1
|
Sample Preparation and Data Collection for Electron Crystallographic Studies on Membrane Protein Structures and Lipid-Protein Interaction. Methods Mol Biol 2020. [PMID: 33368007 DOI: 10.1007/978-1-0716-0966-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Electron crystallography is a unique tool to study membrane protein structures and lipid-protein interactions in their native-like environments. Two-dimensional (2D) protein crystallization enables the lipids immobilized by the proteins, and the generated high-resolution density map allows us to model the atomic coordinates of the surrounding lipids to study lipid-protein interaction. This protocol describes the sample preparation for electron crystallographic studies, including back-injection method and carbon sandwich method. The protocols of data collection for electron crystallography, including electron imaging and diffraction, of the 2D membrane crystal will be followed.
Collapse
|
2
|
Korkosh VS, Zhorov BS, Tikhonov DB. Folding similarity of the outer pore region in prokaryotic and eukaryotic sodium channels revealed by docking of conotoxins GIIIA, PIIIA, and KIIIA in a NavAb-based model of Nav1.4. ACTA ACUST UNITED AC 2015; 144:231-44. [PMID: 25156117 PMCID: PMC4144674 DOI: 10.1085/jgp.201411226] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Analyses of toxin binding to a homology model of Nav1.4 indicate similar folding of the outer pore region in eukaryotic and prokaryotic sodium channels. Voltage-gated sodium channels are targets for many drugs and toxins. However, the rational design of medically relevant channel modulators is hampered by the lack of x-ray structures of eukaryotic channels. Here, we used a homology model based on the x-ray structure of the NavAb prokaryotic sodium channel together with published experimental data to analyze interactions of the μ-conotoxins GIIIA, PIIIA, and KIIIA with the Nav1.4 eukaryotic channel. Using Monte Carlo energy minimizations and published experimentally defined pairwise contacts as distance constraints, we developed a model in which specific contacts between GIIIA and Nav1.4 were readily reproduced without deformation of the channel or toxin backbones. Computed energies of specific interactions between individual residues of GIIIA and the channel correlated with experimental estimates. The predicted complexes of PIIIA and KIIIA with Nav1.4 are consistent with a large body of experimental data. In particular, a model of Nav1.4 interactions with KIIIA and tetrodotoxin (TTX) indicated that TTX can pass between Nav1.4 and channel-bound KIIIA to reach its binding site at the selectivity filter. Our models also allowed us to explain experimental data that currently lack structural interpretations. For instance, consistent with the incomplete block observed with KIIIA and some GIIIA and PIIIA mutants, our computations predict an uninterrupted pathway for sodium ions between the extracellular space and the selectivity filter if at least one of the four outer carboxylates is not bound to the toxin. We found a good correlation between computational and experimental data on complete and incomplete channel block by native and mutant toxins. Thus, our study suggests similar folding of the outer pore region in eukaryotic and prokaryotic sodium channels.
Collapse
Affiliation(s)
- Viacheslav S Korkosh
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia
| | - Boris S Zhorov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S4L8, Canada
| | - Denis B Tikhonov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia
| |
Collapse
|
3
|
Sabogal-Arango A, Barreto GE, Ramírez-Sánchez D, González-Mendoza J, Barreto V, Morales L, González J. Computational Insights of the Interaction among Sea Anemones Neurotoxins and Kv1.3 Channel. Bioinform Biol Insights 2014; 8:73-81. [PMID: 24812496 PMCID: PMC3999815 DOI: 10.4137/bbi.s13403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 01/23/2014] [Accepted: 01/24/2014] [Indexed: 12/21/2022] Open
Abstract
Sea anemone neurotoxins are peptides that interact with Na(+) and K(+) channels, resulting in specific alterations on their functions. Some of these neurotoxins (1ROO, 1BGK, 2K9E, 1BEI) are important for the treatment of about 80 autoimmune disorders because of their specificity for Kv1.3 channel. The aim of this study was to identify the common residues among these neurotoxins by computational methods, and establish whether there is a pattern useful for the future generation of a treatment for autoimmune diseases. Our results showed eight new key common residues between the studied neurotoxins interacting with a histidine ring and the selectivity filter of the receptor, thus showing a possible pattern of interaction. This knowledge may serve as an input for the design of more promising drugs for autoimmune treatments.
Collapse
Affiliation(s)
- Angélica Sabogal-Arango
- Department of Nutrition and Biochemistry, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - George E Barreto
- Department of Nutrition and Biochemistry, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - David Ramírez-Sánchez
- Department of Pharmacy, Faculty of Science, Universidad Nacional de Colombia, Bogotá D.C., Colombia
| | - Juan González-Mendoza
- Department of Pharmacy, Faculty of Science, Universidad Nacional de Colombia, Bogotá D.C., Colombia
| | - Viviana Barreto
- Department of Nutrition and Biochemistry, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Ludis Morales
- Department of Nutrition and Biochemistry, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Janneth González
- Department of Nutrition and Biochemistry, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| |
Collapse
|
4
|
Voltage sensor ring in a native structure of a membrane-embedded potassium channel. Proc Natl Acad Sci U S A 2013; 110:3369-74. [PMID: 23401554 DOI: 10.1073/pnas.1218203110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Voltage-gated ion channels support electrochemical activity in cells and are largely responsible for information flow throughout the nervous systems. The voltage sensor domains in these channels sense changes in transmembrane potential and control ion flux across membranes. The X-ray structures of a few voltage-gated ion channels in detergents have been determined and have revealed clear structural variations among their respective voltage sensor domains. More recent studies demonstrated that lipids around a voltage-gated channel could directly alter its conformational state in membrane. Because of these disparities, the structural basis for voltage sensing in native membranes remains elusive. Here, through electron-crystallographic analysis of membrane-embedded proteins, we present the detailed view of a voltage-gated potassium channel in its inactivated state. Contrary to all known structures of voltage-gated ion channels in detergents, our data revealed a unique conformation in which the four voltage sensor domains of a voltage-gated potassium channel from Aeropyrum pernix (KvAP) form a ring structure that completely surrounds the pore domain of the channel. Such a structure is named the voltage sensor ring. Our biochemical and electrophysiological studies support that the voltage sensor ring represents a physiological conformation. These data together suggest that lipids exert strong effects on the channel structure and that these effects may be changed upon membrane disruption. Our results have wide implications for lipid-protein interactions in general and for the mechanism of voltage sensing in particular.
Collapse
|
5
|
Li H, Qian L, Chen Z, Thibault D, Liu G, Liu T, Thanassi DG. The Outer Membrane Usher Forms a Twin-pore Secretion Complex. J Mol Biol 2004; 344:1397-407. [PMID: 15561151 DOI: 10.1016/j.jmb.2004.10.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 09/24/2004] [Accepted: 10/06/2004] [Indexed: 10/26/2022]
Abstract
The PapC usher is an outer membrane protein required for assembly and secretion of P pili in uropathogenic Escherichia coli. P pilus biogenesis occurs by the chaperone/usher pathway, a terminal branch of the general secretory pathway. Periplasmic chaperone-subunit complexes target to the PapC usher for fiber assembly and secretion through the usher to the cell surface. The molecular details of pilus biogenesis at the usher, and protein secretion across the outer membrane in general, are unclear. We studied the structure and oligomeric state of PapC by gel filtration, dynamic light scattering, and electron microscopy and image analysis. Two-dimensional crystals of wild-type PapC and a C-terminal deletion mutant of PapC were produced by reconstituting detergent purified usher into E.coli lipids. PapC formed a dimer both in detergent solution and in the phospholipid bilayer. Cryo-electron microscopy revealed that the usher forms a twin-pore complex. Removal of the C-terminal domain did not change the basic shape of the PapC molecule, but altered the dimeric association of the usher, suggesting that the C terminus forms part of the dimerization interface. The overall molecular size (11 nm), pore size (2 nm), and twin-pore configuration of PapC resemble that of the Tom40 complex, a mitochondrial outer membrane protein translocase.
Collapse
Affiliation(s)
- Huilin Li
- Biology Department, Brookhaven National Laboratory, 50 Bell Ave, Upton, NY 11973, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Kelly BL, Gross A. Potassium channel gating observed with site-directed mass tagging. Nat Struct Mol Biol 2003; 10:280-4. [PMID: 12640442 DOI: 10.1038/nsb908] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2002] [Accepted: 01/27/2003] [Indexed: 11/08/2022]
Abstract
Potassium channels allow the selective flow of K+ ions across otherwise impermeable membranes. During a process called gating, these channels undergo a conformational change that proceeds from a closed to an open state. The closed state of KcsA, a prokaryotic potassium channel, has been structurally well characterized with equilibrium structural techniques. However, attempts to obtain a structural description of the gating transition of the channel have been hampered because the open state is only transiently occupied and, therefore, not readily accessible to such techniques. Here we describe a non-equilibrium technique that we call site-directed mass tagging and use this technique to probe the conformational change that KcsA undergoes during gating. The results indicate that KcsA is a dynamically modular molecule; the extracellular half of the membrane-spanning region is held rigid during gating, while the intracellular half undergoes a significant conformational change.
Collapse
Affiliation(s)
- Brent L Kelly
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University School of Medicine, 303 East Chicago Avenue, Chicago, Illinois 60611, USA
| | | |
Collapse
|
7
|
Bransburg-Zabary S, Nachliel E, Gutman M. Gauging of the PhoE channel by a single freely diffusing proton. Biophys J 2002; 83:2987-3000. [PMID: 12496072 PMCID: PMC1302380 DOI: 10.1016/s0006-3495(02)75305-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In the present study we combined a continuum approximation with a detailed mapping of the electrostatic potential inside an ionic channel to define the most probable trajectory for proton propagation through the channel (propagation along a structure-supported trajectory (PSST)). The conversion of the three-dimensional diffusion space into propagation along a one-dimensional pathway permits reconstruction of an ion motion by a short calculation (a few seconds on a state-of-the-art workstation) rather than a laborious, time-consuming random walk simulations. The experimental system selected for testing the accuracy of this concept was the reversible dissociation of a proton from a single pyranine molecule (8-hydroxypyrene-1,2,3-trisulfonate) bound by electrostatic forces inside the PhoE ionic channel of the Escherichia coli outer membrane. The crystal structure coordinates were used for calculation of the intra-cavity electrostatic potential, and the reconstruction of the observed fluorescence decay curve was carried out using the dielectric constant of the intra-cavity space as an adjustable parameter. The fitting of past experimental observations (Shimoni, E., Y. Tsfadia, E. Nachliel, and M. Gutman. 1993. Biophys. J. 64:472-479) was carried out by a modified version of the Agmon geminate recombination program (Krissinel, E. B., and N. Agmon. 1996. J. Comp. Chem. 17:1085-1098), where the gradient of the electrostatic potential and the entropic terms were calculated by the PSST program. The best-fitted reconstruction of the observed dynamics was attained when the water in the cavity was assigned epsilon </= 55, corroborating the theoretical estimation of Sansom (Breed, J. R., I. D. Kerr, and M. S. P. Sansom. 1996. Biophys. J. 70:1643-1661). The dielectric constant calculated for reversed micelles of comparable size (Cohen, B., D. Huppert, K. M. Solntsev, Y. Tsfadia, E. Nachliel, and M. Gutman. 2002. JACS. 124:7539-7547) allows us to set a margin of epsilon = 50 +/- 5.
Collapse
Affiliation(s)
- Sharron Bransburg-Zabary
- Laser Laboratory for Fast Reactions in Biology, Department of Biochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | | | | |
Collapse
|
8
|
Abstract
Two-dimensional crystallogenesis is a crucial step in the long road that leads to the determination of macromolecules structure via electron crystallography. The necessity of having large and highly ordered samples can hold back the resolution of structural works for a long time, and this, despite improvements made in electron microscopes or image processing. Today, finding good conditions for growing two-dimensional crystals still rely on either "biocrystallo-cooks" or on lucky ones. The present review presents the field by first describing the different crystals that one can encounter and the different crystallisation methods used. Then, the effects of different components (such as protein, lipids, detergent, buffer, and temperature) and the different methods (dialysis, hydrophobic adsorption) are discussed. This discussion is punctuated by correspondences made to the world of three-dimensional crystallogenesis. Finally, a guide for setting up 2D crystallogenesis experiments, built on the discussion mentioned before, is proposed to the reader. More than giving recipes, this review is meant to open up the discussions in this field.
Collapse
Affiliation(s)
- G Mosser
- LPCC, UMR168-CNRS, Institut Curie-Section de Recherche, 11 rue Pierre et Marie Curie, 75005 Paris, France.
| |
Collapse
|
9
|
Metzler DE, Metzler CM, Sauke DJ. Chemical Communication Between Cells. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50033-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Rigaud J, Chami M, Lambert O, Levy D, Ranck J. Use of detergents in two-dimensional crystallization of membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1508:112-28. [PMID: 11090821 DOI: 10.1016/s0005-2736(00)00307-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Structure determination at high resolution is actually a difficult challenge for membrane proteins and the number of membrane proteins that have been crystallized is still small and far behind that of soluble proteins. Because of their amphiphilic character, membrane proteins need to be isolated, purified and crystallized in detergent solutions. This makes it difficult to grow the well-ordered three-dimensional crystals that are required for high resolution structure analysis by X-ray crystallography. In this difficult context, growing crystals confined to two dimensions (2D crystals) and their structural analysis by electron crystallography has opened a new way to solve the structure of membrane proteins. However, 2D crystallization is one of the major bottlenecks in the structural studies of membrane proteins. Advances in our understanding of the interaction between proteins, lipids and detergents as well as development and improvement of new strategies will facilitate the success rate of 2D crystallization. This review deals with the various available strategies for obtaining 2D crystals from detergent-solubilized intrinsic membrane proteins. It gives an overview of the methods that have been applied and gives details and suggestions of the physical processes leading to the formation of the ordered arrays which may be of help for getting more proteins crystallized in a form suitable for high resolution structural analysis by electron crystallography.
Collapse
Affiliation(s)
- J Rigaud
- Institut Curie, Section de Recherche, UMR-CNRS 168 and LRC-CEA 8, 11 rue Pierre et Marie Curie, 75231, Paris, France.
| | | | | | | | | |
Collapse
|
11
|
Henderson RM, Oberleithner H. Pushing, pulling, dragging, and vibrating renal epithelia by using atomic force microscopy. Am J Physiol Renal Physiol 2000; 278:F689-701. [PMID: 10807580 DOI: 10.1152/ajprenal.2000.278.5.f689] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Renal physiologists focus on events that take place on and around the surfaces of cells. Various techniques have been developed that follow transport functions at the molecular level, but until recently none of these techniques has been capable of making the behavior of molecular structures visible under physiological conditions. This apparent gap may be filled in the future by the application of atomic force microscopy. This technique produces an image not by optical means, but by "feeling" its way across a surface. Atomic force microscopy can, however, be modified in a number of ways, which means that besides producing a high-resolution image, it is possible to obtain several types of data on the interactions between the ultrastructural components of cell membranes (such as proteins) and other biologically active molecules (such as ATP). In this review we describe the recent use of the atomic force microscope in renal physiology, ranging from experiments in intact cells to those in isolated renal transport protein molecules, include examples of these extended applications of the technique, and point to uses that the microscope has recently found in other areas of biology that should prove fruitful in renal physiology in the near future.
Collapse
Affiliation(s)
- R M Henderson
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1QJ, United Kingdom.
| | | |
Collapse
|
12
|
Kalman K, Pennington MW, Lanigan MD, Nguyen A, Rauer H, Mahnir V, Paschetto K, Kem WR, Grissmer S, Gutman GA, Christian EP, Cahalan MD, Norton RS, Chandy KG. ShK-Dap22, a potent Kv1.3-specific immunosuppressive polypeptide. J Biol Chem 1998; 273:32697-707. [PMID: 9830012 DOI: 10.1074/jbc.273.49.32697] [Citation(s) in RCA: 193] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The voltage-gated potassium channel in T lymphocytes, Kv1.3, is an important molecular target for immunosuppressive agents. A structurally defined polypeptide, ShK, from the sea anemone Stichodactyla helianthus inhibited Kv1.3 potently and also blocked Kv1.1, Kv1.4, and Kv1.6 at subnanomolar concentrations. Using mutant cycle analysis in conjunction with complementary mutagenesis of ShK and Kv1.3, and utilizing the structure of ShK, we determined a likely docking configuration for this peptide in the channel. Based upon this topological information, we replaced the critical Lys22 in ShK with the positively charged, non-natural amino acid diaminopropionic acid (ShK-Dap22) and generated a highly selective and potent blocker of the T-lymphocyte channel. ShK-Dap22, at subnanomolar concentrations, suppressed anti-CD3 induced human T-lymphocyte [3H]thymidine incorporation in vitro. Toxicity with this mutant peptide was low in a rodent model, with a median paralytic dose of approximately 200 mg/kg body weight following intravenous administration. The overall structure of ShK-Dap22 in solution, as determined from NMR data, is similar to that of native ShK toxin, but there are some differences in the residues involved in potassium channel binding. Based on these results, we propose that ShK-Dap22 or a structural analogue may have use as an immunosuppressant for the prevention of graft rejection and for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- K Kalman
- Departments of Physiology & Biophysics, and Microbiology and Molecular Genetics, University of California, Irvine, California 92697-4560, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|