -4, and -17 the contacts had a hydrophobic component, while at many other positions there was no significant effect, suggesting that the contacts in the promoter-polymerase complexes were predominantly ionic but at certain positions nonionic interactions also existed. To localize a specific interaction in the melting domain, we proteolyzed the cross-linked T7 RNAP and analyzed the fragments using gel electrophoresis, mass spectrometry, and amino acid composition. High-resolution mapping indicated that amino acid residues 614-627 may be in the vicinity of the melting domain. Specifically, Y623 may contact -3 on the template strand.
Collapse
Affiliation(s)
- S Sastry
- Laboratory of Molecular Genetics, The Rockefeller University, New York 10021, USA.
| | | |
Collapse
|
20
|
Tunitskaya VL, Rusakova EE, Memelova LV, Kochetkov SN, Van Aerschot A, Herdewijn P, Efimtseva EV, Ermolinsky BS, Mikhailov SN. Mapping of T7 RNA polymerase active site with novel reagents--oligonucleotides with reactive dialdehyde groups. FEBS Lett 1999; 442:20-4. [PMID: 9923596 DOI: 10.1016/s0014-5793(98)01625-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Oligonucleotides of a novel type containing 2'-O-beta-ribofuranosyl-cytidine were synthesized and further oxidized to yield T7 consensus promoters with dialdehyde groups. Both types of oligonucleotides were tested as templates, inhibitors, and affinity reagents for T7 RNA polymerase and its mutants. All oligonucleotides tested retained high affinity towards the enzyme. Wild-type T7 RNA polymerase and most of the mutants did not react irreversibly with oxidized oligonucleotides. Affinity labeling was observed only with the promoter-containing dialdehyde group in position (+2) of the coding chain and one of the mutants tested, namely Y639K. These results allowed us to propose the close proximity of residue 639 and the initiation region of the promoter within initiation complex. We suggest the oligonucleotides so modified may be of general value for the study of protein-nucleic acid interactions.
Collapse
Affiliation(s)
- V L Tunitskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Stawicki SS, Kao CC. Spatial perturbations within an RNA promoter specifically recognized by a viral RNA-dependent RNA polymerase (RdRp) reveal that RdRp can adjust its promoter binding sites. J Virol 1999; 73:198-204. [PMID: 9847322 PMCID: PMC103823 DOI: 10.1128/jvi.73.1.198-204.1999] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
RNA synthesis during viral replication requires specific recognition of RNA promoters by the viral RNA-dependent RNA polymerase (RdRp). Four nucleotides (-17, -14, -13, and -11) within the brome mosaic virus (BMV) subgenomic core promoter are required for RNA synthesis by the BMV RdRp (R. W. Siegel et al., Proc. Natl. Acad. Sci. USA 94:11238-11243, 1997). The spatial requirements for these four nucleotides and the initiation (+1) cytidylate were examined in RNAs containing nucleotide insertions and deletions within the BMV subgenomic core promoter. Spatial perturbations between nucleotides -17 and -11 resulted in decreased RNA synthesis in vitro. However, synthesis was still dependent on the key nucleotides identified in the wild-type core promoter and the initiation cytidylate. In contrast, changes between nucleotides -11 and +1 had a less severe effect on RNA synthesis but resulted in RNA products initiated at alternative locations in addition to the +1 cytidylate. The results suggest a degree of flexibility in the recognition of the subgenomic promoter by the BMV RdRp and are compared with functional regions in other DNA and RNA promoters.
Collapse
Affiliation(s)
- S S Stawicki
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | |
Collapse
|
22
|
He B, Kukarin A, Temiakov D, Chin-Bow ST, Lyakhov DL, Rong M, Durbin RK, McAllister WT. Characterization of an unusual, sequence-specific termination signal for T7 RNA polymerase. J Biol Chem 1998; 273:18802-11. [PMID: 9668054 DOI: 10.1074/jbc.273.30.18802] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have characterized an unusual type of termination signal for T7 RNA polymerase that requires a conserved 7-base pair sequence in the DNA (ATCTGTT in the non-template strand). Each of the nucleotides within this sequence is critical for function, as any substitutions abolish termination. The primary site of termination occurs 7 nucleotides downstream from this sequence but is context-independent (that is, the sequence around the site of termination, and in particular the nucleotide at the site of termination, need not be conserved). Termination requires the presence of the conserved sequence and its complement in duplex DNA and is abolished or diminished if the signal is placed downstream of regions in which the non-template strand is missing or mismatched. Under the latter conditions, much of the RNA product remains associated with the template. The latter results suggest that proper resolution of the transcription bubble at its trailing edge and/or displacement of the RNA product are required for termination at this class of signal.
Collapse
Affiliation(s)
- B He
- Department of Microbiology and Immunology, Morse Institute for Molecular Genetics, State University of New York, Health Science Center, Brooklyn, New York 11203-2098, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Ujvári A, Martin CT. Identification of a minimal binding element within the T7 RNA polymerase promoter. J Mol Biol 1997; 273:775-81. [PMID: 9367770 DOI: 10.1006/jmbi.1997.1350] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The T7 RNA polymerase promoter has been proposed to contain two domains: the binding region upstream of position -5 is recognized through apparently traditional duplex contacts, while the catalytic domain downstream of position -5 is bound in a melted configuration. This model is tested by following polymerase binding to a series of synthetic oligonucleotides representing truncations of the consensus promoter sequence. The increase in the fluorescence anisotropy of a rhodamine dye linked to the upstream end of the promoter provides a very sensitive measure of enzyme binding in simple thermodynamic titrations, and allows the determination of both increases and decreases in the dissociation constant. The best fit value of Kd=4.0 nM for the native promoter is in good agreement with previous fluorescence and steady state measurements. Deletion of the downstream DNA up to position -1 or to position -5 leads to a fivefold increase in binding, while further sequential single-base deletions upstream result in 20 and 500-fold decreases in binding. These results indicate that the (duplex) region of the promoter upstream of and including position -5 is both necessary and sufficient for tight binding, and represents the core binding element of the promoter. We propose a model in which part of the upstream binding energy is used by T7 RNA polymerase to melt the downstream initiation region of the promoter. We also show that the presence of magnesium is necessary for optimal binding, but not for specific enzyme-promoter complex formation, and we propose that magnesium is not required for melting of the promoter.
Collapse
Affiliation(s)
- A Ujvári
- Department of Chemistry, University of Massachusetts, Amherst, MA 010003-4510, USA
| | | |
Collapse
|