1
|
Hao Y, Hulscher RM, Zinshteyn B, Woodson SA. Late consolidation of rRNA structure during co-transcriptional assembly in E. coli by time-resolved DMS footprinting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.574868. [PMID: 38260533 PMCID: PMC10802402 DOI: 10.1101/2024.01.10.574868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The production of new ribosomes requires proper folding of the rRNA and the addition of more than 50 ribosomal proteins. The structures of some assembly intermediates have been determined by cryo-electron microscopy, yet these structures do not provide information on the folding dynamics of the rRNA. To visualize the changes in rRNA structure during ribosome assembly in E. coli cells, transcripts were pulse-labeled with 4-thiouridine and the structure of newly made rRNA probed at various times by dimethyl sulfate modification and mutational profiling sequencing (4U-DMS-MaPseq). The in-cell DMS modification patterns revealed that many long-range rRNA tertiary interactions and protein binding sites through the 16S and 23S rRNA remain partially unfolded 1.5 min after transcription. By contrast, the active sites were continually shielded from DMS modification, suggesting that these critical regions are guarded by cellular factors throughout assembly. Later, bases near the peptidyl tRNA site exhibited specific rearrangements consistent with the binding and release of assembly factors. Time-dependent structure-probing in cells suggests that many tertiary interactions throughout the new ribosomal subunits remain mobile or unfolded until the late stages of subunit maturation.
Collapse
Affiliation(s)
- Yumeng Hao
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ryan M. Hulscher
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Boris Zinshteyn
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
| | - Sarah A. Woodson
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
2
|
Abstract
Protein synthesis involves nearly a third of the total molecules in a typical bacterial cell. Within the cell, protein synthesis is performed by the ribosomes, and research over several decades has investigated ribosomal formation, structure, and function. This review provides an overview of the current understanding of the assembly of the Escherichia coli 30S ribosomal subunit. The E. coli 30S subunit contains one rRNA molecule (16S) and 21 ribosomal proteins (r-proteins; S1 to S21). The formation of functional subunits can occur as a self-assembly process in vitro; i.e., all the information required for the formation of active ribosomes resides in the primary sequences of the r-proteins and rRNAs. In vitro reconstitution of functional 30S subunits is carried out by using a mixture of TP30, individually purified natural or recombinant r-proteins, and natural 16S rRNA. Chemical probing and primer extension analysis have been used extensively to monitor changes in the reactivities of nucleotides in 16S rRNA during the in vitro reconstitution of 30S subunits. The potential roles for r-proteins in 30S subunit assembly were determined by omitting single proteins in reconstitution experiments. The RNPs resulting from single protein omissions were examined in terms of their composition and function to determine the roles of the absent proteins. Recent developments in understanding the structure of the 30S subunit have led to speculation about roles for some of the r-proteins in assembly. The crystal structures of the 30S subunit (1, 2) and the 70S ribosome (3) reveal details of the r-protein and rRNA interactions.
Collapse
|
3
|
Gupta N, Culver GM. Multiple in vivo pathways for Escherichia coli small ribosomal subunit assembly occur on one pre-rRNA. Nat Struct Mol Biol 2014; 21:937-43. [PMID: 25195050 PMCID: PMC4355579 DOI: 10.1038/nsmb.2887] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 08/07/2014] [Indexed: 01/01/2023]
Abstract
Processing of transcribed precursor ribosomal RNA (pre-rRNA) to a mature state is a conserved aspect of ribosome biogenesis in vivo. We developed an affinity-purification system to isolate and analyze in vivo-formed pre-rRNA-containing ribonucleoprotein (RNP) particles (rRNPs) from wild-type E. coli. We observed that the first processing intermediate of pre-small subunit (pre-SSU) rRNA is a platform for biogenesis. These pre-SSU-containing RNPs have differing ribosomal-protein and auxiliary factor association and rRNA folding. Each RNP lacks the proper architecture in functional regions, thus suggesting that checkpoints preclude immature subunits from entering the translational cycle. This work offers in vivo snapshots of SSU biogenesis and reveals that multiple pathways exist for the entire SSU biogenesis process in wild-type E. coli. These findings have implications for understanding SSU biogenesis in vivo and offer a general strategy for analysis of RNP biogenesis.
Collapse
Affiliation(s)
- Neha Gupta
- Department of Biology, University of Rochester, Rochester, New York, USA
| | - Gloria M Culver
- 1] Department of Biology, University of Rochester, Rochester, New York, USA. [2] Center for RNA Biology, University of Rochester, Rochester, New York, USA
| |
Collapse
|
4
|
Wildauer M, Zemora G, Liebeg A, Heisig V, Waldsich C. Chemical probing of RNA in living cells. Methods Mol Biol 2014; 1086:159-76. [PMID: 24136603 DOI: 10.1007/978-1-62703-667-2_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
RNAs need to adopt a specific architecture to exert their task in cells. While significant progress has been made in describing RNA folding landscapes in vitro, understanding intracellular RNA structure formation is still in its infancy. This is in part due to the complex nature of the cellular environment but also to the limited availability of suitable methodologies. To assess the intracellular structure of large RNAs, we recently applied a chemical probing technique and a metal-induced cleavage assay in vivo. These methods are based on the fact that small molecules, like dimethyl sulfate (DMS), or metal ions, such as Pb(2+), penetrate and spread throughout the cell very fast. Hence, these chemicals are able to modify accessible RNA residues or to induce cleavage of the RNA strand in the vicinity of a metal ion in living cells. Mapping of these incidents allows inferring information on the intracellular conformation, metal ion binding sites or ligand-induced structural changes of the respective RNA molecule. Importantly, in vivo chemical probing can be easily adapted to study RNAs in different cell types.
Collapse
Affiliation(s)
- Michael Wildauer
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
5
|
Lai D, Proctor JR, Meyer IM. On the importance of cotranscriptional RNA structure formation. RNA (NEW YORK, N.Y.) 2013; 19:1461-1473. [PMID: 24131802 PMCID: PMC3851714 DOI: 10.1261/rna.037390.112] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The expression of genes, both coding and noncoding, can be significantly influenced by RNA structural features of their corresponding transcripts. There is by now mounting experimental and some theoretical evidence that structure formation in vivo starts during transcription and that this cotranscriptional folding determines the functional RNA structural features that are being formed. Several decades of research in bioinformatics have resulted in a wide range of computational methods for predicting RNA secondary structures. Almost all state-of-the-art methods in terms of prediction accuracy, however, completely ignore the process of structure formation and focus exclusively on the final RNA structure. This review hopes to bridge this gap. We summarize the existing evidence for cotranscriptional folding and then review the different, currently used strategies for RNA secondary-structure prediction. Finally, we propose a range of ideas on how state-of-the-art methods could be potentially improved by explicitly capturing the process of cotranscriptional structure formation.
Collapse
|
6
|
Clatterbuck Soper SF, Dator RP, Limbach PA, Woodson SA. In vivo X-ray footprinting of pre-30S ribosomes reveals chaperone-dependent remodeling of late assembly intermediates. Mol Cell 2013; 52:506-16. [PMID: 24207057 DOI: 10.1016/j.molcel.2013.09.020] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 08/20/2013] [Accepted: 09/19/2013] [Indexed: 12/27/2022]
Abstract
Assembly of 30S ribosomal subunits from their protein and RNA components requires extensive refolding of the 16S rRNA and is assisted by 10-20 assembly factors in bacteria. We probed the structures of 30S assembly intermediates in E. coli cells, using a synchrotron X-ray beam to generate hydroxyl radical in the cytoplasm. Widespread differences between mature and pre-30S complexes in the absence of assembly factors RbfA and RimM revealed global reorganization of RNA-protein interactions prior to maturation of the 16S rRNA and showed how RimM reduces misfolding of the 16S 3' domain during transcription in vivo. Quantitative (14)N/(15)N mass spectrometry of affinity-purified pre-30S complexes confirmed the absence of tertiary assembly proteins and showed that N-terminal acetylation of proteins S18 and S5 correlates with correct folding of the platform and central pseudoknot. Our results indicate that cellular factors delay specific RNA folding steps to ensure the quality of assembly.
Collapse
Affiliation(s)
- Sarah F Clatterbuck Soper
- Cell, Molecular, and Developmental Biology and Biophysics Program, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218-2685, USA
| | | | | | | |
Collapse
|
7
|
Bubunenko M, Court DL, Refaii AA, Saxena S, Korepanov A, Friedman DI, Gottesman ME, Alix JH. Nus transcription elongation factors and RNase III modulate small ribosome subunit biogenesis in Escherichia coli. Mol Microbiol 2013; 87:382-93. [PMID: 23190053 PMCID: PMC3545037 DOI: 10.1111/mmi.12105] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2012] [Indexed: 01/02/2023]
Abstract
Escherichia coli NusA and NusB proteins bind specific sites, such as those in the leader and spacer sequences that flank the 16S region of the ribosomal RNA transcript, forming a complex with RNA polymerase that suppresses Rho-dependent transcription termination. Although antitermination has long been the accepted role for Nus factors in rRNA synthesis, we propose that another major role for the Nus-modified transcription complex in rrn operons is as an RNA chaperone insuring co-ordination of 16S rRNA folding and RNase III processing that results in production of proper 30S ribosome subunits. This contrarian proposal is based on our studies of nusA and nusB cold-sensitive mutations that have altered translation and at low temperature accumulate 30S subunit precursors. Both phenotypes are suppressed by deletion of RNase III. We argue that these results are consistent with the idea that the nus mutations cause altered rRNA folding that leads to abnormal 30S subunits and slow translation. According to this idea, functional Nus proteins stabilize an RNA loop between their binding sites in the 5' RNA leader and on the transcribing RNA polymerase, providing a topological constraint on the RNA that aids normal rRNA folding and processing.
Collapse
Affiliation(s)
- Mikhail Bubunenko
- Frederick National Laboratory for Cancer Research, Basic Research Program, SAIC-Frederick, Inc., Frederick, Maryland 21702, USA
- Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, USA
| | - Donald L. Court
- Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, USA
| | - Abdalla Al Refaii
- CNRS UPR9073, associated with University of Paris Diderot, Sorbonne Paris Cite Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005 Paris
| | - Shivalika Saxena
- Columbia University Medical Center, Departments of Microbiology and Biochemistry and Molecular Biophysics, New York, New York 10032, USA
| | - Alexey Korepanov
- Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, USA
| | - David I. Friedman
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Max E. Gottesman
- Columbia University Medical Center, Departments of Microbiology and Biochemistry and Molecular Biophysics, New York, New York 10032, USA
| | - Jean-Hervé Alix
- CNRS UPR9073, associated with University of Paris Diderot, Sorbonne Paris Cite Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005 Paris
| |
Collapse
|
8
|
Lubkowska L, Maharjan AS, Komissarova N. RNA folding in transcription elongation complex: implication for transcription termination. J Biol Chem 2011; 286:31576-85. [PMID: 21730066 DOI: 10.1074/jbc.m111.249359] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intrinsic transcription termination signal in DNA consists of a short inverted repeat followed by a T-rich stretch. Transcription of this sequence by RNA polymerase (RNAP) results in formation of a "termination hairpin" (TH) in the nascent RNA and in rapid dissociation of the transcription elongation complex (EC) at termination points located 7-8 nt downstream of the base of TH stem. RNAP envelops 15 nt of the RNA following RNA growing 3'-end, suggesting that folding of the TH is impeded by a tight protein environment when RNAP reaches the termination points. To monitor TH folding under this constraint, we halted Escherichia coli ECs at various distances downstream from a TH and treated them with single-strand specific RNase T1. The EC interfered with TH formation when halted at 6, 7, and 8, but not 9, nt downstream from the base of the potential stem. Thus, immediately before termination, the downstream arm of the TH is protected from complementary interactions with the upstream arm. This protection makes TH folding extremely sensitive to the sequence context, because the upstream arm easily engages in competing interactions with the rest of the nascent RNA. We demonstrate that by de-synchronizing TH formation and transcription of the termination points, this subtle competition significantly affects the efficiency of transcription termination. This finding can explain previous puzzling observations that sequences far upstream of the TH or point mutations in the terminator that preserve TH stability affect termination. These results can help understand other time sensitive co-transcriptional processes in pro- and eukaryotes.
Collapse
Affiliation(s)
- Lucyna Lubkowska
- NCI Center for Cancer Research, Frederick Cancer Research and Development Center, Frederick, Maryland 21702, USA
| | | | | |
Collapse
|
9
|
Abstract
RNA folding is the most essential process underlying RNA function. While significant progress has been made in understanding the forces driving RNA folding in vitro, exploring the rules governing intracellular RNA structure formation is still in its infancy. The cellular environment hosts a great diversity of factors that potentially influence RNA folding in vivo. For example, the nature of transcription and translation is known to shape the folding landscape of RNA molecules. Trans-acting factors such as proteins, RNAs and metabolites, among others, are also able to modulate the structure and thus the fate of an RNA. Here we summarize the ongoing efforts to uncover how RNA folds in living cells.
Collapse
Affiliation(s)
- Georgeta Zemora
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | | |
Collapse
|
10
|
Riccitelli NJ, Lupták A. Computational discovery of folded RNA domains in genomes and in vitro selected libraries. Methods 2010; 52:133-40. [PMID: 20554049 DOI: 10.1016/j.ymeth.2010.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 06/03/2010] [Indexed: 10/19/2022] Open
Abstract
Structured functional RNAs are conserved on the level of secondary and tertiary structure, rather than at sequence level, and so traditional sequence-based searches often fail to identify them. Structure-based searches are increasingly used to discover known RNA motifs in sequence databases. We describe the application of the program RNABOB, which performs such searches by allowing the user to define a desired motif's sequence, paired and spacer elements and then scans a sequence file for regions capable of assuming the prescribed fold. Structure descriptors of stem-loops, internal loops, three-way junctions, kissing loops, and the hammerhead and hepatitis delta virus ribozymes are shown as examples of implementation of structure-based searches.
Collapse
|
11
|
Abstract
RNA folding is the most fundamental process underlying RNA function. RNA structure and associated folding paradigms have been intensively studied in vitro. However, in vivo RNA structure formation has only been explored to a limited extent. To determine the influence of the cellular environment, which differs significantly from the in vitro refolding conditions, on RNA architecture, we have applied a chemical probing technique to assess the structure of catalytic RNAs in living cells. This method is based on the fact that chemicals like dimethyl sulfate readily penetrate cells and modify specific atoms of RNA bases (N1-A, N3-C), provided that these positions are solvent accessible. By mapping the modified residues, one gains substantial information on the architecture of the target RNA on the secondary and tertiary structure level. This method also allows exploration of interactions of the target RNA with ligands such as proteins, metabolites, or other RNA molecules and associated conformational changes. In brief, in vivo chemical probing is a powerful tool to investigate RNA structure in its natural environment and can be easily adapted to study RNAs in different cell types.
Collapse
|
12
|
Meyer IM, Miklós I. Co-transcriptional folding is encoded within RNA genes. BMC Mol Biol 2004; 5:10. [PMID: 15298702 PMCID: PMC514895 DOI: 10.1186/1471-2199-5-10] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Accepted: 08/06/2004] [Indexed: 11/10/2022] Open
Abstract
Background Most of the existing RNA structure prediction programs fold a completely synthesized RNA molecule. However, within the cell, RNA molecules emerge sequentially during the directed process of transcription. Dedicated experiments with individual RNA molecules have shown that RNA folds while it is being transcribed and that its correct folding can also depend on the proper speed of transcription. Methods The main aim of this work is to study if and how co-transcriptional folding is encoded within the primary and secondary structure of RNA genes. In order to achieve this, we study the known primary and secondary structures of a comprehensive data set of 361 RNA genes as well as a set of 48 RNA sequences that are known to differ from the originally transcribed sequence units. We detect co-transcriptional folding by defining two measures of directedness which quantify the extend of asymmetry between alternative helices that lie 5' and those that lie 3' of the known helices with which they compete. Results We show with statistical significance that co-transcriptional folding strongly influences RNA sequences in two ways: (1) alternative helices that would compete with the formation of the functional structure during co-transcriptional folding are suppressed and (2) the formation of transient structures which may serve as guidelines for the co-transcriptional folding pathway is encouraged. Conclusions These findings have a number of implications for RNA secondary structure prediction methods and the detection of RNA genes.
Collapse
MESH Headings
- Algorithms
- Base Pairing
- DNA, Bacterial/genetics
- DNA, Ribosomal/genetics
- Genes
- Hydrogen Bonding
- Introns/genetics
- Models, Genetic
- Nucleic Acid Conformation
- RNA/genetics
- RNA/ultrastructure
- RNA Processing, Post-Transcriptional
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/ultrastructure
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/ultrastructure
- Transcription, Genetic
Collapse
Affiliation(s)
- Irmtraud M Meyer
- Oxford Centre for Gene Function, University of Oxford, South Parks Road, Oxford OX1 3QB, UK
| | - István Miklós
- Eötvös University and Hungarian Academic of Science, Theoretical Biology and Ecology Group, Pázmány Péter sétány 1/c, 1117 Budapest, Hungary
| |
Collapse
|
13
|
Heilman-Miller SL, Woodson SA. Effect of transcription on folding of the Tetrahymena ribozyme. RNA (NEW YORK, N.Y.) 2003; 9:722-33. [PMID: 12756330 PMCID: PMC1370439 DOI: 10.1261/rna.5200903] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2003] [Accepted: 03/11/2003] [Indexed: 05/20/2023]
Abstract
Sequential formation of RNA interactions during transcription can bias the folding pathway and ultimately determine the functional state of a transcript. The kinetics of cotranscriptional folding of the Tetrahymena L-21 ribozyme was compared with refolding of full-length transcripts under the same conditions. Sequential folding after transcription by phage T7 or Escherichia coli polymerase is only twice as fast as refolding, and the yield of native RNA is the same. By contrast, a greater fraction of circularly permuted variants folded correctly at early times during transcription than during refolding. Hybridization of complementary oligonucleotides suggests that cotranscriptional folding enables a permuted RNA beginning at G303 to escape non-native interactions in P3 and P9. We propose that base pairing of upstream sequences during transcription elongation favors branched secondary structures that increase the probability of forming the native ribozyme structure.
Collapse
Affiliation(s)
- Susan L Heilman-Miller
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742-2021, USA
| | | |
Collapse
|
14
|
Torres M, Condon C, Balada JM, Squires C, Squires CL. Ribosomal protein S4 is a transcription factor with properties remarkably similar to NusA, a protein involved in both non-ribosomal and ribosomal RNA antitermination. EMBO J 2001; 20:3811-20. [PMID: 11447122 PMCID: PMC125540 DOI: 10.1093/emboj/20.14.3811] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Escherichia coli ribosomal RNA (rRNA) operons contain antitermination motifs necessary for forming terminator-resistant transcription complexes. In preliminary work, we isolated 'antiterminating' transcription complexes and identified four new proteins potentially involved in rRNA transcription antitermination: ribosomal (r-) proteins S4, L3, L4 and L13. We show here that these r-proteins and Nus factors lead to an 11-fold increase in terminator read-through in in vitro transcription reactions. A significant portion of the effect was a result of r-protein S4. We show that S4 acted as a general antitermination factor, with properties very similar to NusA. It retarded termination and increased read-through at Rho-dependent terminators, even in the absence of the rRNA antiterminator motif. High concentrations of NusG showed reduced antitermination by S4. Like rrn antitermination, S4 selectively antiterminated at Rho-dependent terminators. Lastly, S4 tightly bound RNA polymerase in vivo. Our results suggest that, like NusA, S4 is a general transcription antitermination factor that associates with RNA polymerase during normal transcription and is also involved in rRNA operon antitermination. A model for key r-proteins playing a regulatory role in rRNA synthesis is presented.
Collapse
Affiliation(s)
| | - Ciarán Condon
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA and
CNRS UPR9073, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005 Paris, France Corresponding author e-mail:
| | | | | | - Catherine L. Squires
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA and
CNRS UPR9073, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005 Paris, France Corresponding author e-mail:
| |
Collapse
|
15
|
Besançon W, Wagner R. Characterization of transient RNA-RNA interactions important for the facilitated structure formation of bacterial ribosomal 16S RNA. Nucleic Acids Res 1999; 27:4353-62. [PMID: 10536142 PMCID: PMC148716 DOI: 10.1093/nar/27.22.4353] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The co-transcribed leader sequences of bacterial rRNA are known to affect the structure and function of the small ribosomal subunits. Base changes in the leader nut -like sequence elements have been shown to cause misfolded but correctly processed 16S rRNA structures at low growth temperature. Transient interactions of leader sequences with the nascent 16S rRNA are considered to guide rRNA folding and to facilitate correct structure formation. In order to understand this chaperone-like activity of the leader RNA we have analyzed the thermodynamic stabilities of wild-type and mutant leader transcripts. We show here that base changes cause subtle differences in the melting profiles of the corresponding leader transcripts. Furthermore, we show that direct interaction between leader transcripts and the 16S rRNA is limited to the 5'-domain of the 16S rRNA for both wild-type and mutant leaders. Binding studies of mutant and wild-type leader transcripts to 16S rRNA revealed small changes in the affinities and the thermal stabilities as a consequence of the base changes. Different complex stabilities as a function of the Mg(2+) ion concentration indicated that mutant and wild-type leader transcripts interact differently with the 16S rRNA, consistent with a less stable and tightly folded structure of the mutant leader. Employing time-resolved oligonucleotide hybridization assays we could show different folding kinetics for 16S rRNA molecules when linked to wild-type leader, mutant leader or in the absence of leader RNA. The studies help to understand how bacterial rRNA leader transcripts may affect the folding of the small subunit rRNA.
Collapse
Affiliation(s)
- W Besançon
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | | |
Collapse
|