1
|
Bossaert M, Moreno AT, Peixoto A, Pillaire MJ, Chanut P, Frit P, Calsou P, Loparo JJ, Britton S. Identification of the main barriers to Ku accumulation in chromatin. Cell Rep 2024; 43:114538. [PMID: 39058590 PMCID: PMC11411529 DOI: 10.1016/j.celrep.2024.114538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/29/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Repair of DNA double-strand breaks by the non-homologous end-joining pathway is initiated by the binding of Ku to DNA ends. Multiple Ku proteins load onto linear DNAs in vitro. However, in cells, Ku loading is limited to ∼1-2 molecules per DNA end. The mechanisms enforcing this limit are currently unclear. Here, we show that the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs), but not its protein kinase activity, is required to prevent excessive Ku entry into chromatin. Ku accumulation is further restricted by two mechanisms: a neddylation/FBXL12-dependent process that actively removes loaded Ku molecules throughout the cell cycle and a CtIP/ATM-dependent mechanism that operates in S phase. Finally, we demonstrate that the misregulation of Ku loading leads to impaired transcription in the vicinity of DNA ends. Together, our data shed light on the multiple mechanisms operating to prevent Ku from invading chromatin and interfering with other DNA transactions.
Collapse
Affiliation(s)
- Madeleine Bossaert
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France; Equipe Labéllisée la Ligue contre le Cancer 2018
| | - Andrew T Moreno
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Antonio Peixoto
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France; Equipe Labéllisée la Ligue contre le Cancer 2018
| | - Marie-Jeanne Pillaire
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France; Equipe Labéllisée la Ligue contre le Cancer 2018
| | - Pauline Chanut
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France; Equipe Labéllisée la Ligue contre le Cancer 2018
| | - Philippe Frit
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France; Equipe Labéllisée la Ligue contre le Cancer 2018
| | - Patrick Calsou
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France; Equipe Labéllisée la Ligue contre le Cancer 2018.
| | - Joseph J Loparo
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Sébastien Britton
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France; Equipe Labéllisée la Ligue contre le Cancer 2018.
| |
Collapse
|
2
|
Bossaert M, Moreno A, Peixoto A, Pillaire MJ, Chanut P, Frit P, Calsou P, Loparo JJ, Britton S. Identification of the main barriers to Ku accumulation in chromatin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.574002. [PMID: 38260538 PMCID: PMC10802386 DOI: 10.1101/2024.01.03.574002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Repair of DNA double strand breaks by the non-homologous end-joining pathway is initiated by the binding of Ku to DNA ends. Given its high affinity for ends, multiple Ku proteins load onto linear DNAs in vitro. However, in cells, Ku loading is limited to ~1-2 molecules per DNA end. The mechanisms enforcing this limit are currently unknown. Here we show that the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs), but not its protein kinase activity, is required to prevent excessive Ku entry into chromatin. Ku accumulation is further restricted by two mechanisms: a neddylation/FBXL12-dependent process which actively removes loaded Ku molecules throughout the cell cycle and a CtIP/ATM-dependent mechanism which operates in S-phase. Finally, we demonstrate that the misregulation of Ku loading leads to impaired transcription in the vicinity of DNA ends. Together our data shed light on the multiple layers of coordinated mechanisms operating to prevent Ku from invading chromatin and interfering with other DNA transactions.
Collapse
Affiliation(s)
- Madeleine Bossaert
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
- Equipe labélisée la Ligue contre le Cancer 2018
| | - Andrew Moreno
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Antonio Peixoto
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
- Equipe labélisée la Ligue contre le Cancer 2018
| | - Marie-Jeanne Pillaire
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
- Equipe labélisée la Ligue contre le Cancer 2018
| | - Pauline Chanut
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
- Equipe labélisée la Ligue contre le Cancer 2018
| | - Philippe Frit
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
- Equipe labélisée la Ligue contre le Cancer 2018
| | - Patrick Calsou
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
- Equipe labélisée la Ligue contre le Cancer 2018
| | - Joseph John Loparo
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Sébastien Britton
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
- Equipe labélisée la Ligue contre le Cancer 2018
| |
Collapse
|
3
|
Lebedeva NA, Rechkunova NI, Agama K, Pommier Y, Lavrik OI. Interaction of DNA topoisomerase 1 with DNA intermediates and proteins of base excision repair. BIOCHEMISTRY (MOSCOW) 2010; 74:1278-84. [PMID: 19916945 DOI: 10.1134/s0006297909110157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The interaction of human recombinant DNA topoisomerase 1 (Top1) with linear and circular DNA structures containing a nick or short gap but lacking a specific Top1 recognition site was studied. The effect of key excision repair proteins on formation of the Top1 covalent adduct with the DNA repair intermediates was shown. Partial inhibition of the Top1-DNA-adduct formation upon addition of poly(ADP-ribose) polymerase 1 in the absence of NAD+ was shown, whereas in the presence of NAD+ formation of a high molecular weight product, most likely corresponding to poly(ADP)-ribosylated Top1-DNA adduct, was observed. The data show that the key base excision repair proteins can influence formation of suicide Top1-DNA adducts. Top1 was identified by immunoprecipitation in the bovine testis nuclear extract as the protein forming the main modification product with nick-containing DNA.
Collapse
Affiliation(s)
- N A Lebedeva
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | | | | | | | | |
Collapse
|
4
|
Brown PJ, Massey TE. In vivo treatment with 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) induces organ-specific alterations in in vitro repair of DNA pyridyloxobutylation. Mutat Res 2009; 663:15-21. [PMID: 19152800 DOI: 10.1016/j.mrfmmm.2008.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 12/18/2008] [Accepted: 12/19/2008] [Indexed: 05/27/2023]
Abstract
To investigate the mechanisms responsible for inter-organ differences in susceptibility to 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK)-induced carcinogenesis, the objectives were to compare DNA repair activities of extracts from mouse lung and liver towards NNK-induced pyridyloxobutyl (POB) damage to plasmid DNA, and to determine if and the mechanism by which in vivo NNK treatment of mice alters DNA repair. Repair activity of POB adducts was three times greater in mouse liver than in mouse lung (P<0.05). Repair activities of lung extracts from mice 4 or 24 h post-NNK treatment were 30-45% those of control (P<0.05). Conversely, POB adduct repair was 2-3 times higher in liver extracts from NNK treated mice than in controls (4 h, 24 h, P<0.05). NNK treatment also decreased incision of POB adducts by 92% (4 h, P<0.05) in lung and increased incision by 169% (24 h, P<0.05) in liver. NNK decreased immunoreactive levels of the incision protein RPA in lung (P<0.05) 4 h post-treatment but increased immunoreactive lung RPA and XPB after 24 h (P<0.05). In liver, levels of immunoreactive proteins, XPA, XPB and ERCC1 were increased after NNK treatment (24 h, P<0.05). Binding of XPA and XPB from liver extracts to POB adducts increased following NNK treatment, while binding of XPA and XPB from lung decreased (4 h, 24 h). These results suggest that lower incision activity of nucleotide excision repair and NNK-mediated alterations in levels and activities of key incision proteins contribute to the relative susceptibility of mouse lung to NNK-induced carcinogenesis.
Collapse
Affiliation(s)
- Pamela J Brown
- Department of Pharmacology and Toxicology, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
5
|
Activities of DNA-PK and Ku86, but not Ku70, may predict sensitivity to cisplatin in human gliomas. J Neurooncol 2008; 89:27-35. [PMID: 18415044 DOI: 10.1007/s11060-008-9592-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Accepted: 03/28/2008] [Indexed: 10/22/2022]
Abstract
OBJECTIVE This study was designed to investigate the relationship between activities of DNA-dependent protein kinase (DNA-PK), its subunits Ku86/Ku70, and sensitivities to cisplatin in human glioma samples. METHODS Thirty-six glioma samples from patients without prior treatment before neurosurgery were included in this study. The sensitivities to cisplatin as indicated by IC(50) (the inhibitory concentration leading to 50% cell death) were assessed by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenytetrazolium (MTT) assay; activities of DNA-PK and Ku70/Ku86 were analyzed by SigmaTECT DNA-Dependent Protein Kinase Assay System and Ku70/Ku86 DNA Repair Kit, respectively. RESULTS Sensitivities to cisplatin correlated with the activities of DNA-PK/Ku86, but not with the Ku70 or other clinical parameters such as age, sex of the patients, pathological gradings of the tumors, or tumor size. The levels of DNA-PK activities also associated with pathological grading and Ku86, but not with other clinical parameters. The tumors of the patients who failed to respond to cisplatin-based chemotherapy tended to display higher activity levels of DNA-PK and Ku86. Furthermore, platinum-based chemotherapy did not result in significant changes of DNA-PK/Ku activities in four matched samples before and after chemotherapy. CONCLUSION Pretreatment determination of DNA-PK/Ku86 activities might be helpful in identifying patients who will actually benefit from platinum-based treatment.
Collapse
|
6
|
Diggle CP, Bentley J, Knowles MA, Kiltie AE. Inhibition of double-strand break non-homologous end-joining by cisplatin adducts in human cell extracts. Nucleic Acids Res 2005; 33:2531-9. [PMID: 15872216 PMCID: PMC1088968 DOI: 10.1093/nar/gki528] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The effect of cis-diaminedichloroplatinum(II) (cisplatin) DNA damage on the repair of double-strand breaks by non-homologous end-joining (NHEJ) was determined using cell-free extracts. NHEJ was dramatically decreased when plasmid DNA was damaged to contain multiple types of DNA adducts, along the molecule and at the termini, by incubation of DNA with cisplatin; this was a cisplatin concentration-dependent effect. We investigated the effect a single GTG cisplatination site starting 10 bp from the DNA termini would have when surrounded by the regions of AT-rich DNA which were devoid of the major adduct target sequences. Cisplatination of a substrate containing short terminal 13-15 bp AT-rich sequences reduced NHEJ to a greater extent than that of a substrate with longer (31-33 bp) AT-rich sequences. However, cisplatination at the single GTG site within the AT sequence had no significant effect on NHEJ, owing to the influence of additional minor monoadduct and dinucleotide adduct sites within the AT-rich region and owing to the influence of cisplatination at sites upstream of the AT-rich regions. We then studied the effect on NHEJ of one cis-[Pt(NH3)2{d(GpTpG)-N7(1),-N7(3)} [abbreviated as 1,3-d(GpTpG)] cisplatin adduct in the entire DNA molecule, which is more reflective of the situation in vivo during concurrent chemoradiation. The presence of a single 1,3-d(GpTpG) cisplatin adduct 10 bases from each of the two DNA ends to be joined resulted in a small (30%) but significant decrease in NHEJ efficiency. This process, which was DNA-dependent protein kinase and Ku dependent, may in part explain the radiosensitizing effect of cisplatin administered during concurrent chemoradiation.
Collapse
Affiliation(s)
| | | | | | - A. E. Kiltie
- To whom correspondence should be addressed. Tel: +44 113 206 4908; Fax: +44 113 242 9886;
| |
Collapse
|
7
|
Calsou P, Delteil C, Frit P, Drouet J, Salles B. Coordinated assembly of Ku and p460 subunits of the DNA-dependent protein kinase on DNA ends is necessary for XRCC4-ligase IV recruitment. J Mol Biol 2003; 326:93-103. [PMID: 12547193 DOI: 10.1016/s0022-2836(02)01328-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Repair of DNA double-strand breaks by the non-homologous end-joining pathway (NHEJ) requires a minimal set of proteins including DNA-dependent protein kinase (DNA-PK), DNA-ligase IV and XRCC4 proteins. DNA-PK comprises Ku70/Ku80 heterodimer and the kinase subunit DNA-PKcs (p460). Here, by monitoring protein assembly from human nuclear cell extracts on DNA ends in vitro, we report that recruitment to DNA ends of the XRCC4-ligase IV complex responsible for the key ligation step is strictly dependent on the assembly of both the Ku and p460 components of DNA-PK to these ends. Based on co-immunoprecipitation experiments, we conclude that interactions of Ku and p460 with components of the XRCC4-ligase IV complex are mainly DNA-dependent. In addition, under p460 kinase permissive conditions, XRCC4 is detected at DNA ends in a phosphorylated form. This phosphorylation is DNA-PK-dependent. However, phosphorylation is dispensable for XRCC4-ligase IV loading to DNA ends since stable DNA-PK/XRCC4-ligase IV/DNA complexes are recovered in the presence of the kinase inhibitor wortmannin. These findings extend the current knowledge of the assembly of NHEJ repair proteins on DNA termini and substantiate the hypothesis of a scaffolding role of DNA-PK towards other components of the NHEJ DNA repair process.
Collapse
Affiliation(s)
- Patrick Calsou
- Institut de Pharmacologie et de Biologie Structurale, CNRS UMR 5089, 205 route de Narbonne, 31077, Cedex 4, Toulouse, France.
| | | | | | | | | |
Collapse
|
8
|
Hashimoto M, Donald CD, Yannone SM, Chen DJ, Roy R, Kow YW. A possible role of Ku in mediating sequential repair of closely opposed lesions. J Biol Chem 2001; 276:12827-31. [PMID: 11278783 DOI: 10.1074/jbc.m010906200] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
One of the hallmarks of ionizing radiation exposure is the formation of clustered damage that includes closely opposed lesions. We show that the Ku70/80 complex (Ku) has a role in the repair of closely opposed lesions in DNA. DNA containing a dihydrouracil (DHU) close to an opposing single strand break was used as a model substrate. It was found that Ku has no effect on the enzymatic activity of human endonuclease III when the substrate DNA contains only DHU. However, with DNA containing a DHU that is closely opposed to a single strand break, Ku inhibited the nicking activity of human endonuclease III as well as the amount of free double strand breaks induced by the enzyme. The inhibition on the formation of a free double strand break by Ku was found to be much greater than the inhibition of human endonuclease III-nicking activity by Ku. Furthermore, there was a concomitant increase in the formation of Ku-DNA complexes when endonuclease III was present. Similar results were also observed with Escherichia coli endonuclease III. These results suggest that Ku reduces the formation of endonuclease III-induced free double strand breaks by sequestering the double strand breaks formed as a Ku-DNA complex. In doing so, Ku helps to avoid the formation of the intermediary free double strand breaks, possibly helping to reduce the mutagenic event that might result from the misjoining of frank double strand breaks.
Collapse
Affiliation(s)
- M Hashimoto
- Department of Radiation Oncology, Emory University, Atlanta, Georgia 30335, USA
| | | | | | | | | | | |
Collapse
|
9
|
Frit P, Li RY, Arzel D, Salles B, Calsou P. Ku entry into DNA inhibits inward DNA transactions in vitro. J Biol Chem 2000; 275:35684-91. [PMID: 10945984 DOI: 10.1074/jbc.m004315200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Association of the DNA end-binding Ku70/Ku80 heterodimer with the 460-kDa serine/threonine kinase catalytic subunit forms the DNA-dependent protein kinase (DNA-PK) that is required for double-strand break repair by non-homologous recombination in mammalian cells. Recently, we have proposed a model in which the kinase activity is required for translocation of the DNA end-binding subunit Ku along the DNA helix when DNA-PK assembles on DNA ends. Here, we have questioned the consequences of Ku entry into DNA on local DNA processes by using human nuclear cell extracts incubated in the presence of linearized plasmid DNA. As two model processes, we have chosen nucleotide excision repair (NER) of UVC DNA lesions and transcription from viral promoters. We show that although NER efficiency is strongly reduced on linear DNA, it can be fully restored in the presence of DNA-PK inhibitors. Simultaneously, the amount of NER proteins bound to the UVC-damaged linear DNA is increased and the amount of Ku bound to the same DNA molecules is decreased. Similarly, the poor transcription efficiency exhibited by viral promoters on linear DNA is enhanced in the presence of DNA-PK inhibitor concentrations that prevent Ku entry into the DNA substrate molecule. The present results show that DNA-PK catalytic activity can regulate DNA transactions including transcription in the vicinity of double-strand breaks by controlling Ku entry into DNA.
Collapse
Affiliation(s)
- P Frit
- Institut de Pharmacologie et de Biologie Structurale, CNRS UMR 5089, 205 Route de Narbonne, 31077 Toulouse and the Société Française de Recherches et d'Investissements, Berganton, 33127 Saint Jean d'Illac, France
| | | | | | | | | |
Collapse
|
10
|
Canitrot Y, Hoffmann JS, Calsou P, Hayakawa H, Salles B, Cazaux C. Nucleotide excision repair DNA synthesis by excess DNA polymerase beta: a potential source of genetic instability in cancer cells. FASEB J 2000; 14:1765-74. [PMID: 10973926 DOI: 10.1096/fj.99-1063com] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The nucleotide excision repair pathway contributes to genetic stability by removing a wide range of DNA damage through an error-free reaction. When the lesion is located, the altered strand is incised on both sides of the lesion and a damaged oligonucleotide excised. A repair patch is then synthesized and the repaired strand is ligated. It is assumed that only DNA polymerases delta and/or epsilon participate to the repair DNA synthesis step. Using UV and cisplatin-modified DNA templates, we measured in vitro that extracts from cells overexpressing the error-prone DNA polymerase beta exhibited a five- to sixfold increase of the ultimate DNA synthesis activity compared with control extracts and demonstrated the specific involvement of Pol beta in this step. By using a 28 nt gapped, double-stranded DNA substrate mimicking the product of the incision step, we showed that Pol beta is able to catalyze strand displacement downstream of the gap. We discuss these data within the scope of a hypothesis previously presented proposing that excess error-prone Pol beta in cancer cells could perturb the well-defined specific functions of DNA polymerases during error-free DNA transactions.
Collapse
Affiliation(s)
- Y Canitrot
- Groupe 'Instabilité génétique et cancer', Groupe 'Toxico-résistance', Institut de Pharmacologie et de Biologie Structurale, CNRS UMR 5089, 31077 Toulouse cedex 4, France.
| | | | | | | | | | | |
Collapse
|
11
|
Ponting CP, Schultz J, Copley RR, Andrade MA, Bork P. Evolution of domain families. ADVANCES IN PROTEIN CHEMISTRY 2000; 54:185-244. [PMID: 10829229 DOI: 10.1016/s0065-3233(00)54007-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- C P Ponting
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | |
Collapse
|
12
|
Varga T, Szilágyi I, Szabó G. Single-strand breaks in agarose-embedded chromatin of nonapoptotic cells. Biochem Biophys Res Commun 1999; 264:388-94. [PMID: 10529374 DOI: 10.1006/bbrc.1999.1470] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Loop-size chromatin fragmentation frequently observed upon apoptotic cell death is thought to be initiated by ss nicks. Here we show that the agarose-embedded, deproteinized chromatin of normal, non-apoptotic murine and human cells, as well as yeast protoplasts, falls apart to 50-300 kb ss fragments upon heat denaturation, as revealed by urea-TAE field-inversion agarose gel electrophoresis resolving ss and ds fragments alike. These data were in line with S1digestion experiments. The nicks (gaps) observed are best explained either by enzymatic cleavages occurring upon cell lysis instantaneously or by preexisting discontinuities becoming manifest upon heat denaturation. These discontinuities go unnoticed in the usual nondenaturaing circumstances but seem to be inevitably present in any DNA preparation. The loop-size ds DNA fragmentation in apoptosis may be based on these pre-existing or "ready-to-go" (upon cell lysis) ss discontinuities of the normal cellular chromatin.
Collapse
Affiliation(s)
- T Varga
- Department of Biophysics and Cell Biology, University Medical School of Debrecen, 4012 Debrecen, Nagyerdei krt. 98, Hungary
| | | | | |
Collapse
|
13
|
Calsou P, Frit P, Humbert O, Muller C, Chen DJ, Salles B. The DNA-dependent protein kinase catalytic activity regulates DNA end processing by means of Ku entry into DNA. J Biol Chem 1999; 274:7848-56. [PMID: 10075677 DOI: 10.1074/jbc.274.12.7848] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The DNA-dependent protein kinase (DNA-PK) is required for double-strand break repair in mammalian cells. DNA-PK contains the heterodimer Ku and a 460-kDa serine/threonine kinase catalytic subunit (p460). Ku binds in vitro to DNA termini or other discontinuities in the DNA helix and is able to enter the DNA molecule by an ATP-independent process. It is clear from in vitro experiments that Ku stimulates the recruitment to DNA of p460 and activates the kinase activity toward DNA-binding protein substrates in the vicinity. Here, we have examined in human nuclear cell extracts the influence of the kinase catalytic activity on Ku binding to DNA. We demonstrate that, although Ku can enter DNA from free ends in the absence of p460 subunit, the kinase activity is required for Ku translocation along the DNA helix when the whole Ku/p460 assembles on DNA termini. When the kinase activity is impaired, DNA-PK including Ku and p460 is blocked at DNA ends and prevents their processing by either DNA polymerization, degradation, or ligation. The control of Ku entry into DNA by DNA-PK catalytic activity potentially represents an important regulation of DNA transactions at DNA termini.
Collapse
Affiliation(s)
- P Calsou
- Institut de Pharmacologie et de Biologie Structurale, CNRS UPR 9062, 205 route de Narbonne, F-31077 Toulouse Cedex, France.
| | | | | | | | | | | |
Collapse
|
14
|
Salles B, Rodrigo G, Li RY, Calsou P. DNA damage excision repair in microplate wells with chemiluminescence detection: development and perspectives. Biochimie 1999; 81:53-8. [PMID: 10214910 DOI: 10.1016/s0300-9084(99)80038-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of in vitro repair assays with human cell-free extracts led to new insights on the mechanism of excision of DNA damage which consists of incision/excision and repair synthesis/ligation. We have adapted the repair synthesis reaction with cells extracts incubated with damaged plasmid DNA performed in liquid phase to solid phase by DNA adsorption into microplate wells. Since cells extracts are repair competent in base excision and nucleotide excision repair, all types of substrate DNA lesions were detected with chemiluminescence measurement after incorporation of biotin-deoxynucleotide during the repair synthesis step. Derivatives of our initial 3D-assay (DNA damage detection) have been set up to: i) screen antioxidative compounds and NER inhibitors; ii) capture genomic DNA (3D(Cell)-assay) that allows detection of alkylated base and consequently determines the kinetics of the cellular repair; and iii) immunodetect the repair proteins in an ELISA reaction (3D(Rec)-assay). The 3D derived assays are presented and discussed.
Collapse
Affiliation(s)
- B Salles
- Institut de Pharmacologie et de Biologie Structurale, CNRS UPR 9062, Toulouse, France
| | | | | | | |
Collapse
|