1
|
Kim SK, Min YH, Jin HJ. Characteristics of the ErmK Protein of Bacillus halodurans C-125. Microbiol Spectr 2023; 11:e0259822. [PMID: 36511701 PMCID: PMC9927578 DOI: 10.1128/spectrum.02598-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/13/2022] [Indexed: 12/15/2022] Open
Abstract
Bacillus halodurans C-125 is an alkaliphilic microorganism that grows best at pH 10 to 10.5. B. halodurans C-125 harbors the erm (erythromycin resistance methylase) gene as well as the mphB (macrolide phosphotransferase) and putative mef (macrolide efflux) genes, which confer resistance to macrolide, lincosamide, and streptogramin B (MLSB) antibiotics. The Erm protein expressed in B. halodurans C-125 could be classified as ErmK because it shares 66.2% and 61.2% amino acid sequence identity with the closest ErmD and Erm(34), respectively. ErmK can be regarded as a dimethylase, as evidenced by reverse transcriptase analysis and the antibiotic resistance profile exhibited by E. coli expressing ermK. Although ErmK showed one-third or less in vitro methylating activity compared to ErmC', E. coli cells expressing ErmK exhibited comparable resistance to erythromycin and tylosin, and a similar dimethylation proportion of 23S rRNA due to the higher expression rate in a T7 promoter-mediated expression system. The less efficient methylation activity of ErmK might reflect an adaption to mitigate the fitness cost caused by dimethylation through the Erm protein presumably because B. halodurans C-125 has less probability to encounter the antibiotics in its favorable growth conditions and grows retardedly in neutral environments. IMPORTANCE Erm proteins confer MLSB antibiotic resistance (minimal inhibitory concentration [MIC] value up to 4,096 μg/mL) on microorganisms ranging from antibiotic producers to pathogens, imposing one of the most pressing threats to clinics. Therefore, Erm proteins have long been speculated to be plausible targets for developing inhibitor(s). In our laboratory, it has been noticed that there are variations in enzymatic activity among the Erm proteins, Erm in antibiotic producers being better than that in pathogens. In this study, it has been observed that Erm protein in B. halodurans C-125 extremophile is a novel member of Erm protein and acts more laggardly, compared to that in pathogen. While this sluggishness of Erm protein in extremophile might be evolved to reduce the fitness cost incurred by Erm activity adapting to its environments, this feature could be exploited to develop the more potent and/or efficacious drug to combat formidably problematic antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Sung Keun Kim
- Department of Bioscience and Biotechnology, The University of Suwon, Hwaseong City, South Korea
| | - Yu Hong Min
- College of Health and Welfare, Daegu Haany University, Gyeongsangbuk-Do, South Korea
| | - Hyung Jong Jin
- Department of Bioscience and Biotechnology, The University of Suwon, Hwaseong City, South Korea
| |
Collapse
|
2
|
Bhujbalrao R, Gavvala K, Singh RK, Singh J, Boudier C, Chakrabarti S, Patwari GN, Mély Y, Anand R. Identification of Allosteric Hotspots regulating the ribosomal RNA-binding by Antibiotic Resistance-Conferring Erm Methyltransferases. J Biol Chem 2022; 298:102208. [PMID: 35772496 PMCID: PMC9386465 DOI: 10.1016/j.jbc.2022.102208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/12/2022] Open
Abstract
Antibiotic resistance via epigenetic methylation of ribosomal RNA is one of the most prevalent strategies adopted by multidrug resistant pathogens. The erythromycin-resistance methyltransferase (Erm) methylates rRNA at the conserved A2058 position and imparts resistance to macrolides such as erythromycin. However, the precise mechanism adopted by Erm methyltransferases for locating the target base within a complicated rRNA scaffold remains unclear. Here, we show that a conserved RNA architecture, including specific bulge sites, present more than 15 Å from the reaction center, is key to methylation at the pathogenic site. Using a set of RNA sequences site-specifically labeled by fluorescent nucleotide surrogates, we show that base flipping is a prerequisite for effective methylation and that distal bases assist in the recognition and flipping at the reaction center. The Erm–RNA complex model revealed that intrinsically flipped-out bases in the RNA serve as a putative anchor point for the Erm. Molecular dynamic simulation studies demonstrated the RNA undergoes a substantial change in conformation to facilitate an effective protein–rRNA handshake. This study highlights the importance of unique architectural features exploited by RNA to impart fidelity to RNA methyltransferases via enabling allosteric crosstalk. Moreover, the distal trigger sites identified here serve as attractive hotspots for the development of combination drug therapy aimed at reversing resistance.
Collapse
Affiliation(s)
- Ruchika Bhujbalrao
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Krishna Gavvala
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 Route du Rhin, 67401 Illkirch, France
| | - Reman Kumar Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Juhi Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Christian Boudier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 Route du Rhin, 67401 Illkirch, France
| | - Sutapa Chakrabarti
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 6, D-14195 Berlin, Germany
| | - G Naresh Patwari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 Route du Rhin, 67401 Illkirch, France.
| | - Ruchi Anand
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; Wellcome Trust DBT Indian Alliance Senior Fellow.
| |
Collapse
|
3
|
Sharkey RE, Herbert JB, McGaha DA, Nguyen V, Schoeffler AJ, Dunkle JA. Three critical regions of the erythromycin resistance methyltransferase, ErmE, are required for function supporting a model for the interaction of Erm family enzymes with substrate rRNA. RNA (NEW YORK, N.Y.) 2022; 28:210-226. [PMID: 34795028 PMCID: PMC8906542 DOI: 10.1261/rna.078946.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
6-Methyladenosine modification of DNA and RNA is widespread throughout the three domains of life and often accomplished by a Rossmann-fold methyltransferase domain which contains conserved sequence elements directing S-adenosylmethionine cofactor binding and placement of the target adenosine residue into the active site. Elaborations to the conserved Rossman-fold and appended domains direct methylation to diverse DNA and RNA sequences and structures. Recently, the first atomic-resolution structure of a ribosomal RNA adenine dimethylase (RRAD) family member bound to rRNA was solved, TFB1M bound to helix 45 of 12S rRNA. Since erythromycin resistance methyltransferases are also members of the RRAD family, and understanding how these enzymes recognize rRNA could be used to combat their role in antibiotic resistance, we constructed a model of ErmE bound to a 23S rRNA fragment based on the TFB1M-rRNA structure. We designed site-directed mutants of ErmE based on this model and assayed the mutants by in vivo phenotypic assays and in vitro assays with purified protein. Our results and additional bioinformatic analyses suggest our structural model captures key ErmE-rRNA interactions and indicate three regions of Erm proteins play a critical role in methylation: the target adenosine binding pocket, the basic ridge, and the α4-cleft.
Collapse
Affiliation(s)
- Rory E Sharkey
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35487, USA
| | - Johnny B Herbert
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35487, USA
| | - Danielle A McGaha
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35487, USA
| | - Vy Nguyen
- Department of Chemistry and Biochemistry, Loyola University New Orleans, New Orleans, Louisiana 70118, USA
| | - Allyn J Schoeffler
- Department of Chemistry and Biochemistry, Loyola University New Orleans, New Orleans, Louisiana 70118, USA
| | - Jack A Dunkle
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35487, USA
| |
Collapse
|
4
|
Crystal structure and functional analysis of mycobacterial erythromycin resistance methyltransferase Erm38 reveals its RNA binding site. J Biol Chem 2022; 298:101571. [PMID: 35007529 PMCID: PMC8844858 DOI: 10.1016/j.jbc.2022.101571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 02/04/2023] Open
Abstract
Erythromycin resistance methyltransferases (Erms) confer resistance to macrolide, lincosamide, and streptogramin antibiotics in Gram-positive bacteria and mycobacteria. Although structural information for ErmAM, ErmC, and ErmE exists from Gram-positive bacteria, little is known about the Erms in mycobacteria, as there are limited biochemical data and no structures available. Here, we present crystal structures of Erm38 from Mycobacterium smegmatis in apoprotein and cofactor-bound forms. Based on structural analysis and mutagenesis, we identified several catalytically critical, positively charged residues at a putative RNA-binding site. We found that mutation of any of these sites is sufficient to abolish methylation activity, whereas the corresponding RNA-binding affinity of Erm38 remains unchanged. The methylation reaction thus appears to require a precise ensemble of amino acids to accurately position the RNA substrate, such that the target nucleotide can be methylated. In addition, we computationally constructed a model of Erm38 in complex with a 32-mer RNA substrate. This model shows the RNA substrate stably bound to Erm38 by a patch of positively charged residues. Furthermore, a π-π stacking interaction between a key aromatic residue of Erm38 and a target adenine of the RNA substrate forms a critical interaction needed for methylation. Taken together, these data provide valuable insights into Erm–RNA interactions, which will aid subsequent structure-based drug design efforts.
Collapse
|
5
|
Rowe SJ, Mecaskey RJ, Nasef M, Talton RC, Sharkey RE, Halliday JC, Dunkle JA. Shared requirements for key residues in the antibiotic resistance enzymes ErmC and ErmE suggest a common mode of RNA recognition. J Biol Chem 2020; 295:17476-17485. [PMID: 33453992 DOI: 10.1074/jbc.ra120.014280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/30/2020] [Indexed: 11/06/2022] Open
Abstract
Erythromycin-resistance methyltransferases are SAM dependent Rossmann fold methyltransferases that convert A2058 of 23S rRNA to m62A2058. This modification sterically blocks binding of several classes of antibiotics to 23S rRNA, resulting in a multidrug-resistant phenotype in bacteria expressing the enzyme. ErmC is an erythromycin resistance methyltransferase found in many Gram-positive pathogens, whereas ErmE is found in the soil bacterium that biosynthesizes erythromycin. Whether ErmC and ErmE, which possess only 24% sequence identity, use similar structural elements for rRNA substrate recognition and positioning is not known. To investigate this question, we used structural data from related proteins to guide site-saturation mutagenesis of key residues and characterized selected variants by antibiotic susceptibility testing, single turnover kinetics, and RNA affinity-binding assays. We demonstrate that residues in α4, α5, and the α5-α6 linker are essential for methyltransferase function, including an aromatic residue on α4 that likely forms stacking interactions with the substrate adenosine and basic residues in α5 and the α5-α6 linker that likely mediate conformational rearrangements in the protein and cognate rRNA upon interaction. The functional studies led us to a new structural model for the ErmC or ErmE-rRNA complex.
Collapse
Affiliation(s)
- Sebastian J Rowe
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama, USA
| | - Ryan J Mecaskey
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama, USA
| | - Mohamed Nasef
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama, USA
| | - Rachel C Talton
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama, USA
| | - Rory E Sharkey
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama, USA
| | - Joshua C Halliday
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama, USA
| | - Jack A Dunkle
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama, USA.
| |
Collapse
|
6
|
Lee HJ, Park YI, Jin HJ. Plausible Minimal Substrate for Erm Protein. Antimicrob Agents Chemother 2020; 64:e00023-20. [PMID: 32571809 PMCID: PMC7449152 DOI: 10.1128/aac.00023-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/13/2020] [Indexed: 11/20/2022] Open
Abstract
Erm proteins methylate a specific adenine residue (A2058, Escherichia coli coordinates) conferring macrolide-lincosamide-streptogramin B (MLSB) antibiotic resistance on a variety of microorganisms, ranging from antibiotic producers to pathogens. To identify the minimal motif required to be recognized and methylated by the Erm protein, various RNA substrates from 23S rRNA were constructed, and the substrate activity of these constructs was studied using three Erm proteins, namely, ErmB from Firmicutes and ErmE and ErmS from Actinobacteria The shortest motif of 15 nucleotides (nt) could be recognized and methylated by ErmS, consisting of A2051 to the methylatable adenine (A2058) and its base-pairing counterpart strand, presumably assuming a quite similar structure to that in 23S rRNA, an unpaired target adenine immediately followed by an irregular double-stranded RNA region. This observation confirms the ultimate end of each side in helix 73 for methylation, determined by the approaches described above, and could reveal the mechanism behind the binding, recognition, induced fit, methylation, and conformational change for product release in the minimal context of substrate, presumably with the help of structural determination of the protein-RNA complex. In the course of determining the minimal portion of substrate from domain V, protein-specific features could be observed among the Erm proteins in terms of the methylation of RNA substrate and cooperativity and/or allostery between the region in helix 73 furthest away from the target adenine and the large portion of domain V above the methylatable adenine.
Collapse
Affiliation(s)
- Hak Jin Lee
- Department of Life Science, Korea University Graduate School, Seoul, Republic of Korea
- Department of Bioscience and Biotechnology, The University of Suwon, Whasung City, Republic of Korea
| | - Young In Park
- Department of Life Science, Korea University Graduate School, Seoul, Republic of Korea
| | - Hyung Jong Jin
- Department of Bioscience and Biotechnology, The University of Suwon, Whasung City, Republic of Korea
| |
Collapse
|
7
|
Crystal structure of ErmE - 23S rRNA methyltransferase in macrolide resistance. Sci Rep 2019; 9:14607. [PMID: 31601908 PMCID: PMC6787224 DOI: 10.1038/s41598-019-51174-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 09/25/2019] [Indexed: 12/14/2022] Open
Abstract
Pathogens often receive antibiotic resistance genes through horizontal gene transfer from bacteria that produce natural antibiotics. ErmE is a methyltransferase (MTase) from Saccharopolyspora erythraea that dimethylates A2058 in 23S rRNA using S-adenosyl methionine (SAM) as methyl donor, protecting the ribosomes from macrolide binding. To gain insights into the mechanism of macrolide resistance, the crystal structure of ErmE was determined to 1.75 Å resolution. ErmE consists of an N-terminal Rossmann-like α/ß catalytic domain and a C-terminal helical domain. Comparison with ErmC’ that despite only 24% sequence identity has the same function, reveals highly similar catalytic domains. Accordingly, superposition with the catalytic domain of ErmC’ in complex with SAM suggests that the cofactor binding site is conserved. The two structures mainly differ in the C-terminal domain, which in ErmE contains a longer loop harboring an additional 310 helix that interacts with the catalytic domain to stabilize the tertiary structure. Notably, ErmE also differs from ErmC’ by having long disordered extensions at its N- and C-termini. A C-terminal disordered region rich in arginine and glycine is also a present in two other MTases, PikR1 and PikR2, which share about 30% sequence identity with ErmE and methylate the same nucleotide in 23S rRNA.
Collapse
|
8
|
Bhujbalrao R, Anand R. Deciphering Determinants in Ribosomal Methyltransferases That Confer Antimicrobial Resistance. J Am Chem Soc 2019; 141:1425-1429. [PMID: 30624914 DOI: 10.1021/jacs.8b10277] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Post-translational methylation of rRNA at select positions is a prevalent resistance mechanism adopted by pathogens. In this work, KsgA, a housekeeping ribosomal methyltransferase (rMtase) involved in ribosome biogenesis, was exploited as a model system to delineate the specific targeting determinants that impart substrate specificity to rMtases. With a combination of evolutionary and structure-guided approaches, a set of chimeras were created that altered the targeting specificity of KsgA such that it acted similarly to erythromycin-resistant methyltransferases (Erms), rMtases found in multidrug-resistant pathogens. The results revealed that specific loop embellishments on the basic Rossmann fold are key determinants in the selection of the cognate RNA. Moreover, in vivo studies confirmed that chimeric constructs are competent in imparting macrolide resistance. This work explores the factors that govern the emergence of resistance and paves the way for the design of specific inhibitors useful in reversing antibiotic resistance.
Collapse
Affiliation(s)
- Ruchika Bhujbalrao
- Department of Chemistry , Indian Institute of Technology Bombay , Powai, Mumbai 400076 , India
| | - Ruchi Anand
- Department of Chemistry , Indian Institute of Technology Bombay , Powai, Mumbai 400076 , India
| |
Collapse
|
9
|
Le T, Lee HJ, Jin HJ. Recognition Site Generated by Natural Changes in Erm Proteins Leads to Unexpectedly High Susceptibility to Chymotrypsin. ACS OMEGA 2017; 2:8129-8140. [PMID: 30023575 PMCID: PMC6045372 DOI: 10.1021/acsomega.7b00446] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/10/2017] [Indexed: 06/08/2023]
Abstract
Erms are proteins that methylate the adenine (A2058) in Escherichia coli 23S rRNA, which results in resistance to macrolide, lincosamide, and streptogramin B antibiotics. In a previous report, ErmN appeared to be more susceptible to contaminating proteases in DNase I. To determine the underlying mechanism, cleavage with chymotrypsin over time was investigated. ErmN possesses unusually high-susceptibility recognition site (F45) as evidenced by a band (band 1) that represented greater than 80% of the total band intensity at 30 s. The exposure rate of the hydrophobic core was more than 67-fold and 104-fold faster in ErmN than those in ErmS and ErmE, respectively. After cleavage at F45, some of the hydrophobic interactions were disrupted. Further digestion of band 1 occurred through the exposed F163 with a half-life of 3.18 min. After 30 min, less than 1% of ErmN remained. On the basis of the structure of ErmC', the location of F45 was presumed to be in an α helix at the bottom of a cavity. Both substitution of most common amino acids such as isoleucine, valine, or leucine with phenylalanine (ErmH, ErmI, ErmN, and ErmZ out of the 37 known Erms) and the apparent added flexibility, which could result from the additional loop region attached to phenylalanine that is four to nine amino acids longer (ErmI, ErmN, and ErmZ, which form one cluster in the phylogenetic tree), could cause unusually high susceptibility. The unexpectedly high susceptibility among the homologous proteins could indicate that caution should be taken not to misinterpret the observations when conducting any procedure in which protease or protease contamination is involved.
Collapse
Affiliation(s)
- Tien Le
- Department
of Bioscience and Biotechnology, The University
of Suwon, Hwaseong City, Gyeonggi-Do 18323, Republic of Korea
| | - Hak Jin Lee
- Department
of Life Science, Korea University Graduate
School, Seoul 02841, Republic of Korea
| | - Hyung Jong Jin
- Department
of Bioscience and Biotechnology, The University
of Suwon, Hwaseong City, Gyeonggi-Do 18323, Republic of Korea
| |
Collapse
|
10
|
Gupta P, Sothiselvam S, Vázquez-Laslop N, Mankin AS. Deregulation of translation due to post-transcriptional modification of rRNA explains why erm genes are inducible. Nat Commun 2013; 4:1984. [PMID: 23749080 DOI: 10.1038/ncomms2984] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 05/07/2013] [Indexed: 01/28/2023] Open
Abstract
A key mechanism of bacterial resistance to macrolide antibiotics is the dimethylation of a nucleotide in the large ribosomal subunit by erythromycin resistance methyltransferases. The majority of erm genes are expressed only when the antibiotic is present and the erythromycin resistance methyltransferase activity is critical for the survival of bacteria. Although these genes were among the first discovered inducible resistance genes, the molecular basis for their inducibility has remained unknown. Here we show that erythromycin resistance methyltransferase expression reduces cell fitness. Modification of the nucleotide in the ribosomal tunnel skews the cellular proteome by deregulating the expression of a set of proteins. We further demonstrate that aberrant translation of specific proteins results from abnormal interactions of the nascent peptide with the erythromycin resistance methyltransferase-modified ribosomal tunnel. Our findings provide a plausible explanation why erm genes have evolved to be inducible and underscore the importance of nascent peptide recognition by the ribosome for generating a balanced cellular proteome.
Collapse
Affiliation(s)
- Pulkit Gupta
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 900 S. Ashland Avenue, Chicago, IL 60607, USA
| | | | | | | |
Collapse
|
11
|
Chakraborty S, Ásgeirsson B, Rao BJ. A measure of the broad substrate specificity of enzymes based on 'duplicate' catalytic residues. PLoS One 2012; 7:e49313. [PMID: 23166637 PMCID: PMC3500292 DOI: 10.1371/journal.pone.0049313] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/08/2012] [Indexed: 11/18/2022] Open
Abstract
The ability of an enzyme to select and act upon a specific class of compounds with unerring precision and efficiency is an essential feature of life. Simultaneously, these enzymes often catalyze the reaction of a range of similar substrates of the same class, and also have promiscuous activities on unrelated substrates. Previously, we have established a methodology to quantify promiscuous activities in a wide range of proteins. In the current work, we quantitatively characterize the active site for the ability to catalyze distinct, yet related, substrates (BRASS). A protein with known structure and active site residues provides the framework for computing ‘duplicate’ residues, each of which results in slightly modified replicas of the active site scaffold. Such spatial congruence is supplemented by Finite difference Poisson Boltzmann analysis which filters out electrostatically unfavorable configurations. The congruent configurations are used to compute an index (BrassIndex), which reflects the broad substrate profile of the active site. We identify an acetylhydrolase and a methyltransferase as having the lowest and highest BrassIndex, respectively, from a set of non-homologous proteins extracted from the Catalytic Site Atlas. The acetylhydrolase, a regulatory enzyme, is known to be highly specific for platelet-activating factor. In the methyltransferase (PDB: 1QAM), various combinations of glycine (Gly38/40/42), asparagine (Asn101/11) and glutamic acid (Glu59/36) residues having similar spatial and electrostatic profiles with the specified scaffold (Gly38, Asn101 and Glu59) exemplifies the broad substrate profile such an active site may provide. ‘Duplicate’ residues identified by relaxing the spatial and/or electrostatic constraints can be the target of directed evolution methodologies, like saturation mutagenesis, for modulating the substrate specificity of proteins.
Collapse
Affiliation(s)
- Sandeep Chakraborty
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.
| | | | | |
Collapse
|
12
|
Hansen LH, Lobedanz S, Douthwaite S, Arar K, Wengel J, Kirpekar F, Vester B. Minimal substrate features for Erm methyltransferases defined by using a combinatorial oligonucleotide library. Chembiochem 2011; 12:610-4. [PMID: 21264994 DOI: 10.1002/cbic.201000606] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Indexed: 11/08/2022]
Abstract
Erm methyltransferases are prevalent in pathogenic bacteria and confer resistance to macrolide, lincosamide, and streptogramin B antibiotics by specifically methylating the 23S ribosomal RNA at nucleotide A2058. We have identified motifs within the rRNA substrate that are required for methylation by Erm. Substrate molecules were constructed in a combinatorial manner from two separate sets (top and bottom strands) of short RNA sequences. Modifications, including LNA monomers with locked sugar residues, were incorporated into the substrates to stabilize their structures. In functional substrates, the A2058 methylation target (on the 13- to 19-nucleotide top strand) was displayed in an unpaired sequence immediately following a conserved irregular helix, and these are the specific structural features recognized by Erm. Erm methylation was enhanced by stabilizing the top-strand conformation with an LNA residue at G2056. The bottom strand (nine to 19 nucleotides in length) was required for methylation and was still functional after extensive modification, including substitution with a DNA sequence. Although it remains possible that Erm makes some unspecific contact with the bottom strand, the main role played by the bottom strand appears to be in maintaining the conformation of the top strand. The addition of multiple LNA residues to the top strand impeded methylation; this indicates that the RNA substrate requires a certain amount of flexibility for accommodation into the active site of Erm. The combinatorial approach for identifying small but functional RNA substrates is a step towards making RNA-Erm complexes suitable for cocrystal determination, and for designing molecules that might block the substrate-recognition site of the enzyme.
Collapse
Affiliation(s)
- Lykke H Hansen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Resistance to antibiotics that target the bacterial ribosome is often conferred by methylation at specific nucleotides in the rRNA. The nucleotides that become methylated are invariably key sites of antibiotic interaction. The addition of methyl groups to each of these nucleotides is catalyzed by a specific methyltransferase enzyme. The Erm methyltransferases are a clinically prevalent group of enzymes that confer resistance to the therapeutically important macrolide, lincosamide, and streptogramin B (MLS B) antibiotics. The target for Erm methyltransferases is at nucleotide A2058 in 23S rRNA, and methylation occurs before the rRNA has been assembled into 50S ribosomal particles. Erm methyltransferases occur in a phylogenetically wide range of bacteria and differ in whether they add one or two methyl groups to the A2058 target. The dimethylated rRNA confers a more extensive MLS B resistance phenotype. We describe here a method using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to determine the location and number of methyl groups added at any site in the rRNA. The method is particularly suited to studying in vitro methylation of RNA transcripts by resistance methyltransferases such as Erm.
Collapse
|
14
|
Maravić G, Bujnicki JM, Feder M, Pongor S, Flögel M. Alanine-scanning mutagenesis of the predicted rRNA-binding domain of ErmC' redefines the substrate-binding site and suggests a model for protein-RNA interactions. Nucleic Acids Res 2003; 31:4941-9. [PMID: 12907737 PMCID: PMC169915 DOI: 10.1093/nar/gkg666] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Erm family of adenine-N(6) methyltransferases (MTases) is responsible for the development of resistance to macrolide-lincosamide-streptogramin B antibiotics through the methylation of 23S ribosomal RNA. Hence, these proteins are important potential drug targets. Despite the availability of the NMR and crystal structures of two members of the family (ErmAM and ErmC', respectively) and extensive studies on the RNA substrate, the substrate-binding site and the amino acids involved in RNA recognition by the Erm MTases remain unknown. It has been proposed that the small C-terminal domain functions as a target-binding module, but this prediction has not been tested experimentally. We have undertaken structure-based mutational analysis of 13 charged or polar residues located on the predicted rRNA-binding surface of ErmC' with the aim to identify the area of protein-RNA interactions. The results of in vivo and in vitro analyses of mutant protein suggest that the key RNA-binding residues are located not in the small domain, but in the large catalytic domain, facing the cleft between the two domains. Based on the mutagenesis data, a preliminary three-dimensional model of ErmC' complexed with the minimal substrate was constructed. The identification of the RNA-binding site of ErmC' may be useful for structure-based design of novel drugs that do not necessarily bind to the cofactor-binding site common to many S-adenosyl-L- methionine-dependent MTases, but specifically block the substrate-binding site of MTases from the Erm family.
Collapse
MESH Headings
- Alanine/genetics
- Amino Acid Sequence
- Binding Sites/genetics
- Cell Division/drug effects
- Cell Division/genetics
- Drug Resistance, Bacterial/genetics
- Erythromycin/pharmacology
- Escherichia coli/drug effects
- Escherichia coli/genetics
- Escherichia coli/growth & development
- Kinetics
- Methyltransferases/chemistry
- Methyltransferases/genetics
- Methyltransferases/metabolism
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation
- Nucleic Acid Conformation
- Protein Binding
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Sequence Homology, Amino Acid
- Substrate Specificity
Collapse
Affiliation(s)
- Gordana Maravić
- Protein Structure and Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34012 Trieste, Italy.
| | | | | | | | | |
Collapse
|
15
|
The Transcription of Genes. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50031-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Schluckebier G, Zhong P, Stewart KD, Kavanaugh TJ, Abad-Zapatero C. The 2.2 A structure of the rRNA methyltransferase ErmC' and its complexes with cofactor and cofactor analogs: implications for the reaction mechanism. J Mol Biol 1999; 289:277-91. [PMID: 10366505 DOI: 10.1006/jmbi.1999.2788] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The rRNA methyltransferase ErmC' transfers methyl groups from S -adenosyl-l-methionine to atom N6 of an adenine base within the peptidyltransferase loop of 23 S rRNA, thus conferring antibiotic resistance against a number of macrolide antibiotics. The crystal structures of ErmC' and of its complexes with the cofactor S -adenosyl-l-methionine, the reaction product S-adenosyl-l-homocysteine and the methyltransferase inhibitor Sinefungin, respectively, show that the enzyme undergoes small conformational changes upon ligand binding. Overall, the ligand molecules bind to the protein in a similar mode as observed for other methyltransferases. Small differences between the binding of the amino acid parts of the different ligands are correlated with differences in their chemical structure. A model for the transition-state based on the atomic details of the active site is consistent with a one-step methyl-transfer mechanism and might serve as a first step towards the design of potent Erm inhibitors.
Collapse
Affiliation(s)
- G Schluckebier
- Abbott Laboratories, D46Y-AP 10, 100 Abbott Park Road, Abbott Park, IL, 60064, USA.
| | | | | | | | | |
Collapse
|
17
|
Villsen ID, Vester B, Douthwaite S. ErmE methyltransferase recognizes features of the primary and secondary structure in a motif within domain V of 23 S rRNA. J Mol Biol 1999; 286:365-74. [PMID: 9973557 DOI: 10.1006/jmbi.1998.2504] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Erm methyltransferases confer resistance to macrolide, lincosamide and streptogramin B (MLS) antibiotics by methylation of a single adenosine base within bacterial 23 S ribosomal RNA. The ErmE methyltransferase, from the macrolide-producing bacterium Saccharopolyspora erythraea, recognizes a motif within domain V of the rRNA that specifically targets adenosine 2058 (A2058) for methylation. Here, we define the structure of the RNA motif by a combination of molecular genetics and biochemical probing. The core of the motif has the primary sequence 2056-GGAHA-2060, where H is any nucleotide except guanosine, and ErmE methylates at the adenosine in bold. For efficient recognition by ErmE, this sequence must be displayed within a particular secondary structure. An irregular stem (helix 73) is required immediately 5' to A2058, with an unpaired nucleotide, preferably a cytidine residue, at position 2055. Nucleotides 2611 to 2616 are collectively required to form part of the 3'-side of helix 73, but there is little or no restriction on the identities of individual nucleotides here. There are minor preferences in the identities of nucleotides 2051 to 2055 that are adjacent to the motif core, although their main role is in maintaining the irregular secondary structure. The essential elements of the ErmE motif are conserved in bacterial 23 S rRNAs, and thus presumably also form the recognition motif for other Erm methyltransferases.
Collapse
MESH Headings
- Adenosine/chemistry
- Anti-Bacterial Agents/pharmacology
- Bacterial Proteins/metabolism
- Drug Resistance, Microbial
- Escherichia coli/chemistry
- Macrolides
- Methylation
- Methyltransferases/metabolism
- Nucleic Acid Conformation
- Peptide Chain Elongation, Translational/drug effects
- Point Mutation
- RNA, Bacterial/chemistry
- RNA, Bacterial/drug effects
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/drug effects
- RNA, Ribosomal, 23S/metabolism
- Ribosomes/drug effects
- Substrate Specificity
Collapse
Affiliation(s)
- I D Villsen
- Department of Molecular Biology, Odense University, Campusvej 55, Odense M, DK-5230, Denmark
| | | | | |
Collapse
|