1
|
Zhang Z, Cai Y, Zheng N, Deng Y, Gao L, Wang Q, Xia X. Diverse models of cavity engineering in enzyme modification: Creation, filling, and reshaping. Biotechnol Adv 2024; 72:108346. [PMID: 38518963 DOI: 10.1016/j.biotechadv.2024.108346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/07/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Most enzyme modification strategies focus on designing the active sites or their surrounding structures. Interestingly, a large portion of the enzymes (60%) feature active sites located within spacious cavities. Despite recent discoveries, cavity-mediated enzyme engineering remains crucial for enhancing enzyme properties and unraveling folding-unfolding mechanisms. Cavity engineering influences enzyme stability, catalytic activity, specificity, substrate recognition, and docking. This article provides a comprehensive review of various cavity engineering models for enzyme modification, including cavity creation, filling, and reshaping. Additionally, it also discusses feasible tools for geometric analysis, functional assessment, and modification of cavities, and explores potential future research directions in this field. Furthermore, a promising universal modification strategy for cavity engineering that leverages state-of-the-art technologies and methodologies to tailor cavities according to the specific requirements of industrial production conditions is proposed.
Collapse
Affiliation(s)
- Zehua Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China.
| | - Yongchao Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China.
| | - Nan Zheng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China.
| | - Yu Deng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China.
| | - Ling Gao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China.
| | - Qiong Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China.
| | - Xiaole Xia
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
2
|
He J, Dmochowski IJ. Local Xenon-Protein Interaction Produces Global Conformational Change and Allosteric Inhibition in Lysozyme. Biochemistry 2023; 62:1659-1669. [PMID: 37192381 PMCID: PMC10821772 DOI: 10.1021/acs.biochem.3c00046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Noble gases have well-established biological effects, yet their molecular mechanisms remain poorly understood. Here, we investigated, both experimentally and computationally, the molecular modes of xenon (Xe) action in bacteriophage T4 lysozyme (T4L). By combining indirect gassing methods with a colorimetric lysozyme activity assay, a reversible, Xe-specific (20 ± 3)% inhibition effect was observed. Accelerated molecular dynamic simulations revealed that Xe exerts allosteric inhibition on the protein by expanding a C-terminal hydrophobic cavity. Xe-induced cavity expansion results in global conformational changes, with long-range transduction distorting the active site where peptidoglycan binds. Interestingly, the peptide substrate binding site that enables lysozyme specificity does not change conformation. Two T4L mutants designed to reshape the C-terminal Xe cavity established a correlation between cavity expansion and enzyme inhibition. This work also highlights the use of Xe flooding simulations to identify new cryptic binding pockets. These results enrich our understanding of Xe-protein interactions at the molecular level and inspire further biochemical investigations with noble gases.
Collapse
Affiliation(s)
- Jiayi He
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
3
|
Ligand Gaussian Accelerated Molecular Dynamics 2 (LiGaMD2): Improved Calculations of Ligand Binding Thermodynamics and Kinetics with Closed Protein Pocket. J Chem Theory Comput 2023; 19:733-745. [PMID: 36706316 DOI: 10.1021/acs.jctc.2c01194] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ligand binding thermodynamics and kinetics are critical parameters for drug design. However, it has proven challenging to efficiently predict ligand binding thermodynamics and kinetics from molecular simulations due to limited simulation timescales. Protein dynamics, especially in the ligand binding pocket, often plays an important role in ligand binding. Based on our previously developed Ligand Gaussian accelerated molecular dynamics (LiGaMD), here we present LiGaMD2 in which a selective boost potential was applied to both the ligand and protein residues in the binding pocket to improve sampling of ligand binding and dissociation. To validate the performance of LiGaMD2, the T4 lysozyme (T4L) mutants with open and closed pockets bound by different ligands were chosen as model systems. LiGaMD2 could efficiently capture repetitive ligand dissociation and binding within microsecond simulations of all T4L systems. The obtained ligand binding kinetic rates and free energies agreed well with available experimental values and previous modeling results. Therefore, LiGaMD2 provides an improved approach to sample opening of closed protein pockets for ligand dissociation and binding, thereby allowing for efficient calculations of ligand binding thermodynamics and kinetics.
Collapse
|
4
|
Patel LA, Chau P, Debesai S, Darwin L, Neale C. Drug Discovery by Automated Adaptation of Chemical Structure and Identity. J Chem Theory Comput 2022; 18:5006-5024. [PMID: 35834740 DOI: 10.1021/acs.jctc.1c01271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Computer-aided drug design offers the potential to dramatically reduce the cost and effort required for drug discovery. While screening-based methods are valuable in the early stages of hit identification, they are frequently succeeded by iterative, hypothesis-driven computations that require recurrent investment of human time and intuition. To increase automation, we introduce a computational method for lead refinement that combines concerted dynamics of the ligand/protein complex via molecular dynamics simulations with integrated Monte Carlo-based changes in the chemical formula of the ligand. This approach, which we refer to as ligand-exchange Monte Carlo molecular dynamics, accounts for solvent- and entropy-based contributions to competitive binding free energies by coupling the energetics of bound and unbound states during the ligand-exchange attempt. Quantitative comparison of relative binding free energies to reference values from free energy perturbation, conducted in vacuum, indicates that ligand-exchange Monte Carlo molecular dynamics simulations sample relevant conformational ensembles and are capable of identifying strongly binding compounds. Additional simulations demonstrate the use of an implicit solvent model. We speculate that the use of chemical graphs in which exchanges are only permitted between ligands with sufficient similarity may enable an automated search to capture some of the benefits provided by human intuition during hypothesis-guided lead refinement.
Collapse
|
5
|
Polêto MD, Lemkul JA. TUPÃ: Electric field analyses for molecular simulations. J Comput Chem 2022; 43:1113-1119. [PMID: 35460102 PMCID: PMC9098685 DOI: 10.1002/jcc.26873] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 11/06/2022]
Abstract
We introduce TUPÃ, a Python-based algorithm to calculate and analyze electric fields in molecular simulations. To demonstrate the features in TUPÃ, we present three test cases in which the orientation and magnitude of the electric field exerted by biomolecules help explain biological phenomena or observed kinetics. As part of TUPÃ, we also provide a PyMOL plugin to help researchers visualize how electric fields are organized within the simulation system. The code is freely available and can be obtained at https://mdpoleto.github.io/tupa/.
Collapse
Affiliation(s)
- Marcelo D. Polêto
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, United States
| | - Justin A. Lemkul
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, United States
- Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, United States
| |
Collapse
|
6
|
Johnson CR, Steingesser MG, Weems AD, Khan A, Gladfelter A, Bertin A, McMurray MA. Guanidine hydrochloride reactivates an ancient septin hetero-oligomer assembly pathway in budding yeast. eLife 2020; 9:e54355. [PMID: 31990274 PMCID: PMC7056273 DOI: 10.7554/elife.54355] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/25/2020] [Indexed: 01/22/2023] Open
Abstract
Septin proteins evolved from ancestral GTPases and co-assemble into hetero-oligomers and cytoskeletal filaments. In Saccharomyces cerevisiae, five septins comprise two species of hetero-octamers, Cdc11/Shs1-Cdc12-Cdc3-Cdc10-Cdc10-Cdc3-Cdc12-Cdc11/Shs1. Slow GTPase activity by Cdc12 directs the choice of incorporation of Cdc11 vs Shs1, but many septins, including Cdc3, lack GTPase activity. We serendipitously discovered that guanidine hydrochloride rescues septin function in cdc10 mutants by promoting assembly of non-native Cdc11/Shs1-Cdc12-Cdc3-Cdc3-Cdc12-Cdc11/Shs1 hexamers. We provide evidence that in S. cerevisiae Cdc3 guanidinium occupies the site of a 'missing' Arg side chain found in other fungal species where (i) the Cdc3 subunit is an active GTPase and (ii) Cdc10-less hexamers natively co-exist with octamers. We propose that guanidinium reactivates a latent septin assembly pathway that was suppressed during fungal evolution in order to restrict assembly to octamers. Since homodimerization by a GTPase-active human septin also creates hexamers that exclude Cdc10-like central subunits, our new mechanistic insights likely apply throughout phylogeny.
Collapse
Affiliation(s)
- Courtney R Johnson
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Marc G Steingesser
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Andrew D Weems
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Anum Khan
- Department of Biology, University of North Carolina at Chapel HillChapel HillUnited States
| | - Amy Gladfelter
- Department of Biology, University of North Carolina at Chapel HillChapel HillUnited States
| | - Aurélie Bertin
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR 168ParisFrance
- Sorbonne Université UPMC Univ Paris 06ParisFrance
| | - Michael A McMurray
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical CampusAuroraUnited States
| |
Collapse
|
7
|
Hayes RL, Vilseck JZ, Brooks CL. Approaching protein design with multisite λ dynamics: Accurate and scalable mutational folding free energies in T4 lysozyme. Protein Sci 2019; 27:1910-1922. [PMID: 30175503 DOI: 10.1002/pro.3500] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/06/2018] [Accepted: 08/15/2018] [Indexed: 12/14/2022]
Abstract
The estimation of changes in free energy upon mutation is central to the problem of protein design. Modern protein design methods have had remarkable success over a wide range of design targets, but are reaching their limits in ligand binding and enzyme design due to insufficient accuracy in mutational free energies. Alchemical free energy calculations have the potential to supplement modern design methods through more accurate molecular dynamics based prediction of free energy changes, but suffer from high computational cost. Multisite λ dynamics (MSλD) is a particularly efficient and scalable free energy method with potential to explore combinatorially large sequence spaces inaccessible with other free energy methods. This work aims to quantify the accuracy of MSλD and demonstrate its scalability. We apply MSλD to the classic problem of calculating folding free energies in T4 lysozyme, a system with a wealth of experimental measurements. Single site mutants considering 32 mutations show remarkable agreement with experiment with a Pearson correlation of 0.914 and mean unsigned error of 1.19 kcal/mol. Multisite mutants in systems with up to five concurrent mutations spanning 240 different sequences show comparable agreement with experiment. These results demonstrate the promise of MSλD in exploring large sequence spaces for protein design.
Collapse
Affiliation(s)
- Ryan L Hayes
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109
| | - Jonah Z Vilseck
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109
| | - Charles L Brooks
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109.,Biophysics Program, University of Michigan, Ann Arbor, Michigan, 48109
| |
Collapse
|
8
|
Schiffer JM, Feher VA, Malmstrom RD, Sida R, Amaro RE. Capturing Invisible Motions in the Transition from Ground to Rare Excited States of T4 Lysozyme L99A. Biophys J 2017; 111:1631-1640. [PMID: 27760351 DOI: 10.1016/j.bpj.2016.08.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/15/2016] [Accepted: 08/16/2016] [Indexed: 01/07/2023] Open
Abstract
Proteins commonly sample a number of conformational states to carry out their biological function, often requiring transitions from the ground state to higher-energy states. Characterizing the mechanisms that guide these transitions at the atomic level promises to impact our understanding of functional protein dynamics and energy landscapes. The leucine-99-to-alanine (L99A) mutant of T4 lysozyme is a model system that has an experimentally well characterized excited sparsely populated state as well as a ground state. Despite the exhaustive study of L99A protein dynamics, the conformational changes that permit transitioning to the experimentally detected excited state (∼3%, ΔG ∼2 kcal/mol) remain unclear. Here, we describe the transitions from the ground state to this sparsely populated excited state of L99A as observed through a single molecular dynamics (MD) trajectory on the Anton supercomputer. Aside from detailing the ground-to-excited-state transition, the trajectory samples multiple metastates and an intermediate state en route to the excited state. Dynamic motions between these states enable cavity surface openings large enough to admit benzene on timescales congruent with known rates for benzene binding. Thus, these fluctuations between rare protein states provide an atomic description of the concerted motions that illuminate potential path(s) for ligand binding. These results reveal, to our knowledge, a new level of complexity in the dynamics of buried cavities and their role in creating mobile defects that affect protein dynamics and ligand binding.
Collapse
Affiliation(s)
- Jamie M Schiffer
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - Victoria A Feher
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California; Drug Design Data Resource, University of California, San Diego, La Jolla, California.
| | - Robert D Malmstrom
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California; National Biomedical Computation Resource, University of California, San Diego, La Jolla, California
| | - Roxana Sida
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California; Centro de Enseñanza Técnica y Superior (CETYS) Campus Ensenada, Camino a Microondas Trinidad, Ensenada, Baja Califiornia, Mexico
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California; National Biomedical Computation Resource, University of California, San Diego, La Jolla, California; Drug Design Data Resource, University of California, San Diego, La Jolla, California.
| |
Collapse
|
9
|
Structure-relaxation mechanism for the response of T4 lysozyme cavity mutants to hydrostatic pressure. Proc Natl Acad Sci U S A 2015; 112:E2437-46. [PMID: 25918400 DOI: 10.1073/pnas.1506505112] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Application of hydrostatic pressure shifts protein conformational equilibria in a direction to reduce the volume of the system. A current view is that the volume reduction is dominated by elimination of voids or cavities in the protein interior via cavity hydration, although an alternative mechanism wherein cavities are filled with protein side chains resulting from a structure relaxation has been suggested [López CJ, Yang Z, Altenbach C, Hubbell WL (2013) Proc Natl Acad Sci USA 110(46):E4306-E4315]. In the present study, mechanisms for elimination of cavities under high pressure are investigated in the L99A cavity mutant of T4 lysozyme and derivatives thereof using site-directed spin labeling, pressure-resolved double electron-electron resonance, and high-pressure circular dichroism spectroscopy. In the L99A mutant, the ground state is in equilibrium with an excited state of only ∼ 3% of the population in which the cavity is filled by a protein side chain [Bouvignies et al. (2011) Nature 477(7362):111-114]. The results of the present study show that in L99A the native ground state is the dominant conformation to pressures of 3 kbar, with cavity hydration apparently taking place in the range of 2-3 kbar. However, in the presence of additional mutations that lower the free energy of the excited state, pressure strongly populates the excited state, thereby eliminating the cavity with a native side chain rather than solvent. Thus, both cavity hydration and structure relaxation are mechanisms for cavity elimination under pressure, and which is dominant is determined by details of the energy landscape.
Collapse
|
10
|
Conformational selection and adaptation to ligand binding in T4 lysozyme cavity mutants. Proc Natl Acad Sci U S A 2013; 110:E4306-15. [PMID: 24167295 DOI: 10.1073/pnas.1318754110] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The studies presented here explore the relationship between protein packing and molecular flexibility using ligand-binding cavity mutants of T4 lysozyme. Although previously reported crystal structures of the mutants investigated show single conformations that are similar to the WT protein, site-directed spin labeling in solution reveals additional conformational substates in equilibrium exchange with a WT-like population. Remarkably, binding of ligands, including the general anesthetic halothane shifts the population to the WT-like state, consistent with a conformational selection model of ligand binding, but structural adaptation to the ligand is also apparent in one mutant. Distance mapping with double electron-electron resonance spectroscopy and the absence of ligand binding suggest that the new substates induced by the cavity-creating mutations represent alternate packing modes in which the protein fills or partially fills the cavity with side chains, including the spin label in one case; external ligands compete with the side chains for the cavity space, stabilizing the WT conformation. The results have implications for mechanisms of anesthesia, the response of proteins to hydrostatic pressure, and protein engineering.
Collapse
|
11
|
Maksay G. Allostery in pharmacology: Thermodynamics, evolution and design. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 106:463-73. [DOI: 10.1016/j.pbiomolbio.2011.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 01/03/2011] [Indexed: 12/13/2022]
|
12
|
Das A, Wei Y, Pelczer I, Hecht MH. Binding of small molecules to cavity forming mutants of a de novo designed protein. Protein Sci 2011; 20:702-11. [PMID: 21328630 DOI: 10.1002/pro.601] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 01/18/2011] [Accepted: 01/20/2011] [Indexed: 11/09/2022]
Abstract
A central goal of protein design is to devise novel proteins for applications in biotechnology and medicine. Many applications, including those focused on sensing and catalysis will require proteins that recognize and bind to small molecules. Here, we show that stably folded α-helical proteins isolated from a binary patterned library of designed sequences can be mutated to produce binding sites capable of binding a range of small aromatic compounds. Specifically, we mutated two phenylalanine side chains to alanine in the known structure of de novo protein S-824 to create buried cavities in the core of this four-helix bundle. The parental protein and the Phe→Ala variants were exposed to mixtures of compounds, and selective binding was assessed by saturation transfer difference NMR. The affinities of benzene and a number of its derivatives were determined by pulse field gradient spin echo NMR, and several of the compounds were shown to bind the mutated protein with micromolar dissociation constants. These studies suggest that stably folded de novo proteins from binary patterned libraries are well-suited as scaffolds for the design of binding sites.
Collapse
Affiliation(s)
- Aditi Das
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544-1009, USA
| | | | | | | |
Collapse
|
13
|
The induction of folding cooperativity by ligand binding drives the allosteric response of tetracycline repressor. Proc Natl Acad Sci U S A 2009; 106:22263-8. [PMID: 20080791 DOI: 10.1073/pnas.0911566106] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tetracycline (Tc) repressor (TetR) undergoes an allosteric transition upon interaction with the antibiotic, Tc, that abrogates its ability to specifically bind its operator DNA. In this work, by performing equilibrium protein unfolding experiments on wild-type TetR and mutants displaying altered allosteric responses, we have delineated a model to explain TetR allostery. In the absence of Tc, we show that the DNA-binding domains of this homodimeric protein are relatively flexible and unfold independently of the Tc binding/dimerization (TBD) domains. Once Tc is bound, however, the unfolding of the DNA binding domains becomes coupled to the TBD domains, leading to a large increase in DNA-binding domain stability. Noninducible TetR mutants display considerably less interdomain folding cooperativity upon binding to Tc. We conclude that the thermodynamic coupling of the TetR domains caused by Tc binding and the resulting rigidification of the DNA-binding domains into a conformation that is incompatible with DNA binding are the fundamental factors leading to the allosteric response in TetR. This allosteric mechanism can account for properties of the whole TetR family of repressors and may explain the functioning and evolution of other allosteric systems. Our model contrasts with the prevalent view that TetR populates two distinct conformations and that Tc causes a switch between these defined conformations.
Collapse
|
14
|
Hervé JC, Crump D, Jones SP, Mundy LJ, Giesy JP, Zwiernik MJ, Bursian SJ, Jones PD, Wiseman SB, Wan Y, Kennedy SW. Cytochrome P4501A Induction by 2,3,7,8-Tetrachlorodibenzo-p-Dioxin and Two Chlorinated Dibenzofurans in Primary Hepatocyte Cultures of Three Avian Species. Toxicol Sci 2009; 113:380-91. [DOI: 10.1093/toxsci/kfp270] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
15
|
Kraut DA, Churchill MJ, Dawson PE, Herschlag D. Evaluating the potential for halogen bonding in the oxyanion hole of ketosteroid isomerase using unnatural amino acid mutagenesis. ACS Chem Biol 2009; 4:269-73. [PMID: 19260691 DOI: 10.1021/cb900016q] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There has recently been an increasing interest in controlling macromolecular conformations and interactions through halogen bonding. Halogen bonds are favorable electrostatic interactions between polarized, electropositive chlorine, bromine, or iodine atoms and electronegative atoms such as oxygen or nitrogen. These interactions have been likened to hydrogen bonds in terms of their favored acceptor molecules, their geometries, and their energetics. We asked whether a halogen bond could replace a hydrogen bond in the oxyanion hole of ketosteroid isomerase, using semisynthetic enzymes containing para-halogenated phenylalanine derivatives to replace the tyrosine hydrogen bond donor. Formation of a halogen bond to the oxyanion in the transition state would be expected to rescue the effects of mutation to phenylalanine, but all of the halogenated enzymes were comparable in activity to the phenylalanine mutant. We conclude that, at least in this active site, a halogen bond cannot functionally replace a hydrogen bond.
Collapse
Affiliation(s)
- Daniel A. Kraut
- Department of Biochemistry, Stanford University, Stanford, California
| | - Michael J. Churchill
- Departments of Cell Biology and Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California
| | - Phillip E. Dawson
- Departments of Cell Biology and Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, California
| |
Collapse
|
16
|
Mizuno T, Hasegawa C, Tanabe Y, Hamajima K, Muto T, Nishi Y, Oda M, Kobayashi Y, Tanaka T. Organic ligand binding by a hydrophobic cavity in a designed tetrameric coiled-coil protein. Chemistry 2008; 15:1491-8. [PMID: 19115294 DOI: 10.1002/chem.200800855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The design and characterization of a hydrophobic cavity in de novo designed proteins provides a wide range of information about the functions of de novo proteins. We designed a de novo tetrameric coiled-coil protein with a hydrophobic pocketlike cavity. Tetrameric coiled coils with hydrophobic cavities have previously been reported. By replacing one Leu residue at the a position with Ala, hydrophobic cavities that did not flatten out due to loose peptide chains were reliably created. To perform a detailed examination of the ligand-binding characteristics of the cavities, we originally designed two other coiled-coil proteins: AM2, with eight Ala substitutions at the adjacent a and d positions at the center of a bundled structure, and AM2W, with one Trp and seven Ala substitutions at the same positions. To increase the association of the helical peptides, each helical peptide was connected with flexible linkers, which resulted in a single peptide chain. These proteins exhibited CD spectra corresponding to superhelical structures, despite weakened hydrophobic packing. AM2W exhibited binding affinity for size-complementary organic compounds. The dissociation constants, K(d), of AM2W were 220 nM for adamantane, 81 microM for 1-adamantanol, and 294 microM for 1-adamantaneacetic acid, as measured by fluorescence titration analyses. Although it was contrary to expectations, AM2 did not exhibit any binding affinity, probably due to structural defects around the designed hydrophobic cavity. Interestingly, AM2W exhibited incremental structure stability through ligand binding. Plugging of structural defects with organic ligands would be expected to facilitate protein folding.
Collapse
Affiliation(s)
- Toshihisa Mizuno
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Nagoya, Aichi, 466-8555, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Liu L, Baase WA, Matthews BW. Halogenated benzenes bound within a non-polar cavity in T4 lysozyme provide examples of I...S and I...Se halogen-bonding. J Mol Biol 2008; 385:595-605. [PMID: 19014950 DOI: 10.1016/j.jmb.2008.10.086] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 10/23/2008] [Accepted: 10/29/2008] [Indexed: 11/19/2022]
Abstract
We showed earlier that the mutation of Leu99 to alanine in bacteriophage T4 lysozyme creates an internal cavity of volume approximately 150 A(3) that binds benzene and a variety of other ligands. As such, this cavity provides an excellent target to study protein-ligand interaction. Here, we use low-temperature crystallography and related techniques to analyze the binding of halogen-incorporated benzenes typified by C(6)F(5)X, where X=H, F, Cl, Br or I, and C(6)H(5)X, where X=H or I was also studied. Because of the increased electron density of fluorine relative to hydrogen, the geometry of binding of the fluoro compounds can often be determined more precisely than their hydrogen-containing analogs. All of the ligands bind in essentially the same plane but the center of the phenyl ring can translate by up to 1.2 A. In no case does the ligand rotate freely within the cavity. The walls of the cavity consist predominantly of hydrocarbon atoms, and in several cases it appears that van der Waals interactions define the geometry of binding. In comparing the smallest with the largest ligand, the cavity volume increases from 181 A(3) to 245 A(3). This shows that the protein is flexible and adapts to the size and shape of the ligand. There is a remarkably close contact of 3.0 A between the iodine atom on C(6)F(5)I and the sulfur or selenium atom of Met or SeMet102. This interaction is 1.0 A less than the sum of the van der Waals radii and is a clear example of a so-called halogen bond. Notwithstanding this close approach, the increase in binding energy for the halogen bond relative to a van der Waals contact is estimated to be only about 0.5-0.7 kcal/mol.
Collapse
Affiliation(s)
- Lijun Liu
- Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | | | | |
Collapse
|
18
|
Machicado C, López-Llano J, Cuesta-López S, Bueno M, Sancho J. Design of ligand binding to an engineered protein cavity using virtual screening and thermal up-shift evaluation. J Comput Aided Mol Des 2008; 19:421-43. [PMID: 16231201 DOI: 10.1007/s10822-005-7969-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Accepted: 05/25/2005] [Indexed: 11/29/2022]
Abstract
Proteins could be used to carry and deliver small compounds. As a tool for designing ligand binding sites in protein cores, a three-step virtual screening method is presented that has been optimised using existing data on T4 lysozyme complexes and tested in a newly engineered cavity in flavodoxin. The method can pinpoint, in large databases, ligands of specific protein cavities. In the first step, physico-chemical filters are used to screen the library and discard a majority of compounds. In the second step, a flexible, fast docking procedure is used to score and select a smaller number of compounds as potential binders. In the third step, a finer method is used to dock promising molecules of the hit list into the protein cavity, and an optimised free energy function allows discarding the few false positives by calculating the affinity of the modelled complexes. To demonstrate the portability of the method, several cavities have been designed and engineered in the flavodoxin from Anabaena PCC 7119, and the W66F/L44A double mutant has been selected as a suitable host protein. The NCI database has then been screened for potential binders, and the binding to the engineered cavity of five promising compounds and three tentative non-binders has been experimentally tested by thermal up-shift assays and spectroscopic titrations. The five tentative binders (some apolar and some polar), unlike the three tentative non-binders, are shown to bind to the host mutant and, importantly, not to bind to the wild type protein. The three-step virtual screening method developed can thus be used to identify ligands of buried protein cavities. We anticipate that the method could also be used, in a reverse manner, to identify natural or engineerable protein cavities for the hosting of ligands of interest.
Collapse
Affiliation(s)
- Claudia Machicado
- Departamento de Bioquímica y Biología Molecular y Celular, , Universidad de Zaragoza, 50009, Zaragoza, Spain
| | | | | | | | | |
Collapse
|
19
|
Muralidhara B, Sun L, Negi S, Halpert JR. Thermodynamic Fidelity of the Mammalian Cytochrome P450 2B4 Active Site in Binding Substrates and Inhibitors. J Mol Biol 2008; 377:232-45. [DOI: 10.1016/j.jmb.2007.12.068] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 12/18/2007] [Accepted: 12/27/2007] [Indexed: 01/19/2023]
|
20
|
Lokesh GL, Muralidhara BK, Negi SS, Natarajan A. Thermodynamics of phosphopeptide tethering to BRCT: the structural minima for inhibitor design. J Am Chem Soc 2007; 129:10658-9. [PMID: 17685618 DOI: 10.1021/ja0739178] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- G L Lokesh
- Chemical Biology Program, Department of Pharmacology and Toxicology, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | | | |
Collapse
|
21
|
Collins MD, Quillin ML, Hummer G, Matthews BW, Gruner SM. Structural rigidity of a large cavity-containing protein revealed by high-pressure crystallography. J Mol Biol 2007; 367:752-63. [PMID: 17292912 PMCID: PMC1853337 DOI: 10.1016/j.jmb.2006.12.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Revised: 12/07/2006] [Accepted: 12/10/2006] [Indexed: 01/07/2023]
Abstract
Steric constraints, charged interactions and many other forces important to protein structure and function can be explored by mutagenic experiments. Research of this kind has led to a wealth of knowledge about what stabilizes proteins in their folded states. To gain a more complete picture requires that we perturb these structures in a continuous manner, something mutagenesis cannot achieve. With high pressure crystallographic methods it is now possible to explore the detailed properties of proteins while continuously varying thermodynamic parameters. Here, we detail the structural response of the cavity-containing mutant L99A of T4 lysozyme, as well as its pseudo wild-type (WT*) counterpart, to hydrostatic pressure. Surprisingly, the cavity has almost no effect on the pressure response: virtually the same changes are observed in WT* as in L99A under pressure. The cavity is most rigid, while other regions deform substantially. This implies that while some residues may increase the thermodynamic stability of a protein, they may also be structurally irrelevant. As recently shown, the cavity fills with water at pressures above 100 MPa while retaining its overall size. The resultant picture of the protein is one in which conformationally fluctuating side groups provide a liquid-like environment, but which also contribute to the rigidity of the peptide backbone.
Collapse
Affiliation(s)
- Marcus D Collins
- Department of Physics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
22
|
Gawley RE, Mao H, Haque MM, Thorne JB, Pharr JS. Visible fluorescence chemosensor for saxitoxin. J Org Chem 2007; 72:2187-91. [PMID: 17298099 PMCID: PMC2527746 DOI: 10.1021/jo062506r] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Absorption spectra of a number of shellfish extracts have been obtained and reveal prominent absorptions in all samples at 210 and 260 nm and at 325 nm in some of them. These absorptions preclude the use of chromophores with similar absorptions in testing of shellfish samples for paralytic shellfish toxins. Two crown ether chemosensors featuring a boron azadipyrrin chromophore have been synthesized; both have absorption maxima at 650 nm, where all the shellfish extracts are transparent. The synthetic sensors feature either 18- or 27-membered crown ether rings and have been evaluated as visible sensors for the paralytic shellfish toxin saxitoxin. The binding constant for one of them is in the range of 3-9x10(5) M-1 and exhibits a fluorescence enhancement of over 100% at 680 nm in the presence of 40 microM saxitoxin.
Collapse
Affiliation(s)
- Robert E Gawley
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, USA.
| | | | | | | | | |
Collapse
|
23
|
Bruning JB, Shamoo Y. Structural and Thermodynamic Analysis of Human PCNA with Peptides Derived from DNA Polymerase-δ p66 Subunit and Flap Endonuclease-1. Structure 2004; 12:2209-19. [PMID: 15576034 DOI: 10.1016/j.str.2004.09.018] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 09/07/2004] [Accepted: 09/13/2004] [Indexed: 10/26/2022]
Abstract
Human Proliferating Cellular Nuclear Antigen (hPCNA), a member of the sliding clamp family of proteins, makes specific protein-protein interactions with DNA replication and repair proteins through a small peptide motif termed the PCNA-interacting protein, or PIP-box. We solved the structure of hPCNA bound to PIP-box-containing peptides from the p66 subunit of the human replicative DNA polymerase-delta (452-466) at 2.6 A and of the flap endonuclease (FEN1) (331-350) at 1.85 A resolution. Both structures demonstrate that the pol-delta p66 and FEN1 peptides interact with hPCNA at the same site shown to bind the cdk-inhibitor p21(CIP1). Binding studies indicate that peptides from the p66 subunit of the pol-delta holoenzyme and FEN1 bind hPCNA from 189- to 725-fold less tightly than those of p21. Thus, the PIP-box and flanking regions provide a small docking peptide whose affinities can be readily adjusted in accord with biological necessity to mediate the binding of DNA replication and repair proteins to hPCNA.
Collapse
Affiliation(s)
- John B Bruning
- Department of Biochemistry and Cell Biology, Rice University, 6100 South Main Street, MS140, Houston, TX 77005, USA
| | | |
Collapse
|
24
|
Yousef MS, Baase WA, Matthews BW. Use of sequence duplication to engineer a ligand-triggered, long-distance molecular switch in T4 lysozyme. Proc Natl Acad Sci U S A 2004; 101:11583-6. [PMID: 15286283 PMCID: PMC511024 DOI: 10.1073/pnas.0404482101] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have designed a molecular switch in a T4 lysozyme construct that controls a large-scale translation of a duplicated helix. As shown by crystal structures of the construct with the switch on and off, the conformational change is triggered by the binding of a ligand (guanidinium ion) to a site that in the wild-type protein was occupied by the guanidino head group of an Arg. In the design template, a duplicated helix is flanked by two loop regions of different stabilities. In the "on" state, the N-terminal loop is weakly structured, whereas the C-terminal loop has a well defined conformation that is stabilized by means of nonbonded interactions with the Arg head group. The truncation of the Arg to Ala destabilizes this loop and switches the protein to the "off" state, in which the duplicated helix is translocated approximately 20 A. Guanidinium binding restores the key interactions, restabilizes the C-terminal loop, and restores the "on" state. Thus, the presence of an external ligand, which is unrelated to the catalytic activity of the enzyme, triggers the inserted helix to translate 20 A away from the binding site. The results illustrate a proposed mechanism for protein evolution in which sequence duplication followed by point mutation can lead to the establishment of new function.
Collapse
Affiliation(s)
- Mohammad S Yousef
- Institute of Molecular Biology, Howard Hughes Medical Institute, and Department of Physics, University of Oregon, Eugene, OR 97403-1229, USA.
| | | | | |
Collapse
|
25
|
Manderson GA, Michalsky SJ, Johansson JS. Effect of Four-α-Helix Bundle Cavity Size on Volatile Anesthetic Binding Energetics. Biochemistry 2003; 42:11203-13. [PMID: 14503870 DOI: 10.1021/bi034623b] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Currently, it is thought that inhalational anesthetics cause anesthesia by binding to ligand-gated ion channels. This is being investigated using four-alpha-helix bundles, small water-soluble analogues of the transmembrane domains of the "natural" receptor proteins. The study presented here specifically investigates how multiple alanine-to-valine substitutions (which each decrease the volume of the internal binding cavity by 38 A(3)) affect structure, stability, and anesthetic binding affinity of the four-alpha-helix bundles. Structure remains essentially unchanged when up to four alanine residues are changed to valine. However, stability increases as the number of these substitutions is increased. Anesthetic binding affinities are also affected. Halothane binds to the four-alpha-helix bundle variants with 0, 1, and 2 substitutions with equivalent affinities but binds to the variants with 3 and 4 more tightly. The same order of binding affinities was observed for chloroform, although for a particular variant, chloroform was bound less tightly. The observed differences in binding affinities may be explained in terms of a modulation of van der Waals and hydrophobic interactions between ligand and receptor. These, in turn, could result from increased four-alpha-helix bundle binding cavity hydrophobicity, a decrease in cavity size, or improved ligand/receptor shape complementarity.
Collapse
Affiliation(s)
- Gavin A Manderson
- Department of Anesthesia and the Johnson Research Foundation, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
26
|
Hays AMA, Gray HB, Goodin DB. Trapping of peptide-based surrogates in an artificially created channel of cytochrome c peroxidase. Protein Sci 2003; 12:278-87. [PMID: 12538891 PMCID: PMC2312424 DOI: 10.1110/ps.0228403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
As recently described, the deliberate removal of the proposed electron transfer pathway from cytochrome c peroxidase resulted in the formation of an extended ligand-binding channel. The engineered channel formed a template for the removed peptide segment, suggesting that synthetic surrogates might be introduced to replace the native electron transfer pathway. This approach could be united with the recent development of sensitizer-linked substrates to initiate and study electron transfer, allowing access to unresolved issues about redox mechanism of the enzyme. Here, we present the design, synthesis, and screening of a peptide library containing natural and unnatural amino acids to identify the structural determinants for binding this channel mutant. Only one peptide, (benzimidazole-propionic acid)-Gly-Ala-Ala, appeared to interact, and gave evidence for both reversible and kinetically trapped binding, suggesting multiple conformations for the channel protein. Notably, this peptide was the most analogous to the removed electron transfer sequence, supporting the use of a cavity-template strategy for design of specific sensitizer-linked substrates as replacements for the native electron transfer pathway.
Collapse
Affiliation(s)
- Anna-Maria A Hays
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
27
|
Denison MS, Pandini A, Nagy SR, Baldwin EP, Bonati L. Ligand binding and activation of the Ah receptor. Chem Biol Interact 2002; 141:3-24. [PMID: 12213382 DOI: 10.1016/s0009-2797(02)00063-7] [Citation(s) in RCA: 320] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The Ah receptor (AhR) is a ligand-dependent transcription factor that can be activated by structurally diverse synthetic and naturally-occurring chemicals. Although a significant amount of information is available with respect to the planar aromatic hydrocarbon AhR ligands, the actual spectrum of chemicals that can bind to and activate the AhR is only now being elucidated. In addition, the lack of information regarding the actual three-dimensional structure of the AhR ligand binding domain (LBD) has hindered detailed analysis of the molecular mechanisms by which these ligands bind to and active AhR signal transduction. In this review we describe the current state of knowledge with respect to naturally occurring AhR ligands and present and discuss the first theoretical model of the AhR LBD based on crystal structures of homologous PAS family members.
Collapse
Affiliation(s)
- Michael S Denison
- Department of Environmental Toxicology, Meyer Hall, One Shields Avenue, University of California, Davis 95616-8588, USA.
| | | | | | | | | |
Collapse
|
28
|
Machicado C, Bueno M, Sancho J. Predicting the structure of protein cavities created by mutation. Protein Eng Des Sel 2002; 15:669-75. [PMID: 12364581 DOI: 10.1093/protein/15.8.669] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To assist in the efficient design of protein cavities, we have developed a minimization strategy that can predict with accuracy the fate of cavities created by mutation. We first modelled, under different conditions, the structures of six T4 lysozyme and cytochrome c peroxidase mutants of known crystal structure (where long, hydrophobic, buried side chains have been replaced by shorter ones) by minimizing the virtual structures derived from the corresponding wild-type co-ordinates. An unconstrained pathway together with an all-atom atom representation and a steepest descent minimization yielded modelled structures with lower root mean square deviations (r.m.s.d) from the crystal structures than other conditions. To test whether the method developed was generally applicable to other mutations of the kind, we have then modelled eighteen additional T4 lysozyme, barnase and cytochrome c peroxidase mutants of known crystal structure. The models of both cavity expanding and cavity collapsing mutants closely fit their crystal structures (average r.m.s.d. 0.33 +/- 0.25 A, with only one poorer prediction: L121A). The structure of protein cavities generated by mutation can thus be confidently simulated by energy minimization regardless of the tendency of the cavity to collapse or to expand. We think this is favoured by the fact that the typical response observed in these proteins to cavity-creating mutations is to experience only a limited rearrangement.
Collapse
Affiliation(s)
- Claudia Machicado
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Spain
| | | | | |
Collapse
|
29
|
Abstract
The molecular nature of the site of general anaesthesia has long been sought through the process of comparing the in vivo potencies of general anaesthetics with their physical properties, particularly their ability to dissolve in solvents of various polarities. This approach has led to the conclusion that the site of general anaesthesia is largely apolar but contains a strong polar component. However, there is growing evidence that several physiological targets underlie general anaesthesia, and that different agents may act selectively on subsets of these targets. Consequently research now focuses on the details of general-anaesthetic-protein interactions. There are large amounts of structural data that identify cavities where anaesthetics bind on soluble proteins that are readily crystallizable. These proteins serve as models, having no role in anaesthesia. Two problems make studies of the more likely targets--excitable membrane proteins--difficult. One is that they rarely crystallize and the other is that the sites have their highest affinity for general anaesthetics when the channels are in the open state. Such states rarely exist for more than tens of milliseconds. Crystallographers are making progress with the first problem, whilst anaesthesia researchers have developed a number of strategies for addressing the second. Some of these (kinetic analysis, site-directed mutagenesis) provide indirect evidence for sites and their nature, whilst others seek direct identification of sites by employing newly developed general anaesthetics that are photoaffinity labels. Such studies on acetylcholine, glycine and GABA receptors point to the existence of sites located within the plane of the membrane either within the ion channel lumen (acetylcholine receptor), or on the outer side of the alpha-helix lining that lumen (GABAA and glycine receptors). Bound anaesthetics generally exert their actions on ion channels by binding to allosteric sites whose topology varies from one conformation to another, but definitive proof for this mechanism remains elusive.
Collapse
Affiliation(s)
- K W Miller
- Department of Anaesthesia and Critical Care, Massachusetts General Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
Sagermann M, Mårtensson LG, Baase WA, Matthews BW. A test of proposed rules for helix capping: implications for protein design. Protein Sci 2002; 11:516-21. [PMID: 11847274 PMCID: PMC2373482 DOI: 10.1110/ps.39802] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
alpha-helices within proteins are often terminated (capped) by distinctive configurations of the polypeptide chain. Two common arrangements are the Schellman motif and the alternative alpha(L) motif. Rose and coworkers developed stereochemical rules to identify the locations of such motifs in proteins of unknown structure based only on their amino acid sequences. To check the effectiveness of these rules, they made specific predictions regarding the structural and thermodynamic consequences of certain mutations in T4 lysozyme. We have constructed these mutants and show here that they have neither the structure nor the stability that was predicted. The results show the complexity of the protein-folding problem. Comparison of known protein structures may show that a characteristic sequence of amino acids (a sequence motif) corresponds to a conserved structural motif. In any particular protein, however, changes in other parts of the sequence may result in a different conformation. The structure is determined by sequence as a whole, not by parts considered in isolation.
Collapse
Affiliation(s)
- Martin Sagermann
- Institute of Molecular Biology, Howard Hughes Medical Institute and Department of Physics, University of Oregon, Eugene, Oregon 97403-1229, USA
| | | | | | | |
Collapse
|
31
|
Whittington DA, Rosenzweig AC, Frederick CA, Lippard SJ. Xenon and halogenated alkanes track putative substrate binding cavities in the soluble methane monooxygenase hydroxylase. Biochemistry 2001; 40:3476-82. [PMID: 11297413 DOI: 10.1021/bi0022487] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To investigate the role of protein cavities in facilitating movement of the substrates, methane and dioxygen, in the soluble methane monooxygenase hydroxylase (MMOH), we determined the X-ray structures of MMOH from Methylococcus capsulatus (Bath) cocrystallized with dibromomethane or iodoethane, or by using crystals pressurized with xenon gas. The halogenated alkanes bind in two cavities within the alpha-subunit that extend from one surface of the protein to the buried dinuclear iron active site. Two additional binding sites were located in the beta-subunit. Pressurization of two crystal forms of MMOH with xenon resulted in the identification of six binding sites located exclusively in the alpha-subunit. These results indicate that hydrophobic species bind preferentially in preexisting cavities in MMOH and support the hypothesis that such cavities may play a functional role in sequestering and enhancing the availability of the physiological substrates for reaction at the active site.
Collapse
Affiliation(s)
- D A Whittington
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
32
|
Funahashi J, Takano K, Yutani K. Are the parameters of various stabilization factors estimated from mutant human lysozymes compatible with other proteins? PROTEIN ENGINEERING 2001; 14:127-34. [PMID: 11297670 DOI: 10.1093/protein/14.2.127] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The various factors which contribute to protein stability have been extensively examined using mutant proteins, but the same kinds of substitutions have given different results depending on the substitution sites. Recently, the contributions of some stabilization factors have been quantitatively derived as parameters by a unique equation, considering the conformational changes due to the mutations using mutant human lysozymes [Funahashi et al. (1999) Protein ENG: 12, 841-850]. To evaluate these parameters estimated from the mutant human lysozymes, stability-structure datasets for the mutant T4 lysozymes were selected. The stabilities for the mutant T4 lysozymes could be roughly estimated using these parameters. Notable differences between the estimated and experimental stabilities were caused by the uncertainty in part of the structures due to some Arg and Lys residues fluctuating on the surface of the T4 lysozyme. Excluding these atoms from the estimation gave a good correlation between the estimated and experimental stabilities. These results suggest that the parameters of the various stabilization factors derived from the mutant human lysozymes are compatible with the mutant T4 lysozymes, although they should be improved with respect to some points using more information.
Collapse
Affiliation(s)
- J Funahashi
- Institute for Protein Research, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
33
|
Quillin ML, Breyer WA, Griswold IJ, Matthews BW. Size versus polarizability in protein-ligand interactions: binding of noble gases within engineered cavities in phage T4 lysozyme. J Mol Biol 2000; 302:955-77. [PMID: 10993735 DOI: 10.1006/jmbi.2000.4063] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To investigate the relative importance of size and polarizability in ligand binding within proteins, we have determined the crystal structures of pseudo wild-type and cavity-containing mutant phage T4 lysozymes in the presence of argon, krypton, and xenon. These proteins provide a representative sample of predominantly apolar cavities of varying size and shape. Even though the volumes of these cavities range up to the equivalent of five xenon atoms, the noble gases bind preferentially at highly localized sites that appear to be defined by constrictions in the walls of the cavities, coupled with the relatively large radii of the noble gases. The cavities within pseudo wild-type and L121A lysozymes each bind only a single atom of noble gas, while the cavities within mutants L133A and F153A have two independent binding sites, and the L99A cavity has three interacting sites. The binding of noble gases within two double mutants was studied to characterize the additivity of binding at such sites. In general, when a cavity in a protein is created by a "large-to-small" substitution, the surrounding residues relax somewhat to reduce the volume of the cavity. The binding of xenon and, to a lesser degree, krypton and argon, tend to expand the volume of the cavity and to return it closer to what it would have been had no relaxation occurred. In nearly all cases, the extent of binding of the noble gases follows the trend xenon>krypton>argon. Pressure titrations of the L99A mutant have confirmed that the crystallographic occupancies accurately reflect fractional saturation of the binding sites. The trend in noble gas affinity can be understood in terms of the effects of size and polarizability on the intermolecular potential. The plasticity of the protein matrix permits repulsion due to increased ligand size to be more than compensated for by attraction due to increased ligand polarizability. These results have implications for the mechanism of general anesthesia, the migration of small ligands within proteins, the detection of water molecules within apolar cavities and the determination of crystallographic phases.
Collapse
Affiliation(s)
- M L Quillin
- Institute of Molecular Biology Howard Hughes Medical Institute and Department of Physics, University of Oregon, Eugene, OR, 97403, USA
| | | | | | | |
Collapse
|
34
|
Langhorst U, Backmann J, Loris R, Steyaert J. Analysis of a water mediated protein-protein interactions within RNase T1. Biochemistry 2000; 39:6586-93. [PMID: 10828976 DOI: 10.1021/bi992131m] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Buried and well-ordered solvent molecules are an integral part of each folded protein. For a few individual water molecules, the exchange kinetics with solvent have been described in great detail. So far, little is known about the energetics of this exchange process. Here, we present an experimental approach to investigate water-mediated intramolecular protein-protein interactions by use of double mutant cycles. As a first example, we analyzed the interdependence of the contribution of two side chains (Asn9 and Thr93) to the conformational stability of RNase T1. In the folded state, both side chains are involved in the "solvation of the same water molecule WAT1. The coupling of the contributions of Asn9 and Thr93 to the conformational stability of RNase T1 was measured by urea unfolding and differential scanning calorimetry. The structural integrity of each mutant was analyzed by X-ray crystallography. We find that the effects of the Asn9Ala and the Thr93Ala mutations on the conformational stability are additive in the corresponding double mutant. We conclude that the free energy of the WAT1 mediated intramolecular protein-protein interaction in the folded state is very similar to solvent mediated protein-protein interaction in the unfolded state.
Collapse
Affiliation(s)
- U Langhorst
- Dienst Ultrastructuur, Vlaams Interuniversitair Instituut Biotechnologie, Vrije Universiteit Brussel, Paardenstraat 65, B-1640 Sint-Genesius-Rode, Belgium
| | | | | | | |
Collapse
|
35
|
Channareddy S, Nguyen NT, Janes N. Saturable ethanol binding in rat liver mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1463:291-300. [PMID: 10675507 DOI: 10.1016/s0005-2736(99)00220-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The binding of ethanol to rat liver mitochondria is shown to be saturable at physiologically relevant ethanol concentrations. This effect is reversible and is not observed in extracted mitochondrial phospholipids. Brief exposure of the mitochondria to heat abolishes saturable ethanol binding. Previously, saturable ethanol binding was reported in rat liver microsomes. Taken together, the studies indicate that saturable ethanol binding motifs may be widespread in cellular membranes. The possibility is raised that incomplete expression of the hydrophobic effect in membrane assembly results in the expression of amphipathic packing defects which display an affinity for and a sensitivity to ethanol. The presence of saturable binding modalities is reconciled with the long-standing consensus on the biodistribution of ethanol - that ethanol's interactions with tissue are negligible - on the grounds that the affinities of ethanol and of water for membranes are similar; consequently, free ethanol concentrations are insensitive to the presence of tissue despite significant ethanol binding. A fraction of the binding sites possess submillimolar affinities for ethanol consistent with published functional studies, both in vitro and in vivo, that reported submillimolar efficacies for ethanol.
Collapse
Affiliation(s)
- S Channareddy
- Department of Pathology, Anatomy, and Cell Biology, Medical College of Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
36
|
Gassner NC, Baase WA, Lindstrom JD, Lu J, Dahlquist FW, Matthews BW. Methionine and alanine substitutions show that the formation of wild-type-like structure in the carboxy-terminal domain of T4 lysozyme is a rate-limiting step in folding. Biochemistry 1999; 38:14451-60. [PMID: 10545167 DOI: 10.1021/bi9915519] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In an attempt to identify a systematic relation between the structure of a protein and its folding kinetics, the rate of folding was determined for 20 mutants of T4 lysozyme in which a bulky, buried, nonpolar wild-type residue (Leu, Ile, Phe, Val, or Met) was substituted with alanine. Methionine, which approximated the size of the original side chain but which is of different shape and flexibility, was also substituted at most of the same sites. Mutations that substantially destabilize the protein and are located in the carboxy-terminal domain generally slow the rate of folding. Destabilizing mutations in the amino-terminal domain, however, have little effect on the rate of folding. Mutations that have little effect on stability tend to have little effect on the rate, no matter where they are located. These results suggest that, at the rate-limiting step, elements of structure in the C-terminal domain are formed and have a structure similar to that of the fully folded protein. Consistent with this, two variants that somewhat increase the rate of folding (Phe104 --> Met and Val149 --> Met) are located within the carboxy-terminal domain and maintain or improve packing with very little perturbation of the wild-type structure.
Collapse
Affiliation(s)
- N C Gassner
- Institute of Molecular Biology, Howard Hughes Medical Institute, and Departments of Chemistry and Physics, 1229 University of Oregon, Eugene, Oregon 97403-1229, USA
| | | | | | | | | | | |
Collapse
|
37
|
Channareddy S, Janes N. Direct determination of hydration in the interdigitated and ripple phases of dihexadecylphosphatidylcholine: hydration of a hydrophobic cavity at the membrane/water interface. Biophys J 1999; 77:2046-50. [PMID: 10512824 PMCID: PMC1300485 DOI: 10.1016/s0006-3495(99)77045-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Hydrophobic cavities at the membrane/water interface are stably expressed in interdigitated membranes. The nonsolvent water associated with 1,2-di-O-hexadecyl-sn-glycero-3-phosphocholine (Hxdc(2)GroPCho) in the interdigitated (L(beta)I) and ripple (P(beta')) states and with its ester analogue 1, 2-dipalmitoyl-sn-glycero-3-phosphocholine (Pam(2)PtdCho) in the gel (L(beta')) and P(beta') states are determined directly. In the L(beta)I state at lower temperatures (4-20 degrees C), 16-18 water molecules per phospholipid are bound, consistent with water-filled cavities and hydrated headgroups. At 28 degrees C, the nonsolvent water decreases to 12, consistent with a reduction of the cavity depth by 0.34 nm due to increased chain interpenetration. This geometric lability may be a common feature of hydrophobic cavities. Only 5.4 waters are bound in the noninterdigitated P(beta') (40 degrees C), whereas the ester bound 8.1 waters in its P(beta') (37 degrees C), a difference of about one water per ester carbonyl. The relative dehydration of the ether linkage is consistent with it promoting more densely packed structures, which in turn, accounts for its ability to interdigitate.
Collapse
Affiliation(s)
- S Channareddy
- Department of Pathology, Anatomy, and Cell Biology, Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania 19107 USA
| | | |
Collapse
|
38
|
Consonni R, Santomo L, Fusi P, Tortora P, Zetta L. A single-point mutation in the extreme heat- and pressure-resistant sso7d protein from sulfolobus solfataricus leads to a major rearrangement of the hydrophobic core. Biochemistry 1999; 38:12709-17. [PMID: 10504241 DOI: 10.1021/bi9911280] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sso7d is a basic 7-kDa DNA-binding protein from Sulfolobus solfataricus, also endowed with ribonuclease activity. The protein consists of a double-stranded antiparallel beta-sheet, onto which an orthogonal triple-stranded antiparallel beta-sheet is packed, and of a small helical stretch at the C-terminus. Furthermore, the two beta-sheets enclose an aromatic cluster displaying a fishbone geometry. We previously cloned the Sso7d-encoding gene, expressed it in Escherichia coli, and produced several single-point mutants, either of residues located in the hydrophobic core or of Trp23, which is exposed to the solvent and plays a major role in DNA binding. The mutation F31A was dramatically destabilizing, with a loss in thermo- and piezostabilities by at least 27 K and 10 kbar, respectively. Here, we report the solution structure of the F31A mutant, which was determined by NMR spectroscopy using 744 distance constraints obtained from analysis of multidimensional spectra in conjunction with simulated annealing protocols. The most remarkable finding is the change in orientation of the Trp23 side chain, which in the wild type is completely exposed to the solvent, whereas in the mutant is largely buried in the aromatic cluster. This prevents the formation of a cavity in the hydrophobic core of the mutant, which would arise in the absence of structural rearrangements. We found additional changes produced by the mutation, notably a strong distortion in the beta-sheets with loss in several hydrogen bonds, increased flexibility of some stretches of the backbone, and some local strains. On one hand, these features may justify the dramatic destabilization provoked by the mutation; on the other hand, they highlight the crucial role of the hydrophobic core in protein stability. To the best of our knowledge, no similar rearrangement has been so far described as a result of a single-point mutation.
Collapse
Affiliation(s)
- R Consonni
- Istituto di Chimica delle Macromolecole, Lab. NMR, CNR, Via Ampère 56, 20131 Milano, Italy, and Dipartimento di BioTecnologie e Bioscienze, Università di Milano-Bicocca, Pza delle Scienze 2, 20126 Milano, Italy.
| | | | | | | | | |
Collapse
|