1
|
Martin EC, Bowie AG, Wellfare Reid T, Neil Hunter C, Hitchcock A, Swainsbury DJ. Sulfoquinovosyl diacylglycerol is required for dimerisation of the Rhodobacter sphaeroides reaction centre-light harvesting 1 core complex. Biochem J 2024; 481:823-838. [PMID: 38780411 PMCID: PMC11346425 DOI: 10.1042/bcj20240125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
The reaction centre-light harvesting 1 (RC-LH1) core complex is indispensable for anoxygenic photosynthesis. In the purple bacterium Rhodobacter (Rba.) sphaeroides RC-LH1 is produced both as a monomer, in which 14 LH1 subunits form a C-shaped antenna around 1 RC, and as a dimer, where 28 LH1 subunits form an S-shaped antenna surrounding 2 RCs. Alongside the five RC and LH1 subunits, an additional polypeptide known as PufX provides an interface for dimerisation and also prevents LH1 ring closure, introducing a channel for quinone exchange that is essential for photoheterotrophic growth. Structures of Rba. sphaeroides RC-LH1 complexes revealed several new components; protein-Y, which helps to form the quinone channel; protein-Z, of unknown function and seemingly unique to dimers; and a tightly bound sulfoquinovosyl diacylglycerol (SQDG) lipid that interacts with two PufX arginine residues. This lipid lies at the dimer interface alongside weak density for a second molecule, previously proposed to be an ornithine lipid. In this work we have generated strains of Rba. sphaeroides lacking protein-Y, protein-Z, SQDG or ornithine lipids to assess the roles of these previously unknown components in the assembly and activity of RC-LH1. We show that whilst the removal of either protein-Y, protein-Z or ornithine lipids has only subtle effects, SQDG is essential for the formation of RC-LH1 dimers but its absence has no functional effect on the monomeric complex.
Collapse
Affiliation(s)
- Elizabeth C. Martin
- Plants, Photosynthesis and Soil, School of Bioscience, University of Sheffield, Sheffield, U.K
| | - Adam G.M. Bowie
- Plants, Photosynthesis and Soil, School of Bioscience, University of Sheffield, Sheffield, U.K
| | - Taylor Wellfare Reid
- Plants, Photosynthesis and Soil, School of Bioscience, University of Sheffield, Sheffield, U.K
| | - C. Neil Hunter
- Plants, Photosynthesis and Soil, School of Bioscience, University of Sheffield, Sheffield, U.K
| | - Andrew Hitchcock
- Plants, Photosynthesis and Soil, School of Bioscience, University of Sheffield, Sheffield, U.K
| | | |
Collapse
|
2
|
Huang X, Vasilev C, Swainsbury D, Hunter C. Excitation energy transfer in proteoliposomes reconstituted with LH2 and RC-LH1 complexes from Rhodobacter sphaeroides. Biosci Rep 2024; 44:BSR20231302. [PMID: 38227291 PMCID: PMC10876425 DOI: 10.1042/bsr20231302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/30/2023] [Accepted: 01/16/2024] [Indexed: 01/17/2024] Open
Abstract
Light-harvesting 2 (LH2) and reaction-centre light-harvesting 1 (RC-LH1) complexes purified from the photosynthetic bacterium Rhodobacter (Rba.) sphaeroides were reconstituted into proteoliposomes either separately, or together at three different LH2:RC-LH1 ratios, for excitation energy transfer studies. Atomic force microscopy (AFM) was used to investigate the distribution and association of the complexes within the proteoliposome membranes. Absorption and fluorescence emission spectra were similar for LH2 complexes in detergent and liposomes, indicating that reconstitution retains the structural and optical properties of the LH2 complexes. Analysis of fluorescence emission shows that when LH2 forms an extensive series of contacts with other such complexes, fluorescence is quenched by 52.6 ± 1.4%. In mixed proteoliposomes, specific excitation of carotenoids in LH2 donor complexes resulted in emission of fluorescence from acceptor RC-LH1 complexes engineered to assemble with no carotenoids. Extents of energy transfer were measured by fluorescence lifetime microscopy; the 0.72 ± 0.08 ns lifetime in LH2-only membranes decreases to 0.43 ± 0.04 ns with a ratio of 2:1 LH2 to RC-LH1, and to 0.35 ± 0.05 ns for a 1:1 ratio, corresponding to energy transfer efficiencies of 40 ± 14% and 51 ± 18%, respectively. No further improvement is seen with a 0.5:1 LH2 to RC-LH1 ratio. Thus, LH2 and RC-LH1 complexes perform their light harvesting and energy transfer roles when reconstituted into proteoliposomes, providing a way to integrate native, non-native, engineered and de novo designed light-harvesting complexes into functional photosynthetic systems.
Collapse
Affiliation(s)
- Xia Huang
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
- Jinan Guoke Medical Technology Development Co., Ltd, Jinan, Shandong 250101, China
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K
| | - Cvetelin Vasilev
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K
| | - David J.K. Swainsbury
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, U.K
| | - C. Neil Hunter
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K
| |
Collapse
|
3
|
Morimoto M, Hirao H, Kondo M, Dewa T, Kimura Y, Wang-Otomo ZY, Asakawa H, Saga Y. Atomic force microscopic analysis of the light-harvesting complex 2 from purple photosynthetic bacterium Thermochromatium tepidum. PHOTOSYNTHESIS RESEARCH 2023:10.1007/s11120-023-01010-4. [PMID: 36930432 DOI: 10.1007/s11120-023-01010-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Structural information on the circular arrangements of repeating pigment-polypeptide subunits in antenna proteins of purple photosynthetic bacteria is a clue to a better understanding of molecular mechanisms for the ring-structure formation and efficient light harvesting of such antennas. Here, we have analyzed the ring structure of light-harvesting complex 2 (LH2) from the thermophilic purple bacterium Thermochromatium tepidum (tepidum-LH2) by atomic force microscopy. The circular arrangement of the tepidum-LH2 subunits was successfully visualized in a lipid bilayer. The average top-to-top distance of the ring structure, which is correlated with the ring size, was 4.8 ± 0.3 nm. This value was close to the top-to-top distance of the octameric LH2 from Phaeospirillum molischianum (molischianum-LH2) by the previous analysis. Gaussian distribution of the angles of the segments consisting of neighboring subunits in the ring structures of tepidum-LH2 yielded a median of 44°, which corresponds to the angle for the octameric circular arrangement (45°). These results indicate that tepidum-LH2 has a ring structure consisting of eight repeating subunits. The coincidence of an octameric ring structure of tepidum-LH2 with that of molischianum-LH2 is consistent with the homology of amino acid sequences of the polypeptides between tepidum-LH2 and molischianum-LH2.
Collapse
Affiliation(s)
- Masayuki Morimoto
- Nanomaterials Research Institute (NanoMaRi), Kanazawa University, Kanazawa, 920-1192, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Haruna Hirao
- Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Masaharu Kondo
- Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan
| | - Takehisa Dewa
- Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan
| | - Yukihiro Kimura
- Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
| | | | - Hitoshi Asakawa
- Nanomaterials Research Institute (NanoMaRi), Kanazawa University, Kanazawa, 920-1192, Japan.
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, 920-1192, Japan.
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, 920-1192, Japan.
| | - Yoshitaka Saga
- Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka, 577-8502, Japan.
| |
Collapse
|
4
|
Structural basis for the assembly and quinone transport mechanisms of the dimeric photosynthetic RC-LH1 supercomplex. Nat Commun 2022; 13:1977. [PMID: 35418573 PMCID: PMC9007983 DOI: 10.1038/s41467-022-29563-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/22/2022] [Indexed: 12/15/2022] Open
Abstract
The reaction center (RC) and light-harvesting complex 1 (LH1) form a RC-LH1 core supercomplex that is vital for the primary reactions of photosynthesis in purple phototrophic bacteria. Some species possess the dimeric RC-LH1 complex with a transmembrane polypeptide PufX, representing the largest photosynthetic complex in anoxygenic phototrophs. However, the details of the architecture and assembly mechanism of the RC-LH1 dimer are unclear. Here we report seven cryo-electron microscopy (cryo-EM) structures of RC-LH1 supercomplexes from Rhodobacter sphaeroides. Our structures reveal that two PufX polypeptides are positioned in the center of the S-shaped RC-LH1 dimer, interlocking association between the components and mediating RC-LH1 dimerization. Moreover, we identify another transmembrane peptide, designated PufY, which is located between the RC and LH1 subunits near the LH1 opening. PufY binds a quinone molecule and prevents LH1 subunits from completely encircling the RC, creating a channel for quinone/quinol exchange. Genetic mutagenesis, cryo-EM structures, and computational simulations provide a mechanistic understanding of the assembly and electron transport pathways of the RC-LH1 dimer and elucidate the roles of individual components in ensuring the structural and functional integrity of the photosynthetic supercomplex.
Collapse
|
5
|
Qian P, Swainsbury DJK, Croll TI, Castro-Hartmann P, Divitini G, Sader K, Hunter CN. Cryo-EM Structure of the Rhodobacter sphaeroides Light-Harvesting 2 Complex at 2.1 Å. Biochemistry 2021; 60:3302-3314. [PMID: 34699186 PMCID: PMC8775250 DOI: 10.1021/acs.biochem.1c00576] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Light-harvesting 2 (LH2) antenna
complexes augment the collection
of solar energy in many phototrophic bacteria. Despite its frequent
role as a model for such complexes, there has been no three-dimensional
(3D) structure available for the LH2 from the purple phototroph Rhodobacter sphaeroides. We used cryo-electron microscopy
(cryo-EM) to determine the 2.1 Å resolution structure of this
LH2 antenna, which is a cylindrical assembly of nine αβ
heterodimer subunits, each of which binds three bacteriochlorophyll a (BChl) molecules and one carotenoid. The high resolution
of this structure reveals all of the interpigment and pigment–protein
interactions that promote the assembly and energy-transfer properties
of this complex. Near the cytoplasmic face of the complex there is
a ring of nine BChls, which absorb maximally at 800 nm and are designated
as B800; each B800 is coordinated by the N-terminal carboxymethionine
of LH2-α, part of a network of interactions with nearby residues
on both LH2-α and LH2-β and with the carotenoid. Nine
carotenoids, which are spheroidene in the strain we analyzed, snake
through the complex, traversing the membrane and interacting with
a ring of 18 BChls situated toward the periplasmic side of the complex.
Hydrogen bonds with C-terminal aromatic residues modify the absorption
of these pigments, which are red-shifted to 850 nm. Overlaps between
the macrocycles of the B850 BChls ensure rapid transfer of excitation
energy around this ring of pigments, which act as the donors of energy
to neighboring LH2 and reaction center light-harvesting 1 (RC–LH1)
complexes.
Collapse
Affiliation(s)
- Pu Qian
- Materials and Structural Analysis, Thermo Fisher Scientific, Achtseweg Noord 5, 5651 GG Eindhoven, Netherlands.,Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, U.K
| | - David J K Swainsbury
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, U.K
| | - Tristan I Croll
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, U.K
| | - Pablo Castro-Hartmann
- Materials and Structural Analysis, Thermo Fisher Scientific, Achtseweg Noord 5, 5651 GG Eindhoven, Netherlands
| | - Giorgio Divitini
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, U.K
| | - Kasim Sader
- Materials and Structural Analysis, Thermo Fisher Scientific, Achtseweg Noord 5, 5651 GG Eindhoven, Netherlands
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, U.K
| |
Collapse
|
6
|
Odahara T, Odahara Y. Association of protein–detergent particles in the presence of polymers comprised of different degrees of polymerization of oxyethylene subunits. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Gardiner AT, Naydenova K, Castro-Hartmann P, Nguyen-Phan TC, Russo CJ, Sader K, Hunter CN, Cogdell RJ, Qian P. The 2.4 Å cryo-EM structure of a heptameric light-harvesting 2 complex reveals two carotenoid energy transfer pathways. SCIENCE ADVANCES 2021; 7:7/7/eabe4650. [PMID: 33579696 PMCID: PMC7880592 DOI: 10.1126/sciadv.abe4650] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
We report the 2.4 Ångström resolution structure of the light-harvesting 2 (LH2) complex from Marichromatium (Mch.) purpuratum determined by cryogenic electron microscopy. The structure contains a heptameric ring that is unique among all known LH2 structures, explaining the unusual spectroscopic properties of this bacterial antenna complex. We identify two sets of distinct carotenoids in the structure and describe a network of energy transfer pathways from the carotenoids to bacteriochlorophyll a molecules. The geometry imposed by the heptameric ring controls the resonant coupling of the long-wavelength energy absorption band. Together, these details reveal key aspects of the assembly and oligomeric form of purple bacterial LH2 complexes that were previously inaccessible by any technique.
Collapse
Affiliation(s)
- Alastair T Gardiner
- Institute of Molecular, Cell and Systems Biology, Glasgow University, Glasgow G12 8QQ, UK
| | - Katerina Naydenova
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Pablo Castro-Hartmann
- Materials and Structural Analysis, Thermo Fisher Scientific, Achtseweg Noord 5, 5651 GG Eindhoven, Netherlands
| | - Tu C Nguyen-Phan
- Institute of Molecular, Cell and Systems Biology, Glasgow University, Glasgow G12 8QQ, UK
| | - Christopher J Russo
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Kasim Sader
- Materials and Structural Analysis, Thermo Fisher Scientific, Achtseweg Noord 5, 5651 GG Eindhoven, Netherlands
| | - C Neil Hunter
- Department of Molecular Biology, The University of Sheffield, Sheffield S10 2TN, UK
| | - Richard J Cogdell
- Institute of Molecular, Cell and Systems Biology, Glasgow University, Glasgow G12 8QQ, UK
| | - Pu Qian
- Materials and Structural Analysis, Thermo Fisher Scientific, Achtseweg Noord 5, 5651 GG Eindhoven, Netherlands.
- Department of Molecular Biology, The University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
8
|
Strakhovskaya MG, Lukashev EP, Korvatovskiy BN, Kholina EG, Seifullina NK, Knox PP, Paschenko VZ. The effect of some antiseptic drugs on the energy transfer in chromatophore photosynthetic membranes of purple non-sulfur bacteria Rhodobacter sphaeroides. PHOTOSYNTHESIS RESEARCH 2021; 147:197-209. [PMID: 33389445 PMCID: PMC7778420 DOI: 10.1007/s11120-020-00807-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Chromatophores of purple non-sulfur bacteria (PNSB) are invaginations of the cytoplasmic membrane that contain a relatively simple system of light-harvesting protein-pigment complexes, a photosynthetic reaction center (RC), a cytochrome complex, and ATP synthase, which transform light energy into the energy of synthesized ATP. The high content of negatively charged phosphatidylglycerol (PG) and cardiolipin (CL) in PNSB chromatophore membranes makes these structures potential targets that bind cationic antiseptics. We used the methods of stationary and kinetic fluorescence spectroscopy to study the effect of some cationic antiseptics (chlorhexidine, picloxydine, miramistin, and octenidine at concentrations up to 100 μM) on the spectral and kinetic characteristics of the components of the photosynthetic apparatus of Rhodobacter sphaeroides chromatophores. Here we present the experimental data on the reduced efficiency of light energy conversion in the chromatophore membranes isolated from the photosynthetic bacterium Rb. sphaeroides in the presence of cationic antiseptics. The addition of antiseptics did not affect the energy transfer between the light-harvesting LH1 complex and reaction center (RC). However, it significantly reduced the efficiency of the interaction between the LH2 and LH1 complexes. The effect was maximal with 100 μM octenidine. It has been proved that molecules of cationic antiseptics, which apparently bind to the heads of negatively charged cardiolipin molecules located in the rings of light-harvesting pigments on the cytoplasmic surface of the chromatophores, can disturb the optimal conditions for efficient energy migration in chromatophore membranes.
Collapse
Affiliation(s)
- Marina G Strakhovskaya
- Biophysics Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234.
- Federal Scientific and Clinical Center of Specialized Types of Medical Care and Medical Technologies of the Federal Medical and Biological Agency of Russia, Moscow, Russian Federation.
| | - Eugene P Lukashev
- Biophysics Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - Boris N Korvatovskiy
- Biophysics Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - Ekaterina G Kholina
- Biophysics Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - Nuranija Kh Seifullina
- Biophysics Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - Peter P Knox
- Biophysics Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - Vladimir Z Paschenko
- Biophysics Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| |
Collapse
|
9
|
Uragami C, Sato H, Yukihira N, Fujiwara M, Kosumi D, Gardiner AT, Cogdell RJ, Hashimoto H. Photoprotective mechanisms in the core LH1 antenna pigment-protein complex from the purple photosynthetic bacterium, Rhodospirillum rubrum. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Huang X, Vasilev C, Hunter CN. Excitation energy transfer between monomolecular layers of light harvesting LH2 and LH1-reaction centre complexes printed on a glass substrate. LAB ON A CHIP 2020; 20:2529-2538. [PMID: 32662473 DOI: 10.1039/d0lc00156b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Light-harvesting 2 (LH2) and light-harvesting 1 - reaction centre (RCLH1) complexes purified from the photosynthetic bacterium Rhodobacter (Rba.) sphaeroides were cross-patterned on glass surfaces for energy transfer studies. Atomic force microscopy (AFM) images of the RCLH1 and LH2 patterns show the deposition of monomolecular layers of complexes on the glass substrate. Spectral imaging and fluorescence life-time imaging microscopy (FLIM) revealed that RCLH1 and LH2 complexes, sealed under physiological conditions, retained their native light-harvesting and energy transfer functions. Measurements of the amplitude and lifetime decay of fluorescence emission from LH2 complexes, the energy transfer donors, and gain of fluorescence emission from acceptor RCLH1 complexes, provide evidence for excitation energy transfer from LH2 to RCLH1. Directional energy transfer on the glass substrate was unequivocally established by using LH2-carotenoid complexes and RCLH1 complexes with genetically removed carotenoids. Specific excitation of carotenoids in donor LH2 complexes elicited fluorescence emission from RCLH1 acceptors. To explore the longevity of this novel nanoprinted photosynthetic unit, RCLH1 and LH2 complexes were cross-patterned on a glass surface and sealed under a protective argon atmosphere. The results show that both complexes retained their individual and collective functions and are capable of directional excitation energy transfer for at least 60 days.
Collapse
Affiliation(s)
- Xia Huang
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK.
| | | | | |
Collapse
|
11
|
Niedzwiedzki DM, Swainsbury DJK, Hunter CN. Carotenoid-to-(bacterio)chlorophyll energy transfer in LH2 antenna complexes from Rba. sphaeroides reconstituted with non-native (bacterio)chlorophylls. PHOTOSYNTHESIS RESEARCH 2020; 144:155-169. [PMID: 31350671 PMCID: PMC7203092 DOI: 10.1007/s11120-019-00661-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/16/2019] [Indexed: 05/04/2023]
Abstract
Six variants of the LH2 antenna complex from Rba. sphaeroides, comprising the native B800-B850, B800-free LH2 (B850) and four LH2s with various (bacterio)chlorophylls reconstituted into the B800 site, have been investigated with static and time-resolved optical spectroscopies at room temperature and at 77 K. The study particularly focused on how reconstitution of a non-native (bacterio)chlorophylls affects excitation energy transfer between the naturally bound carotenoid spheroidene and artificially substituted pigments in the B800 site. Results demonstrate there is no apparent trend in the overall energy transfer rate from spheroidene to B850 bacteriochlorophyll a; however, a trend in energy transfer rate from the spheroidene S1 state to Qy of the B800 (bacterio)chlorophylls is noticeable. These outcomes were applied to test the validity of previously proposed energy values of the spheroidene S1 state, supporting a value in the vicinity of 13,400 cm-1 (746 nm).
Collapse
Affiliation(s)
- Dariusz M Niedzwiedzki
- Center for Solar Energy and Energy Storage, Washington University, St. Louis, MO, 63130, USA.
- Department of Energy, Environmental & Chemical Engineering, Washington University, St. Louis, MO, 63130, USA.
| | - David J K Swainsbury
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
12
|
Tong AL, Fiebig OC, Nairat M, Harris D, Giansily M, Chenu A, Sturgis JN, Schlau-Cohen GS. Comparison of the Energy-Transfer Rates in Structural and Spectral Variants of the B800-850 Complex from Purple Bacteria. J Phys Chem B 2020; 124:1460-1469. [PMID: 31971387 DOI: 10.1021/acs.jpcb.9b11899] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photosynthetic light harvesting can occur with a remarkable near-unity quantum efficiency. The B800-850 complex, also known as light-harvesting complex 2 (LH2), is the primary light-harvesting complex in purple bacteria and has been extensively studied as a model system. The bacteriochlorophylls of the B800-850 complex are organized into two concentric rings, known as the B800 and B850 rings. However, depending on the species and growth conditions, the number of constituent subunits, the pigment geometry, and the absorption energies vary. While the dynamics of some B800-850 variants have been exhaustively characterized, others have not been measured. Furthermore, a direct and simultaneous comparison of how both structural and spectral differences between variants affect these dynamics has not been performed. In this work, we utilize ultrafast transient absorption measurements to compare the B800 to B850 energy-transfer rates in the B800-850 complex as a function of the number of subunits, geometry, and absorption energies. The nonameric B800-850 complex from Rhodobacter (Rb.) sphaeroides is 40% faster than the octameric B800-850 complex from Rhodospirillum (Rs.) molischianum, consistent with structure-based predictions. In contrast, the blue-shifted B800-820 complex from Rs. molischianum is only 20% faster than the B800-850 complex from Rs. molischianum despite an increase in the spectral overlap between the rings that would be expected to produce a larger increase in the energy-transfer rate. These measurements support current models that contain dark, higher-lying excitonic states to bridge the energy gap between rings, thereby maintaining similar energy-transfer dynamics. Overall, these results demonstrate that energy-transfer dynamics in the B800-850 complex are robust to the spectral and structural variations between species used to optimize energy capture and flow in purple bacteria.
Collapse
Affiliation(s)
- Ashley L Tong
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Olivia C Fiebig
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Muath Nairat
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Dvir Harris
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Marcel Giansily
- LISM UMR 7255 , CNRS and Aix-Marseille University , 31 Chemin Joseph Aiguier , Marseille Cedex 9 13402 , France
| | - Aurélia Chenu
- Donostia International Physics Center , E-20018 San Sebastián , Spain.,Ikerbasque, Basque Foundation for Science , E-48013 Bilbao , Spain
| | - James N Sturgis
- LISM UMR 7255 , CNRS and Aix-Marseille University , 31 Chemin Joseph Aiguier , Marseille Cedex 9 13402 , France
| | - Gabriela S Schlau-Cohen
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
13
|
Piatkowski L, Accanto N, Calbris G, Christodoulou S, Moreels I, van Hulst NF. Ultrafast stimulated emission microscopy of single nanocrystals. Science 2019; 366:1240-1243. [PMID: 31806812 DOI: 10.1126/science.aay1821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/07/2019] [Indexed: 12/31/2022]
Abstract
Single-molecule detection is a powerful method used to distinguish different species and follow time trajectories within the ensemble average. However, such detection capability requires efficient emitters and is prone to photobleaching, and the slow, nanosecond spontaneous emission process only reports on the lowest excited state. We demonstrate direct detection of stimulated emission from individual colloidal nanocrystals at room temperature while simultaneously recording the depleted spontaneous emission, enabling us to trace the carrier population through the entire photocycle. By capturing the femtosecond evolution of the stimulated emission signal, together with the nanosecond fluorescence, we can disentangle the ultrafast charge trajectories in the excited state and determine the populations that experience stimulated emission, spontaneous emission, and excited-state absorption processes.
Collapse
Affiliation(s)
- Lukasz Piatkowski
- ICFO-Institut de Ciences Fotoniques, the Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain. .,Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Nicolò Accanto
- ICFO-Institut de Ciences Fotoniques, the Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Gaëtan Calbris
- ICFO-Institut de Ciences Fotoniques, the Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Sotirios Christodoulou
- ICFO-Institut de Ciences Fotoniques, the Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain.,Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Iwan Moreels
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.,Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Gent, Belgium
| | - Niek F van Hulst
- ICFO-Institut de Ciences Fotoniques, the Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain. .,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
14
|
Dissecting the cytochrome c 2-reaction centre interaction in bacterial photosynthesis using single molecule force spectroscopy. Biochem J 2019; 476:2173-2190. [PMID: 31320503 PMCID: PMC6688529 DOI: 10.1042/bcj20170519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 11/17/2022]
Abstract
The reversible docking of small, diffusible redox proteins onto a membrane protein complex is a common feature of bacterial, mitochondrial and photosynthetic electron transfer (ET) chains. Spectroscopic studies of ensembles of such redox partners have been used to determine ET rates and dissociation constants. Here, we report a single-molecule analysis of the forces that stabilise transient ET complexes. We examined the interaction of two components of bacterial photosynthesis, cytochrome c 2 and the reaction centre (RC) complex, using dynamic force spectroscopy and PeakForce quantitative nanomechanical imaging. RC-LH1-PufX complexes, attached to silicon nitride AFM probes and maintained in a photo-oxidised state, were lowered onto a silicon oxide substrate bearing dispersed, immobilised and reduced cytochrome c 2 molecules. Microscale patterns of cytochrome c 2 and the cyan fluorescent protein were used to validate the specificity of recognition between tip-attached RCs and surface-tethered cytochrome c 2 Following the transient association of photo-oxidised RC and reduced cytochrome c 2 molecules, retraction of the RC-functionalised probe met with resistance, and forces between 112 and 887 pN were required to disrupt the post-ET RC-c 2 complex, depending on the retraction velocities used. If tip-attached RCs were reduced instead, the probability of interaction with reduced cytochrome c 2 molecules decreased 5-fold. Thus, the redox states of the cytochrome c 2 haem cofactor and RC 'special pair' bacteriochlorophyll dimer are important for establishing a productive ET complex. The millisecond persistence of the post-ET cytochrome c 2[oxidised]-RC[reduced] 'product' state is compatible with rates of cyclic photosynthetic ET, at physiologically relevant light intensities.
Collapse
|
15
|
Photosynthetic apparatus of Rhodobacter sphaeroides exhibits prolonged charge storage. Nat Commun 2019; 10:902. [PMID: 30796237 PMCID: PMC6385238 DOI: 10.1038/s41467-019-08817-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/25/2019] [Indexed: 12/17/2022] Open
Abstract
Photosynthetic proteins have been extensively researched for solar energy harvesting. Though the light-harvesting and charge-separation functions of these proteins have been studied in depth, their potential as charge storage systems has not been investigated to the best of our knowledge. Here, we report prolonged storage of electrical charge in multilayers of photoproteins isolated from Rhodobacter sphaeroides. Direct evidence for charge build-up within protein multilayers upon photoexcitation and external injection is obtained by Kelvin-probe and scanning-capacitance microscopies. Use of these proteins is key to realizing a 'self-charging biophotonic device' that not only harvests light and photo-generates charges but also stores them. In strong correlation with the microscopic evidence, the phenomenon of prolonged charge storage is also observed in primitive power cells constructed from the purple bacterial photoproteins. The proof-of-concept power cells generated a photovoltage as high as 0.45 V, and stored charge effectively for tens of minutes with a capacitance ranging from 0.1 to 0.2 F m-2.
Collapse
|
16
|
Golub M, Pieper J, Peters J, Kangur L, Martin EC, Hunter CN, Freiberg A. Picosecond Dynamical Response to a Pressure-Induced Break of the Tertiary Structure Hydrogen Bonds in a Membrane Chromoprotein. J Phys Chem B 2019; 123:2087-2093. [PMID: 30739452 DOI: 10.1021/acs.jpcb.8b11196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We used elastic incoherent neutron scattering (EINS) to find out if structural changes accompanying local hydrogen bond rupture are also reflected in global dynamical response of the protein complex. Chromatophore membranes from LH2-only strains of the photosynthetic bacterium Rhodobacter sphaeroides, with spheroidenone or neurosporene as the major carotenoids, were subjected to high hydrostatic pressure at ambient temperature. Optical spectroscopy conducted at high pressure confirmed rupture of tertiary structure hydrogen bonds. In parallel, we used EINS to follow average motions of the hydrogen atoms in LH2, which reflect the flexibility of this complex. A decrease of the average atomic mean square displacements of hydrogen atoms was observed up to a pressure of 5 kbar in both carotenoid samples due to general stiffening of protein structures, while at higher pressures a slight increase of the displacements was detected in the neurosporene mutant LH2 sample only. These data show a correlation between the local pressure-induced breakage of H-bonds, observed in optical spectra, with the altered protein dynamics monitored by EINS. The slightly higher compressibility of the neurosporene mutant sample shows that even subtle alterations of carotenoids are manifested on a larger scale and emphasize a close connection between the local structure and global dynamics of this membrane protein complex.
Collapse
Affiliation(s)
- Maksym Golub
- Institute of Physics , University of Tartu , W. Ostwald Str. 1 , 50411 Tartu , Estonia
| | - Jörg Pieper
- Institute of Physics , University of Tartu , W. Ostwald Str. 1 , 50411 Tartu , Estonia
| | - Judith Peters
- Institut Laue Langevin , F-38042 Grenoble Cedex 9 , France.,University Grenoble Alpes, CNRS, LIPhy , 38000 Grenoble , France
| | - Liina Kangur
- Institute of Physics , University of Tartu , W. Ostwald Str. 1 , 50411 Tartu , Estonia
| | - Elizabeth C Martin
- Department of Molecular Biology and Biotechnology , University of Sheffield , S10 2TN Sheffield , U.K
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology , University of Sheffield , S10 2TN Sheffield , U.K
| | - Arvi Freiberg
- Institute of Physics , University of Tartu , W. Ostwald Str. 1 , 50411 Tartu , Estonia.,Institute of Molecular and Cell Biology , University of Tartu , Riia 23 , 51010 Tartu , Estonia
| |
Collapse
|
17
|
Massey SC, Ting PC, Yeh SH, Dahlberg PD, Sohail SH, Allodi MA, Martin EC, Kais S, Hunter CN, Engel GS. Orientational Dynamics of Transition Dipoles and Exciton Relaxation in LH2 from Ultrafast Two-Dimensional Anisotropy. J Phys Chem Lett 2019; 10:270-277. [PMID: 30599133 DOI: 10.1021/acs.jpclett.8b03223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Light-harvesting complexes in photosynthetic organisms display fast and efficient energy transfer dynamics, which depend critically on the electronic structure of the coupled chromophores within the complexes and their interactions with their environment. We present ultrafast anisotropy dynamics, resolved in both time and frequency, of the transmembrane light-harvesting complex LH2 from Rhodobacter sphaeroides in its native membrane environment using polarization-controlled two-dimensional electronic spectroscopy. Time-dependent anisotropy obtained from both experiment and modified Redfield simulation reveals an orientational preference for excited state absorption and an ultrafast equilibration within the B850 band in LH2. This ultrafast equilibration is favorable for subsequent energy transfer toward the reaction center. Our results also show a dynamic difference in excited state absorption anisotropy between the directly excited B850 population and the population that is initially excited at 800 nm, suggesting absorption from B850 states to higher-lying excited states following energy transfer from B850*. These results give insight into the ultrafast dynamics of bacterial light harvesting and the excited state energy landscape of LH2 in the native membrane environment.
Collapse
Affiliation(s)
- Sara C Massey
- Department of Chemistry, Institute for Biophysical Dynamics, and the James Franck Institute , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Po-Chieh Ting
- Department of Chemistry, Institute for Biophysical Dynamics, and the James Franck Institute , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Shu-Hao Yeh
- Department of Chemistry, Institute for Biophysical Dynamics, and the James Franck Institute , The University of Chicago , Chicago , Illinois 60637 , United States
- Qatar Environment and Energy Research Institute , Hamad Bin Khalifa University , Qatar Foundation, Doha , Qatar
| | - Peter D Dahlberg
- Graduate Program in the Biophysical Sciences, Institute for Biophysical Dynamics, and the James Franck Institute , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Sara H Sohail
- Department of Chemistry, Institute for Biophysical Dynamics, and the James Franck Institute , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Marco A Allodi
- Department of Chemistry, Institute for Biophysical Dynamics, and the James Franck Institute , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Elizabeth C Martin
- Department of Molecular Biology and Biotechnology , University of Sheffield , Firth Court, Western Bank, Sheffield S10 2TN , United Kingdom
| | - Sabre Kais
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology , University of Sheffield , Firth Court, Western Bank, Sheffield S10 2TN , United Kingdom
| | - Gregory S Engel
- Department of Chemistry, Institute for Biophysical Dynamics, and the James Franck Institute , The University of Chicago , Chicago , Illinois 60637 , United States
| |
Collapse
|
18
|
Odahara T, Odahara K. Various salts employed as precipitant in combination with polyethylene glycol in protein/detergent particle association. Heliyon 2019; 4:e01073. [PMID: 30603706 PMCID: PMC6307348 DOI: 10.1016/j.heliyon.2018.e01073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/27/2018] [Accepted: 12/17/2018] [Indexed: 11/29/2022] Open
Abstract
Salt/polyethylene glycol (PEG) mixtures are employed as precipitants for biological macromolecules. The dependence of precipitation curves (PCs) on salt species was investigated for integral membrane protein/detergent particles. By relating this dependence to properties of ions dissociated from added salts, the following roles and effects of various ions were clarified. In the presence of ions whose interaction with water is stronger than water-water interaction, the coordination of solvent molecules is rearranged so as to strengthen short-range steric repulsion and hydrophobic attraction. Ions whose interaction with water is weaker than water-water interaction can be a hindrance to hydrophobic-hydrophobic contact. Moreover, strong electric fields of divalent cations can cause an attractive effect between electronegative or polar groups of neighboring particles. The variations of particle-particle and particle-PEG interactions depending on the state of particles and surrounding solvents were correlative. Due to this, the relationship between the horizontal positions of PC and the species of salts added could be formulated as a binary linear function of cationic and anionic species composing the salts.
Collapse
Affiliation(s)
- Takayuki Odahara
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central-6, 1-1 Higashi, Tsukuba, Ibaraki, 305-8566 Japan
| | - Koji Odahara
- Fukuoka Prefectural Association of Agricultural Production and Materials, Fukuoka Prefectural Office, Hakata, Fukuoka, 812-8577 Japan
| |
Collapse
|
19
|
Engineering of B800 bacteriochlorophyll binding site specificity in the Rhodobacter sphaeroides LH2 antenna. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1860:209-223. [PMID: 30414933 PMCID: PMC6358721 DOI: 10.1016/j.bbabio.2018.11.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/19/2018] [Accepted: 11/07/2018] [Indexed: 11/22/2022]
Abstract
The light-harvesting 2 complex (LH2) of the purple phototrophic bacterium Rhodobacter sphaeroides is a highly efficient, light-harvesting antenna that allows growth under a wide-range of light intensities. In order to expand the spectral range of this antenna complex, we first used a series of competition assays to measure the capacity of the non-native pigments 3-acetyl chlorophyll (Chl) a, Chl d, Chl f or bacteriochlorophyll (BChl) b to replace native BChl a in the B800 binding site of LH2. We then adjusted the B800 site and systematically assessed the binding of non-native pigments. We find that Arg-10 of the LH2 β polypeptide plays a crucial role in binding specificity, by providing a hydrogen-bond to the 3-acetyl group of native and non-native pigments. Reconstituted LH2 complexes harbouring the series of (B)Chls were examined by transient absorption and steady-state fluorescence spectroscopies. Although slowed 10-fold to ~6 ps, energy transfer from Chl a to B850 BChl a remained highly efficient. We measured faster energy-transfer time constants for Chl d (3.5 ps) and Chl f (2.7 ps), which have red-shifted absorption maxima compared to Chl a. BChl b, red-shifted from the native BChl a, gave extremely rapid (≤0.1 ps) transfer. These results show that modified LH2 complexes, combined with engineered (B)Chl biosynthesis pathways in vivo, have potential for retaining high efficiency whilst acquiring increased spectral range.
Collapse
|
20
|
Dai L, Tan LM, Jiang YL, Shi Y, Wang P, Zhang JP, Otomo ZY. Orientation assignment of LH2 and LH1-RC complexes from Thermochromatium tepidum reconstituted in PC liposome and their ultrafast excitation dynamics comparison between in artificial and in natural chromatophores. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.05.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
21
|
Liu J, Friebe V, Swainsbury DJK, Crouch LI, Szabo DA, Frese RN, Jones MR. Engineered photoproteins that give rise to photosynthetically-incompetent bacteria are effective as photovoltaic materials for biohybrid photoelectrochemical cells. Faraday Discuss 2018; 207:307-327. [PMID: 29364305 PMCID: PMC5903125 DOI: 10.1039/c7fd00190h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 09/04/2017] [Indexed: 01/27/2023]
Abstract
Reaction centre/light harvesting proteins such as the RCLH1X complex from Rhodobacter sphaeroides carry out highly quantum-efficient conversion of solar energy through ultrafast energy transfer and charge separation, and these pigment-proteins have been incorporated into biohybrid photoelectrochemical cells for a variety of applications. In this work we demonstrate that, despite not being able to support normal photosynthetic growth of Rhodobacter sphaeroides, an engineered variant of this RCLH1X complex lacking the PufX protein and with an enlarged light harvesting antenna is unimpaired in its capacity for photocurrent generation in two types of bio-photoelectrochemical cells. Removal of PufX also did not impair the ability of the RCLH1 complex to act as an acceptor of energy from synthetic light harvesting quantum dots. Unexpectedly, the removal of PufX led to a marked improvement in the overall stability of the RCLH1 complex under heat stress. We conclude that PufX-deficient RCLH1 complexes are fully functional in solar energy conversion in a device setting and that their enhanced structural stability could make them a preferred choice over their native PufX-containing counterpart. Our findings on the competence of RCLH1 complexes for light energy conversion in vitro are discussed with reference to the reason why these PufX-deficient proteins are not capable of light energy conversion in vivo.
Collapse
Affiliation(s)
- Juntai Liu
- School of Biochemistry , University of Bristol , Medical Sciences Building, University Walk , Bristol BS8 1TD , UK .
| | - Vincent M. Friebe
- Department of Physics and Astronomy , LaserLaB Amsterdam , VU University Amsterdam , De Boelelaan 1081, 1081 HV , Amsterdam , The Netherlands
| | - David J. K. Swainsbury
- School of Biochemistry , University of Bristol , Medical Sciences Building, University Walk , Bristol BS8 1TD , UK .
| | - Lucy I. Crouch
- School of Biochemistry , University of Bristol , Medical Sciences Building, University Walk , Bristol BS8 1TD , UK .
| | - David A. Szabo
- School of Biochemistry , University of Bristol , Medical Sciences Building, University Walk , Bristol BS8 1TD , UK .
| | - Raoul N. Frese
- Department of Physics and Astronomy , LaserLaB Amsterdam , VU University Amsterdam , De Boelelaan 1081, 1081 HV , Amsterdam , The Netherlands
| | - Michael R. Jones
- School of Biochemistry , University of Bristol , Medical Sciences Building, University Walk , Bristol BS8 1TD , UK .
| |
Collapse
|
22
|
Ogren JI, Tong AL, Gordon SC, Chenu A, Lu Y, Blankenship RE, Cao J, Schlau-Cohen GS. Impact of the lipid bilayer on energy transfer kinetics in the photosynthetic protein LH2. Chem Sci 2018; 9:3095-3104. [PMID: 29732092 PMCID: PMC5914429 DOI: 10.1039/c7sc04814a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/05/2018] [Indexed: 01/28/2023] Open
Abstract
Photosynthetic purple bacteria convert solar energy to chemical energy with near unity quantum efficiency. The light-harvesting process begins with absorption of solar energy by an antenna protein called Light-Harvesting Complex 2 (LH2). Energy is subsequently transferred within LH2 and then through a network of additional light-harvesting proteins to a central location, termed the reaction center, where charge separation occurs. The energy transfer dynamics of LH2 are highly sensitive to intermolecular distances and relative organizations. As a result, minor structural perturbations can cause significant changes in these dynamics. Previous experiments have primarily been performed in two ways. One uses non-native samples where LH2 is solubilized in detergent, which can alter protein structure. The other uses complex membranes that contain multiple proteins within a large lipid area, which make it difficult to identify and distinguish perturbations caused by protein-protein interactions and lipid-protein interactions. Here, we introduce the use of the biochemical platform of model membrane discs to study the energy transfer dynamics of photosynthetic light-harvesting complexes in a near-native environment. We incorporate a single LH2 from Rhodobacter sphaeroides into membrane discs that provide a spectroscopically amenable sample in an environment more physiological than detergent but less complex than traditional membranes. This provides a simplified system to understand an individual protein and how the lipid-protein interaction affects energy transfer dynamics. We compare the energy transfer rates of detergent-solubilized LH2 with those of LH2 in membrane discs using transient absorption spectroscopy and transient absorption anisotropy. For one key energy transfer step in LH2, we observe a 30% enhancement of the rate for LH2 in membrane discs compared to that in detergent. Based on experimental results and theoretical modeling, we attribute this difference to tilting of the peripheral bacteriochlorophyll in the B800 band. These results highlight the importance of well-defined systems with near-native membrane conditions for physiologically-relevant measurements.
Collapse
Affiliation(s)
- John I Ogren
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , MA 02139 , USA .
| | - Ashley L Tong
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , MA 02139 , USA .
| | - Samuel C Gordon
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , MA 02139 , USA .
| | - Aurélia Chenu
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , MA 02139 , USA .
| | - Yue Lu
- Department of Biology and Chemistry , Washington University in St. Louis , St. Louis , MO 63130 , USA
| | - Robert E Blankenship
- Department of Biology and Chemistry , Washington University in St. Louis , St. Louis , MO 63130 , USA
| | - Jianshu Cao
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , MA 02139 , USA .
| | - Gabriela S Schlau-Cohen
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , MA 02139 , USA .
| |
Collapse
|
23
|
Saga Y, Hirota K. Determination of the Molar Extinction Coefficients of the B800 and B850 Absorption Bands in Light-harvesting Complexes 2 Derived from Three Purple Photosynthetic Bacteria Rhodoblastus acidophilus, Rhodobacter sphaeroides, and Phaeospirillum molischianum by Extraction of Bacteriochlorophyll a. ANAL SCI 2018; 32:801-4. [PMID: 27396664 DOI: 10.2116/analsci.32.801] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The molar extinction coefficients of light-harvesting complex 2 (LH2) have been ambiguous in spite of its fame and wide utilization. Herein we determine the molar extinction coefficients of the LH2 proteins derived from the three purple photosynthetic bacteria Rhodoblastus acidophilus, Rhodobacter sphaeroides and Phaeospirillum molischianum at 298 K by direct extraction of bacteriochlorophyll (BChl) a from the lyophilized proteins, followed by estimation of BChl a amounts from their electronic absorption spectra.
Collapse
Affiliation(s)
- Yoshitaka Saga
- Department of Chemistry, Faculty of Science and Engineering, Kinki University
| | | |
Collapse
|
24
|
Löhner A, Cogdell R, Köhler J. Contribution of low-temperature single-molecule techniques to structural issues of pigment-protein complexes from photosynthetic purple bacteria. J R Soc Interface 2018; 15:rsif.2017.0680. [PMID: 29321265 DOI: 10.1098/rsif.2017.0680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/01/2017] [Indexed: 11/12/2022] Open
Abstract
As the electronic energies of the chromophores in a pigment-protein complex are imposed by the geometrical structure of the protein, this allows the spectral information obtained to be compared with predictions derived from structural models. Thereby, the single-molecule approach is particularly suited for the elucidation of specific, distinctive spectral features that are key for a particular model structure, and that would not be observable in ensemble-averaged spectra due to the heterogeneity of the biological objects. In this concise review, we illustrate with the example of the light-harvesting complexes from photosynthetic purple bacteria how results from low-temperature single-molecule spectroscopy can be used to discriminate between different structural models. Thereby the low-temperature approach provides two advantages: (i) owing to the negligible photobleaching, very long observation times become possible, and more importantly, (ii) at cryogenic temperatures, vibrational degrees of freedom are frozen out, leading to sharper spectral features and in turn to better resolved spectra.
Collapse
Affiliation(s)
- Alexander Löhner
- Spectroscopy of Soft Matter, University of Bayreuth, 95440 Bayreuth, Germany
| | - Richard Cogdell
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland
| | - Jürgen Köhler
- Spectroscopy of Soft Matter, University of Bayreuth, 95440 Bayreuth, Germany .,Bayreuth Institute for Macromolecular Research (BIMF), University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
25
|
Swainsbury DJK, Scheidelaar S, Foster N, van Grondelle R, Killian JA, Jones MR. The effectiveness of styrene-maleic acid (SMA) copolymers for solubilisation of integral membrane proteins from SMA-accessible and SMA-resistant membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2017; 1859:2133-2143. [PMID: 28751090 PMCID: PMC5593810 DOI: 10.1016/j.bbamem.2017.07.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 07/14/2017] [Accepted: 07/23/2017] [Indexed: 11/27/2022]
Abstract
Solubilisation of biological lipid bilayer membranes for analysis of their protein complement has traditionally been carried out using detergents, but there is increasing interest in the use of amphiphilic copolymers such as styrene maleic acid (SMA) for the solubilisation, purification and characterisation of integral membrane proteins in the form of protein/lipid nanodiscs. Here we survey the effectiveness of various commercially-available formulations of the SMA copolymer in solubilising Rhodobacter sphaeroides reaction centres (RCs) from photosynthetic membranes. We find that formulations of SMA with a 2:1 or 3:1 ratio of styrene to maleic acid are almost as effective as detergent in solubilising RCs, with the best solubilisation by short chain variants (<30kDa weight average molecular weight). The effectiveness of 10kDa 2:1 and 3:1 formulations of SMA to solubilise RCs gradually declined when genetically-encoded coiled-coil bundles were used to artificially tether normally monomeric RCs into dimeric, trimeric and tetrameric multimers. The ability of SMA to solubilise reaction centre-light harvesting 1 (RC-LH1) complexes from densely packed and highly ordered photosynthetic membranes was uniformly low, but could be increased through a variety of treatments to increase the lipid:protein ratio. However, proteins isolated from such membranes comprised clusters of complexes in small membrane patches rather than individual proteins. We conclude that short-chain 2:1 and 3:1 formulations of SMA are the most effective in solubilising integral membrane proteins, but that solubilisation efficiencies are strongly influenced by the size of the target protein and the density of packing of proteins in the membrane.
Collapse
Affiliation(s)
- David J K Swainsbury
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Stefan Scheidelaar
- Membrane Biochemistry & Biophysics, Utrecht University, Bijvoet Center for Biomolecular Research, Utrecht, The Netherlands
| | - Nicholas Foster
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Rienk van Grondelle
- Division of Physics and Astronomy, VU University Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, The Netherlands
| | - J Antoinette Killian
- Membrane Biochemistry & Biophysics, Utrecht University, Bijvoet Center for Biomolecular Research, Utrecht, The Netherlands
| | - Michael R Jones
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom.
| |
Collapse
|
26
|
The C-terminus of PufX plays a key role in dimerisation and assembly of the reaction center light-harvesting 1 complex from Rhodobacter sphaeroides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:795-803. [PMID: 28587931 PMCID: PMC5538271 DOI: 10.1016/j.bbabio.2017.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 11/22/2022]
Abstract
In bacterial photosynthesis reaction center-light-harvesting 1 (RC-LH1) complexes trap absorbed solar energy by generating a charge separated state. Subsequent electron and proton transfers form a quinol, destined to diffuse to the cytochrome bc1 complex. In bacteria such as Rhodobacter (Rba.) sphaeroides and Rba. capsulatus the PufX polypeptide creates a channel for quinone/quinol traffic across the LH1 complex that surrounds the RC, and it is therefore essential for photosynthetic growth. PufX also plays a key role in dimerization of the RC-LH1-PufX core complex, and the structure of the Rba. sphaeroides complex shows that the PufX C-terminus, particularly the region from X49-X53, likely mediates association of core monomers. To investigate this putative interaction we analysed mutations PufX R49L, PufX R53L, PufX R49/53L and PufX G52L by measuring photosynthetic growth, fractionation of detergent-solubilised membranes, formation of 2-D crystals and electron microscopy. We show that these mutations do not affect assembly of PufX within the core or photosynthetic growth but they do prevent dimerization, consistent with predictions from the RC-LH1-PufX structure. We obtained low resolution structures of monomeric core complexes with and without PufX, using electron microscopy of negatively stained single particles and 3D reconstruction; the monomeric complex with PufX corresponds to one half of the dimer structure whereas LH1 completely encloses the RC if the gene encoding PufX is deleted. On the basis of the insights gained from these mutagenesis and structural analyses we propose a sequence for assembly of the dimeric RC-LH1-PufX complex.
Collapse
|
27
|
Stability and properties of quasi-stable conformational states in the LH2 light-harvesting complex of Rbl. acidophilus bacteria formed by hexacoordination of bacteriochlorophyll a magnesium atom. Chem Phys 2017. [DOI: 10.1016/j.chemphys.2017.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Olsen JD, Martin EC, Hunter CN. The PufX quinone channel enables the light-harvesting 1 antenna to bind more carotenoids for light collection and photoprotection. FEBS Lett 2017; 591:573-580. [PMID: 28130884 PMCID: PMC5347945 DOI: 10.1002/1873-3468.12575] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/12/2017] [Accepted: 01/16/2017] [Indexed: 11/30/2022]
Abstract
Photosynthesis in some phototrophic bacteria requires the PufX component of the reaction centre–light‐harvesting 1–PufX (RC‐LH1‐PufX) complex, which creates a pore for quinone/quinol (Q/QH2) exchange across the LH1 barrier surrounding the RC. However, photosynthetic bacteria such as Thermochromatium (T.) tepidum do not require PufX because there are fewer carotenoid binding sites, which creates multiple pores in the LH1 ring for Q/QH2 exchange. We show that an αTrp‐24→Phe alteration of the Rhodobacter (Rba.) sphaeroides LH1 antenna impairs carotenoid binding and allows photosynthetic growth in the absence of PufX. We propose that acquisition of PufX and confining Q/QH2 traffic to a pore adjacent to the RC QB site is an evolutionary upgrade that allows increased LH1 carotenoid content for enhanced light absorption and photoprotection.
Collapse
Affiliation(s)
- John D Olsen
- Department of Molecular Biology and Biotechnology, University of Sheffield, UK
| | - Elizabeth C Martin
- Department of Molecular Biology and Biotechnology, University of Sheffield, UK
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, UK
| |
Collapse
|
29
|
Dilbeck PL, Tang Q, Mothersole DJ, Martin EC, Hunter CN, Bocian DF, Holten D, Niedzwiedzki DM. Quenching Capabilities of Long-Chain Carotenoids in Light-Harvesting-2 Complexes from Rhodobacter sphaeroides with an Engineered Carotenoid Synthesis Pathway. J Phys Chem B 2016; 120:5429-43. [PMID: 27285777 PMCID: PMC4921951 DOI: 10.1021/acs.jpcb.6b03305] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Six light-harvesting-2 complexes
(LH2) from genetically modified
strains of the purple photosynthetic bacterium Rhodobacter
(Rb.) sphaeroides were studied using static and ultrafast
optical methods and resonance Raman spectroscopy. These strains were
engineered to incorporate carotenoids for which the number of conjugated
groups (N = NC=C + NC=O) varies from 9 to 15.
The Rb. sphaeroides strains incorporate their native
carotenoids spheroidene (N = 10) and spheroidenone
(N = 11), as well as longer-chain analogues including
spirilloxanthin (N = 13) and diketospirilloxantion
(N = 15) normally found in Rhodospirillum
rubrum. Measurements of the properties of the carotenoid
first singlet excited state (S1) in antennas from the Rb. sphaeroides set show that carotenoid-bacteriochlorophyll a (BChl a) interactions are similar to
those in LH2 complexes from various other bacterial species and thus
are not significantly impacted by differences in polypeptide composition.
Instead, variations in carotenoid-to-BChl a energy
transfer are primarily regulated by the N-determined
energy of the carotenoid S1 excited state, which for long-chain
(N ≥ 13) carotenoids is not involved in energy
transfer. Furthermore, the role of the long-chain carotenoids switches
from a light-harvesting supporter (via energy transfer to BChl a) to a quencher of the BChl a S1 excited state B850*. This quenching is manifested as a substantial
(∼2-fold) reduction of the B850* lifetime and the B850* fluorescence
quantum yield for LH2 housing the longest carotenoids.
Collapse
Affiliation(s)
| | - Qun Tang
- Department of Chemistry, University of California Riverside , Riverside, California 92521, United States
| | - David J Mothersole
- Department of Molecular Biology and Biotechnology, University of Sheffield , Sheffield S10 2TN, United Kingdom
| | - Elizabeth C Martin
- Department of Molecular Biology and Biotechnology, University of Sheffield , Sheffield S10 2TN, United Kingdom
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield , Sheffield S10 2TN, United Kingdom
| | - David F Bocian
- Department of Chemistry, University of California Riverside , Riverside, California 92521, United States
| | | | | |
Collapse
|
30
|
Agnihotri N, Steer RP. Time dependent DFT investigation of the optical properties of artificial light harvesting special pairs. Phys Chem Chem Phys 2016; 18:15337-51. [DOI: 10.1039/c6cp00300a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Simulated absorption spectra of (ZnTriPP)2DPB dimer in which Q band is enhanced 50 times for visibility.
Collapse
Affiliation(s)
- Neha Agnihotri
- Department of Physics
- Indian Institute of Technology (BHU)
- Varanasi-221005
- India
| | - Ronald P. Steer
- Department of Chemistry
- University of Saskatchewan
- Saskatoon
- Canada
| |
Collapse
|
31
|
Leiger K, Freiberg A. Up-converted fluorescence from photosynthetic light-harvesting complexes linearly dependent on excitation intensity. PHOTOSYNTHESIS RESEARCH 2016; 127:77-87. [PMID: 25764015 DOI: 10.1007/s11120-015-0117-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 03/05/2015] [Indexed: 06/04/2023]
Abstract
Weak up-converted fluorescence related to bacteriochlorophyll a was recorded from various detergent-isolated and membrane-embedded light-harvesting pigment-protein complexes as well as from the functional membranes of photosynthetic purple bacteria under continuous-wave infrared laser excitation at 1064 nm, far outside the optically allowed singlet absorption bands of the chromophore. The fluorescence increases linearly with the excitation power, distinguishing it from the previously observed two-photon excited fluorescence upon femtosecond pulse excitation. Possible mechanisms of this excitation are discussed.
Collapse
Affiliation(s)
- Kristjan Leiger
- Institute of Physics, University of Tartu, Ravila 14c, 51011, Tartu, Estonia.
| | - Arvi Freiberg
- Institute of Physics, University of Tartu, Ravila 14c, 51011, Tartu, Estonia.
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51014, Tartu, Estonia.
| |
Collapse
|
32
|
Odahara T, Odahara K. Intermolecular interactions at early stage of protein/detergent particle association induced by salt/polyethylene glycol mixtures. Protein Expr Purif 2015; 120:72-86. [PMID: 26705098 DOI: 10.1016/j.pep.2015.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/07/2015] [Accepted: 12/11/2015] [Indexed: 11/26/2022]
Abstract
Mixtures of neutral salts and polyethylene glycol are used for various purposes in biological studies. Although the effects of each component of the mixtures are theoretically well investigated, comprehension of their integrated effects remains insufficient. In this work, their roles and effects as a precipitant were clarified by studying dependence of precipitation curves on salt concentration for integral membrane protein/detergent particles of different physicochemical properties. The dependence of precipitation curves was reasonably related to intermolecular interactions among relevant molecules such as protein, detergent and polyethylene glycol by considering their physicochemical properties. The obtained relationships are useful as basic information to learn the early stage of biological macromolecular associations.
Collapse
Affiliation(s)
- Takayuki Odahara
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central-6, 1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
| | - Koji Odahara
- Fukuoka Agriculture and Forestry Research Center, Chikusino, Fukuoka, 818-8549, Japan
| |
Collapse
|
33
|
Lu Y, Zhang H, Cui W, Saer R, Liu H, Gross ML, Blankenship RE. Top-Down Mass Spectrometry Analysis of Membrane-Bound Light-Harvesting Complex 2 from Rhodobacter sphaeroides. Biochemistry 2015; 54:7261-71. [PMID: 26574182 PMCID: PMC6020673 DOI: 10.1021/acs.biochem.5b00959] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a top-down proteomic analysis of the membrane-bound peripheral light-harvesting complex LH2 isolated from the purple photosynthetic bacterium Rhodobacter sphaeroides. The LH2 complex is coded for by the puc operon. The Rb. sphaeroides genome contains two puc operons, designated puc1BAC and puc2BA. Although previous work has shown consistently that the LH2 β polypeptide coded by the puc2B gene was assembled into LH2 complexes, there are contradictory reports as to whether the Puc2A polypeptides are incorporated into LH2 complexes. Furthermore, post-translational modifications of this protein offer the prospect that it could coordinate bacteriochlorophyll a (Bchl a) by a modified N-terminal residue. Here, we describe the components of the LH2 complex on the basis of electron-capture dissociation fragmentation to confirm the identity and sequence of the protein's subunits. We found that both gene products of the β polypeptides are expressed and assembled in the mature LH2 complex, but only the Puc1A-encoded polypeptide α is observed here. The methionine of the Puc2B-encoded polypeptide is missing, and a carboxyl group is attached to the threonine at the N-terminus. Surprisingly, one amino acid encoded as an isoleucine in both the puc2B gene and the mRNA is found as valine in the mature LH2 complex, suggesting an unexpected and unusual post-translational modification or a specific tRNA recoding of this one amino acid.
Collapse
Affiliation(s)
- Yue Lu
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Hao Zhang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Weidong Cui
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Rafael Saer
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Haijun Liu
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Robert E. Blankenship
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
34
|
Mothersole DJ, Jackson PJ, Vasilev C, Tucker JD, Brindley AA, Dickman MJ, Hunter CN. PucC and LhaA direct efficient assembly of the light-harvesting complexes in Rhodobacter sphaeroides. Mol Microbiol 2015; 99:307-27. [PMID: 26419219 PMCID: PMC4949548 DOI: 10.1111/mmi.13235] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2015] [Indexed: 01/21/2023]
Abstract
The mature architecture of the photosynthetic membrane of the purple phototroph Rhodobacter sphaeroides has been characterised to a level where an atomic-level membrane model is available, but the roles of the putative assembly proteins LhaA and PucC in establishing this architecture are unknown. Here we investigate the assembly of light-harvesting LH2 and reaction centre-light-harvesting1-PufX (RC-LH1-PufX) photosystem complexes using spectroscopy, pull-downs, native gel electrophoresis, quantitative mass spectrometry and fluorescence lifetime microscopy to characterise a series of lhaA and pucC mutants. LhaA and PucC are important for specific assembly of LH1 or LH2 complexes, respectively, but they are not essential; the few LH1 subunits found in ΔlhaA mutants assemble to form normal RC-LH1-PufX core complexes showing that, once initiated, LH1 assembly round the RC is cooperative and proceeds to completion. LhaA and PucC form oligomers at sites of initiation of membrane invagination; LhaA associates with RCs, bacteriochlorophyll synthase (BchG), the protein translocase subunit YajC and the YidC membrane protein insertase. These associations within membrane nanodomains likely maximise interactions between pigments newly arriving from BchG and nascent proteins within the SecYEG-SecDF-YajC-YidC assembly machinery, thereby co-ordinating pigment delivery, the co-translational insertion of LH polypeptides and their folding and assembly to form photosynthetic complexes.
Collapse
Affiliation(s)
- David J Mothersole
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Philip J Jackson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK.,ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - Cvetelin Vasilev
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Jaimey D Tucker
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Amanda A Brindley
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Mark J Dickman
- ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| |
Collapse
|
35
|
Driscoll B, Lunceford C, Lin S, Woronowicz K, Niederman RA, Woodbury NW. Energy transfer properties of Rhodobacter sphaeroides chromatophores during adaptation to low light intensity. Phys Chem Chem Phys 2015; 16:17133-41. [PMID: 25008288 DOI: 10.1039/c4cp01981d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Time-resolved fluorescence spectroscopy was used to explore the pathway and kinetics of energy transfer in photosynthetic membrane vesicles (chromatophores) isolated from Rhodobacter (Rba.) sphaeroides cells harvested 2, 4, 6 or 24 hours after a transition from growth in high to low level illumination. As previously observed, this light intensity transition initiates the remodeling of the photosynthetic apparatus and an increase in the number of light harvesting 2 (LH2) complexes relative to light harvesting 1 (LH1) and reaction center (RC) complexes. It has generally been thought that the increase in LH2 complexes served the purpose of increasing the overall energy transmission to the RC. However, fluorescence lifetime measurements and analysis in terms of energy transfer within LH2 and between LH2 and LH1 indicate that, during the remodeling time period measured, only a portion of the additional LH2 generated are well connected to LH1 and the reaction center. The majority of the additional LH2 fluorescence decays with a lifetime comparable to that of free, unconnected LH2 complexes. The presence of large LH2-only domains has been observed by atomic force microscopy in Rba. sphaeroides chromatophores (Bahatyrova et al., Nature, 2004, 430, 1058), providing structural support for the existence of pools of partially connected LH2 complexes. These LH2-only domains represent the light-responsive antenna complement formed after a switch in growth conditions from high to low illumination, while the remaining LH2 complexes occupy membrane regions containing mixtures of LH2 and LH1-RC core complexes. The current study utilized a multi-parameter approach to explore the fluorescence spectroscopic properties related to the remodeling process, shedding light on the structure-function relationship of the photosynthetic assembles. Possible reasons for the accumulation of these largely disconnected LH2-only pools are discussed.
Collapse
Affiliation(s)
- B Driscoll
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | | | | | | | | | | |
Collapse
|
36
|
Horibe T, Qian P, Hunter CN, Hashimoto H. Stark absorption spectroscopy on the carotenoids bound to B800-820 and B800-850 type LH2 complexes from a purple photosynthetic bacterium, Phaeospirillum molischianum strain DSM120. Arch Biochem Biophys 2015; 572:158-166. [PMID: 25536050 DOI: 10.1016/j.abb.2014.12.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 11/16/2022]
Abstract
Stark absorption spectroscopy was applied to clarify the structural differences between carotenoids bound to the B800-820 and B800-850 LH2 complexes from a purple photosynthetic bacterium Phaeospirillum (Phs.) molischianum DSM120. The former complex is produced when the bacteria are grown under stressed conditions of low temperature and dim light. These two LH2 complexes bind carotenoids with similar composition, 10% lycopene and 80% rhodopin, each with the same number of conjugated CC double bonds (n=11). Quantitative classical and semi-quantum chemical analyses of Stark absorption spectra recorded in the carotenoid absorption region reveal that the absolute values of the difference dipole moments |Δμ| have substantial differences (2 [D/f]) for carotenoids bound to either B800-820 or B800-850 complexes. The origin of this striking difference in the |Δμ| values was analyzed using the X-ray crystal structure of the B800-850 LH2 complex from Phs. molischianum DSM119. Semi-empirical molecular orbital calculations predict structural deformations of the major carotenoid, rhodopin, bound within the B800-820 complex. We propose that simultaneous rotations around neighboring CC and CC bonds account for the differences in the 2 [D/f] of the |Δμ| value. The plausible position of the rotation is postulated to be located around C21-C24 bonds of rhodopin.
Collapse
Affiliation(s)
- Tomoko Horibe
- Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Pu Qian
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Hideki Hashimoto
- Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan; The Osaka City University Advanced Research Institute for Natural Science and Technology (OCARINA), 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.
| |
Collapse
|
37
|
Löhner A, Carey AM, Hacking K, Picken N, Kelly S, Cogdell R, Köhler J. The origin of the split B800 absorption peak in the LH2 complexes from Allochromatium vinosum. PHOTOSYNTHESIS RESEARCH 2015; 123:23-31. [PMID: 25150556 DOI: 10.1007/s11120-014-0036-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 08/12/2014] [Indexed: 06/03/2023]
Abstract
The absorption spectrum of the high-light peripheral light-harvesting (LH) complex from the photosynthetic purple bacterium Allochromatium vinosum features two strong absorptions around 800 and 850 nm. For the LH2 complexes from the species Rhodopseudomonas acidophila and Rhodospirillum molischianum, where high-resolution X-ray structures are available, similar bands have been observed and were assigned to two pigment pools of BChl a molecules that are arranged in two concentric rings (B800 and B850) with nine (acidophila) or eight (molischianum) repeat units, respectively. However, for the high-light peripheral LH complex from Alc. vinosum, the intruiging feature is that the B800 band is split into two components. We have studied this pigment-protein complex by ensemble CD spectroscopy and polarisation-resolved single-molecule spectroscopy. Assuming that the high-light peripheral LH complex in Alc. vinosum is constructed on the same modular principle as described for LH2 from Rps. acidophila and Rsp. molischianum, we used those repeat units as a starting point for simulating the spectra. We find the best agreement between simulation and experiment for a ring-like oligomer of 12 repeat units, where the mutual arrangement of the B800 and B850 rings resembles those from Rsp. molischianum. The splitting of the B800 band can be reproduced if both an excitonic coupling between dimers of B800 molecules and their interaction with the B850 manifold are taken into account. Such dimers predict an interesting apoprotein organisation as discussed below.
Collapse
Affiliation(s)
- Alexander Löhner
- Experimental Physics IV and Bayreuth Institute for Macromolecular Research (BIMF), University of Bayreuth, Bayreuth, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Olsen JD, Adams PG, Jackson PJ, Dickman MJ, Qian P, Hunter CN. Aberrant assembly complexes of the reaction center light-harvesting 1 PufX (RC-LH1-PufX) core complex of Rhodobacter sphaeroides imaged by atomic force microscopy. J Biol Chem 2014; 289:29927-36. [PMID: 25193660 PMCID: PMC4208002 DOI: 10.1074/jbc.m114.596585] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In the purple phototrophic bacterium Rhodobacter sphaeroides, many protein complexes congregate within the membrane to form operational photosynthetic units consisting of arrays of light-harvesting LH2 complexes and monomeric and dimeric reaction center (RC)-light-harvesting 1 (LH1)-PufX “core” complexes. Each half of a dimer complex consists of a RC surrounded by 14 LH1 αβ subunits, with two bacteriochlorophylls (Bchls) sandwiched between each αβ pair of transmembrane helices. We used atomic force microscopy (AFM) to investigate the assembly of single molecules of the RC-LH1-PufX complex using membranes prepared from LH2-minus mutants. When the RC and PufX components were also absent, AFM revealed a series of LH1 variants where the repeating α1β1(Bchl)2 units had formed rings of variable size, ellipses, and spirals and also arcs that could be assembly products. The spiral complexes occur when the LH1 ring has failed to close, and short arcs are suggestive of prematurely terminated LH1 complex assembly. In the absence of RCs, we occasionally observed captive proteins enclosed by the LH1 ring. When production of LH1 units was restricted by lowering the relative levels of the cognate pufBA transcript, we imaged a mixture of complete RC-LH1 core complexes, empty LH1 rings, and isolated RCs, leading us to conclude that once a RC associates with the first α1β1(Bchl)2 subunit, cooperative associations between subsequent subunits and the RC tend to drive LH1 ring assembly to completion.
Collapse
Affiliation(s)
- John D Olsen
- From the Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, United Kingdom and
| | - Peter G Adams
- From the Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, United Kingdom and
| | - Philip J Jackson
- From the Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, United Kingdom and the Department of Chemical and Biological Engineering, ChELSI Institute, University of Sheffield, Sheffield, S1 3JD, United Kingdom
| | - Mark J Dickman
- the Department of Chemical and Biological Engineering, ChELSI Institute, University of Sheffield, Sheffield, S1 3JD, United Kingdom
| | - Pu Qian
- From the Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, United Kingdom and
| | - C Neil Hunter
- From the Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, United Kingdom and
| |
Collapse
|
39
|
Gardian Z, Litvín R, Bína D, Vácha F. Supramolecular organization of fucoxanthin-chlorophyll proteins in centric and pennate diatoms. PHOTOSYNTHESIS RESEARCH 2014; 121:79-86. [PMID: 24715699 DOI: 10.1007/s11120-014-9998-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 03/24/2014] [Indexed: 06/03/2023]
Abstract
Fucoxanthin-chlorophyll proteins (FCP) are the major light-harvesting proteins of diatom algae, a major contributor to marine carbon fixation. FCP complexes from representatives of centric (Cyclotella meneghiniana) and pennate (Phaeodactylum tricornutum) diatoms were prepared by sucrose gradient centrifugation and studied by means of electron microscopy followed by single particle analysis. The oligomeric FCP from a centric diatom were observed to take the form of unusual chain-like or circular shapes, a very unique supramolecular assembly for such antennas. The existence of the often disputed oligomeric form of FCP in pennate diatoms has been confirmed. Contrary to the centric diatom FCP, pennate diatom FCP oligomers are very similar to oligomeric antennas from related heterokont (Stramenopila) algae. Evolutionary aspects of the presence of novel light-harvesting protein arrangement in centric diatoms are discussed.
Collapse
Affiliation(s)
- Zdenko Gardian
- Institute of Plant Molecular Biology, Biology Centre ASCR, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | | | | | | |
Collapse
|
40
|
Cartron ML, Olsen JD, Sener M, Jackson PJ, Brindley AA, Qian P, Dickman MJ, Leggett GJ, Schulten K, Neil Hunter C. Integration of energy and electron transfer processes in the photosynthetic membrane of Rhodobacter sphaeroides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1769-80. [PMID: 24530865 DOI: 10.1016/j.bbabio.2014.02.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 02/03/2014] [Accepted: 02/05/2014] [Indexed: 02/04/2023]
Abstract
Photosynthesis converts absorbed solar energy to a protonmotive force, which drives ATP synthesis. The membrane network of chlorophyll-protein complexes responsible for light absorption, photochemistry and quinol (QH2) production has been mapped in the purple phototrophic bacterium Rhodobacter (Rba.) sphaeroides using atomic force microscopy (AFM), but the membrane location of the cytochrome bc1 (cytbc1) complexes that oxidise QH2 to quinone (Q) to generate a protonmotive force is unknown. We labelled cytbc1 complexes with gold nanobeads, each attached by a Histidine10 (His10)-tag to the C-terminus of cytc1. Electron microscopy (EM) of negatively stained chromatophore vesicles showed that the majority of the cytbc1 complexes occur as dimers in the membrane. The cytbc1 complexes appeared to be adjacent to reaction centre light-harvesting 1-PufX (RC-LH1-PufX) complexes, consistent with AFM topographs of a gold-labelled membrane. His-tagged cytbc1 complexes were retrieved from chromatophores partially solubilised by detergent; RC-LH1-PufX complexes tended to co-purify with cytbc1 whereas LH2 complexes became detached, consistent with clusters of cytbc1 complexes close to RC-LH1-PufX arrays, but not with a fixed, stoichiometric cytbc1-RC-LH1-PufX supercomplex. This information was combined with a quantitative mass spectrometry (MS) analysis of the RC, cytbc1, ATP synthase, cytaa3 and cytcbb3 membrane protein complexes, to construct an atomic-level model of a chromatophore vesicle comprising 67 LH2 complexes, 11 LH1-RC-PufX dimers & 2 RC-LH1-PufX monomers, 4 cytbc1 dimers and 2 ATP synthases. Simulation of the interconnected energy, electron and proton transfer processes showed a half-maximal ATP turnover rate for a light intensity equivalent to only 1% of bright sunlight. Thus, the photosystem architecture of the chromatophore is optimised for growth at low light intensities.
Collapse
Affiliation(s)
- Michaël L Cartron
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - John D Olsen
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Melih Sener
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Philip J Jackson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK; ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
| | - Amanda A Brindley
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Pu Qian
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Mark J Dickman
- ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
| | - Graham J Leggett
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK
| | - Klaus Schulten
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK.
| |
Collapse
|
41
|
Sznee K, Crouch LI, Jones MR, Dekker JP, Frese RN. Variation in supramolecular organisation of the photosynthetic membrane of Rhodobacter sphaeroides induced by alteration of PufX. PHOTOSYNTHESIS RESEARCH 2014; 119:243-256. [PMID: 24197265 DOI: 10.1007/s11120-013-9949-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 10/24/2013] [Indexed: 06/02/2023]
Abstract
In purple bacteria of the genus Rhodobacter (Rba.), an LH1 antenna complex surrounds the photochemical reaction centre (RC) with a PufX protein preventing the LH1 complex from completely encircling the RC. In membranes of Rba. sphaeroides, RC-LH1 complexes associate as dimers which in turn assemble into longer range ordered arrays. The present work uses linear dichroism (LD) and dark-minus-light difference LD (ΔLD) to probe the organisation of genetically altered RC-LH1 complexes in intact membranes. The data support previous proposals that Rba. capsulatus, and Rba. sphaeroides heterologously expressing the PufX protein from Rba. capsulatus, produce monomeric core complexes in membranes that lack long-range order. Similarly, Rba. sphaeroides with a point mutation in the Gly 51 residue of PufX, which is located on the membrane-periplasm interface, assembles mainly non-ordered RC-LH1 complexes that are most likely monomeric. All the Rba. sphaeroides membranes in their ΔLD spectra exhibited a spectral fingerprint of small degree of organisation implying the possibility of ordering influence of LH1, and leading to an important conclusion that PufX itself has no influence on ordering RC-LH1 complexes, as long-range order appears to be induced only through its role of configuring RC-LH1 complexes into dimers.
Collapse
Affiliation(s)
- Kinga Sznee
- Division of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands,
| | | | | | | | | |
Collapse
|
42
|
Adessi A, De Philippis R. Photosynthesis and Hydrogen Production in Purple Non Sulfur Bacteria: Fundamental and Applied Aspects. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/978-94-017-8554-9_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
43
|
Rajapaksha SP, He Y, Lu HP. Combined topographic, spectroscopic, and model analyses of inhomogeneous energetic coupling of linear light harvesting complex II aggregates in native photosynthetic membranes. Phys Chem Chem Phys 2013; 15:5636-47. [PMID: 23474628 DOI: 10.1039/c3cp43582b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Light harvesting by LH1 and LH2 antenna proteins in the photosynthetic membranes of purple bacteria has been extensively studied in recent years for the fundamental understanding of the energy transfer dynamics and mechanism. Here we report the inhomogeneous structural organization of the LH2 complexes in photosynthetic membranes, giving evidence for the existence of energetically coupled linear LH2 aggregates in the native photosynthetic membranes of purple bacteria. Focusing on systematic model analyses, we combined AFM imaging and spectroscopic analysis with energetic coupling model analysis to characterize the inhomogeneous linear aggregation of LH2. Our AFM imaging results reveal that the LH2 complexes form linear aggregates with the monomer number varying from one to eight and each monomer tilted along the aggregated structure in photosynthetic membranes. The spectroscopic results support the attribution of aggregated LH2 complexes in the photosynthetic membranes, and the model calculation values for the absorption, emission and lifetime are consistent with the experimentally determined spectroscopic values, further proving a molecular-level understanding of the energetic coupling and energy transfer among the LH2 complexes in the photosynthetic membranes.
Collapse
Affiliation(s)
- Suneth P Rajapaksha
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | | | | |
Collapse
|
44
|
Leiger K, Reisberg L, Freiberg A. Fluorescence Micro-Spectroscopy Study of Individual Photosynthetic Membrane Vesicles and Light-Harvesting Complexes. J Phys Chem B 2013; 117:9315-26. [DOI: 10.1021/jp4014509] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kristjan Leiger
- Institute
of Physics, University of Tartu, Riia 142,
Tartu 51014, Estonia
| | - Liis Reisberg
- Institute
of Physics, University of Tartu, Riia 142,
Tartu 51014, Estonia
| | - Arvi Freiberg
- Institute
of Physics, University of Tartu, Riia 142,
Tartu 51014, Estonia
- Institute
of Molecular and Cell
Biology, University of Tartu, Riia 23,
Tartu 51010, Estonia
| |
Collapse
|
45
|
Freiberg A, Pajusalu M, Rätsep M. Excitons in intact cells of photosynthetic bacteria. J Phys Chem B 2013; 117:11007-14. [PMID: 23379598 DOI: 10.1021/jp3098523] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Live cells and regular crystals seem fundamentally incompatible. Still, effects characteristic to ideal crystals, such as coherent sharing of excitation, have been recently used in many studies to explain the behavior of several photosynthetic complexes, especially the inner workings of the light-harvesting apparatus of the oldest known photosynthetic organisms, the purple bacteria. To this date, there has been no concrete evidence that the same effects are instrumental in real living cells, leaving a possibility that this is an artifact of unnatural study conditions, not a real effect relevant to the biological operation of bacteria. Hereby, we demonstrate survival of collective coherent excitations (excitons) in intact cells of photosynthetic purple bacteria. This is done by using excitation anisotropy spectroscopy for tracking the temperature-dependent evolution of exciton bands in light-harvesting systems of increasing structural complexity. The temperature was gradually raised from 4.5 K to ambient temperature, and the complexity of the systems ranged from detergent-isolated complexes to complete bacterial cells. The results provide conclusive evidence that excitons are indeed one of the key elements contributing to the energetic and dynamic properties of photosynthetic organisms.
Collapse
Affiliation(s)
- Arvi Freiberg
- Institute of Physics, University of Tartu , Riia 142, Tartu 51014, Estonia
| | | | | |
Collapse
|
46
|
Woronowicz K, Olubanjo OB, Sung HC, Lamptey JL, Niederman RA. Differential assembly of polypeptides of the light-harvesting 2 complex encoded by distinct operons during acclimation of Rhodobacter sphaeroides to low light intensity. PHOTOSYNTHESIS RESEARCH 2012; 111:125-138. [PMID: 22396151 DOI: 10.1007/s11120-011-9707-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 08/10/2011] [Indexed: 05/31/2023]
Abstract
In order to obtain an improved understanding of the assembly of the bacterial photosynthetic apparatus, we have conducted a proteomic analysis of pigment-protein complexes isolated from the purple bacterium Rhodobacter sphaeroides undergoing acclimation to reduced incident light intensity. Photoheterotrophically growing cells were shifted from 1,100 to 100 W/m(2) and intracytoplasmic membrane (ICM) vesicles isolated over 24-h were subjected to clear native polyacrylamide gel electrophoresis. Bands containing the LH2 and reaction center (RC)-LH1 complexes were excised and subjected to in-gel trypsin digestion followed by liquid chromatography (LC)-mass spectroscopy (MS)/MS. The results revealed that the LH2 band contained distinct levels of the LH2-α and -β polypeptides encoded by the two puc operons. Polypeptide subunits encoded by the puc2AB operon predominated under high light and in the early stages of acclimation to low light, while after 24 h, the puc1BAC components were most abundant. Surprisingly, the Puc2A polypeptide containing a 251 residue C-terminal extension not present in Puc1A, was a protein of major abundance. A predominance of Puc2A components in the LH2 complex formed at high light intensity is followed by a >2.5-fold enrichment in Puc1B levels between 3 and 24 h of acclimation, accompanied by a nearly twofold decrease in Puc2A levels. This indicates that the puc1BAC operon is under more stringent light control, thought to reflect differences in the puc1 upstream regulatory region. In contrast, elevated levels of Puc2 polypeptides were seen 48 h after the gratuitous induction of ICM formation at low aeration in the dark, while after 24 h of acclimation to low light, an absence of alterations in Puc polypeptide distributions was observed in the upper LH2-enriched gel band, despite an approximate twofold increase in overall LH2 levels. This is consistent with the origin of this band from a pool of LH2 laid down early in development that is distinct from subsequently assembled LH2-only domains, forming the LH2 gel band.
Collapse
Affiliation(s)
- Kamil Woronowicz
- Department of Molecular Biology and Biochemistry, Rutgers University, Busch Campus, 604 Allison Road, Piscataway, NJ, 08854-8082, USA
| | | | | | | | | |
Collapse
|
47
|
Gros CP, Mohammed Aly S, El Ojaimi M, Barbe JM, Brisach F, Abd-El-Aziz AS, Guilard R, Harvey PD. Through space singlet-singlet and triplet-triplet energy transfers in cofacial bisporphyrins held by the carbazoyl spacer. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s1088424607000308] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The through space singlet-singlet and triplet-triplet energy transfers in cofacial bis(etio-porphyrins) rigidly held by the carbazoyl spacer were investigated. The studies on singlet-singlet transfer, which operates via a Förster mechanism, were performed using the zinc porphyrin and free base chromophores as energy donor and acceptor, respectively, while the investigation on triplet-triplet processes was performed using the palladium porphyrin, and the zinc porphyrin and free base chromophores as donor and acceptors, respectively. The rate for singlet-singlet transfer ( k ET ( singlet )) is unexpectedly slower than that reported for other similar, rigidly held bisporphyrins such as H 2( DPO ) Zn ( DPO = 4,6- bis [5-(2,8,13,17- tetraethyl -3,7,12,18- tetramethylporphyrinyl )] dibenzofuran ) and H 2( DPS ) Zn ( DPS = 4,6- bis [5-(2,8,13,17- tetraethyl -3,7,12,18- tetramethyl - porphyrinyl )] dibenzothiophene )). This slower rate is interpreted by the presence of the H -atom exactly located between the two meso-carbons in the dyads. The rates for triplet-triplet transfer are also slow but not too different from that recently reported for H 2( DPX ) Pd ( DPX = 4,5- bis [5-(2,8,13,17- tetraethyl -3,7,12,18- tetramethylporphyrinyl )]-9,9- dimethylxanthene ) and H 2( DPB ) Pd ( DPB = 1,8- bis [5-(2,8,13,17- tetraethyl -3,7,12,18- tetramethylporphyrinyl )] biphenylene ) at 77 K. In such cases, the slow rate is interpreted by a through space energy transfer pathway which operates according to a (small range) Dexter mechanism (since the Förster mechanism is inoperative for triplet-triplet processes). The k ET (triplet) increases at 298 K which is tentatively interpreted by favorable excited state distortions in the triplet state and fluxion processes which ease intramolecular transfers for these dyads in fluid solution in comparison with former glassy matrices.
Collapse
Affiliation(s)
- Claude P. Gros
- Contribution from the Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB, UMR 5260), Université de Bourgogne, 9 avenue A. Savary, 21078 Dijon, France
| | - Shawkat Mohammed Aly
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Maya El Ojaimi
- Contribution from the Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB, UMR 5260), Université de Bourgogne, 9 avenue A. Savary, 21078 Dijon, France
| | - Jean-Michel Barbe
- Contribution from the Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB, UMR 5260), Université de Bourgogne, 9 avenue A. Savary, 21078 Dijon, France
| | - Frédéric Brisach
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Alaa S. Abd-El-Aziz
- Department of Chemistry, University of British Columbia Okanagan, 3333 University Way, Kelowna, British Columbia, Canada
| | - Roger Guilard
- Contribution from the Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB, UMR 5260), Université de Bourgogne, 9 avenue A. Savary, 21078 Dijon, France
| | - Pierre D. Harvey
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| |
Collapse
|
48
|
Stahl AD, Crouch LI, Jones MR, van Stokkum I, van Grondelle R, Groot ML. Role of PufX in Photochemical Charge Separation in the RC-LH1 Complex from Rhodobacter sphaeroides: An Ultrafast Mid-IR Pump–Probe Investigation. J Phys Chem B 2011; 116:434-44. [DOI: 10.1021/jp206697k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Andreas D. Stahl
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Lucy I. Crouch
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Michael R. Jones
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Ivo van Stokkum
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Rienk van Grondelle
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Marie Louise Groot
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
49
|
Freiberg A, Rätsep M, Timpmann K. A comparative spectroscopic and kinetic study of photoexcitations in detergent-isolated and membrane-embedded LH2 light-harvesting complexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:1471-82. [PMID: 22172735 DOI: 10.1016/j.bbabio.2011.11.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 11/18/2011] [Accepted: 11/22/2011] [Indexed: 10/14/2022]
Abstract
Integral membrane proteins constitute more than third of the total number of proteins present in organisms. Solubilization with mild detergents is a common technique to study the structure, dynamics, and catalytic activity of these proteins in purified form. However beneficial the use of detergents may be for protein extraction, the membrane proteins are often denatured by detergent solubilization as a result of native lipid membrane interactions having been modified. Versatile investigations of the properties of membrane-embedded and detergent-isolated proteins are, therefore, required to evaluate the consequences of the solubilization procedure. Herein, the spectroscopic and kinetic fingerprints have been established that distinguish excitons in individual detergent-solubilized LH2 light-harvesting pigment-protein complexes from them in the membrane-embedded complexes of purple photosynthetic bacteria Rhodobacter sphaeroides. A wide arsenal of spectroscopic techniques in visible optical range that include conventional broadband absorption-fluorescence, fluorescence anisotropy excitation, spectrally selective hole burning and fluorescence line-narrowing, and transient absorption-fluorescence have been applied over broad temperature range between physiological and liquid He temperatures. Significant changes in energetics and dynamics of the antenna excitons upon self-assembly of the proteins into intracytoplasmic membranes are observed, analyzed, and discussed. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
Collapse
Affiliation(s)
- Arvi Freiberg
- Institute of Physics, University of Tartu, Tartu, Estonia.
| | | | | |
Collapse
|
50
|
Crouch LI, Jones MR. Cross-species investigation of the functions of the Rhodobacter PufX polypeptide and the composition of the RC-LH1 core complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:336-52. [PMID: 22079525 DOI: 10.1016/j.bbabio.2011.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 10/24/2011] [Accepted: 10/27/2011] [Indexed: 10/15/2022]
Abstract
In well-characterised species of the Rhodobacter (Rba.) genus of purple photosynthetic bacteria it is known that the photochemical reaction centre (RC) is intimately-associated with an encircling LH1 antenna pigment protein, and this LH1 antenna is prevented from completely surrounding the RC by a single copy of the PufX protein. In Rba. veldkampii only monomeric RC-LH1 complexes are assembled in the photosynthetic membrane, whereas in Rba. sphaeroides and Rba. blasticus a dimeric form is also assembled in which two RCs are surrounded by an S-shaped LH1 antenna. The present work established that dimeric RC-LH1 complexes can also be isolated from Rba. azotoformans and Rba. changlensis, but not from Rba. capsulatus or Rba. vinaykumarii. The compositions of the monomers and dimers isolated from these four species of Rhodobacter were similar to those of the well-characterised RC-LH1 complexes present in Rba. sphaeroides. Pigment proteins were also isolated from strains of Rba. sphaeroides expressing chimeric RC-LH1 complexes. Replacement of either the Rba. sphaeroides LH1 antenna or PufX with its counterpart from Rba. capsulatus led to a loss of the dimeric form of the RC-LH1 complex, but the monomeric form had a largely unaltered composition, even in strains in which the expression level of LH1 relative to the RC was reduced. The chimeric RC-LH1 complexes were also functional, supporting bacterial growth under photosynthetic conditions. The findings help to tease apart the different functions of PufX in different species of Rhodobacter, and a specific protein structural arrangement that allows PufX to fulfil these three functions is proposed.
Collapse
|