1
|
Pandey SK, Melichercik M, Řeha D, Ettrich RH, Carey J. Conserved Dynamic Mechanism of Allosteric Response to L-arg in Divergent Bacterial Arginine Repressors. Molecules 2020; 25:molecules25092247. [PMID: 32397647 PMCID: PMC7248756 DOI: 10.3390/molecules25092247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 11/23/2022] Open
Abstract
Hexameric arginine repressor, ArgR, is the feedback regulator of bacterial L-arginine regulons, and sensor of L-arg that controls transcription of genes for its synthesis and catabolism. Although ArgR function, as well as its secondary, tertiary, and quaternary structures, is essentially the same in E. coli and B. subtilis, the two proteins differ significantly in sequence, including residues implicated in the response to L-arg. Molecular dynamics simulations are used here to evaluate the behavior of intact B. subtilis ArgR with and without L-arg, and are compared with prior MD results for a domain fragment of E. coli ArgR. Relative to its crystal structure, B. subtilis ArgR in absence of L-arg undergoes a large-scale rotational shift of its trimeric subassemblies that is very similar to that observed in the E. coli protein, but the residues driving rotation have distinct secondary and tertiary structural locations, and a key residue that drives rotation in E. coli is missing in B. subtilis. The similarity of trimer rotation despite different driving residues suggests that a rotational shift between trimers is integral to ArgR function. This conclusion is supported by phylogenetic analysis of distant ArgR homologs reported here that indicates at least three major groups characterized by distinct sequence motifs but predicted to undergo a common rotational transition. The dynamic consequences of L-arg binding for transcriptional activation of intact ArgR are evaluated here for the first time in two-microsecond simulations of B. subtilis ArgR. L-arg binding to intact B. subtilis ArgR causes a significant further shift in the angle of rotation between trimers that causes the N-terminal DNA-binding domains lose their interactions with the C-terminal domains, and is likely the first step toward adopting DNA-binding-competent conformations. The results aid interpretation of crystal structures of ArgR and ArgR-DNA complexes.
Collapse
Affiliation(s)
- Saurabh Kumar Pandey
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Czech Academy of Sciences, 37333 Nove Hrady, Czechia; (S.K.P.); (M.M.); (D.Ř.)
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics, and Informatics, Comenius University in Bratislava, 84248 Bratislava, Slovakia
- Faculty of Sciences, University of South Bohemia, 37005 Ceske Budejovice, Czechia
| | - Milan Melichercik
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Czech Academy of Sciences, 37333 Nove Hrady, Czechia; (S.K.P.); (M.M.); (D.Ř.)
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics, and Informatics, Comenius University in Bratislava, 84248 Bratislava, Slovakia
| | - David Řeha
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Czech Academy of Sciences, 37333 Nove Hrady, Czechia; (S.K.P.); (M.M.); (D.Ř.)
- Faculty of Sciences, University of South Bohemia, 37005 Ceske Budejovice, Czechia
| | - Rüdiger H. Ettrich
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Czech Academy of Sciences, 37333 Nove Hrady, Czechia; (S.K.P.); (M.M.); (D.Ř.)
- College of Biomedical Sciences, Larkin University, Miami, FL 33169, USA
- Department of Cellular Biology & Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
- Correspondence: (R.H.E.); (J.C.); Tel.: +1-954-682-8347 (R.H.E.); +1-609-258-1631 (J.C.)
| | - Jannette Carey
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Czech Academy of Sciences, 37333 Nove Hrady, Czechia; (S.K.P.); (M.M.); (D.Ř.)
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
- Correspondence: (R.H.E.); (J.C.); Tel.: +1-954-682-8347 (R.H.E.); +1-609-258-1631 (J.C.)
| |
Collapse
|
2
|
Mariutti RB, Hernández-González JE, Nascimento AFZ, de Morais MAB, Murakami MT, Carareto CMA, Arni RK. A single P115Q mutation modulates specificity in the Corynebacterium pseudotuberculosis arginine repressor. Biochim Biophys Acta Gen Subj 2020; 1864:129597. [PMID: 32156582 DOI: 10.1016/j.bbagen.2020.129597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 11/28/2022]
Abstract
The arginine repressor (ArgR) regulates the expression of genes involved in arginine biosynthesis. Upon attaining a threshold concentration of arginine in the cytoplasm, the trimeric C-terminal domain of ArgR binds three arginines in a shallow surface cleft and subsequently hexamerizes forming a dimer of trimers containing six Arg co-repressor molecules which are buried at the subunit interfaces. The N-terminal domains of this complex bind to the DNA promoter thereby interrupting the transcription of the genes related to Arg biosynthesis. The crystal structures of the wild type and mutant Pro115Gln ArgR from Corynebacterium pseudotuberculosis determined at 1.7 Å demonstrate that a single amino acid substitution switches co-repressor specificity from Tyr to Arg. Molecular dynamics simulations indicate that the first step, i.e., the binding of the co-repressor, occurs in the trimeric state and that Pro115Gln ArgR preferentially binds Arg. It was also shown that, in Pro115 ArgR hexamers, the concomitant binding of sodium ions shifts selectivity to Tyr. Structural data combined with phylogenetic analyses of ArgR from C. pseudotuberculosis suggest that substitutions in the binding pocket at position 115 may alter its specificity for amino acids and that the length of the protein interdomain linker can provide further functional flexibility. These results support the existence of alternative ArgR regulatory mechanisms in this pathogenic bacterium.
Collapse
Affiliation(s)
- Ricardo B Mariutti
- Multiuser Center for Biomolecular Innovation, IBILCE/UNESP, São José do Rio Preto, SP, Brazil.
| | | | - Andrey F Z Nascimento
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Mariana A B de Morais
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Mario T Murakami
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Claudia M A Carareto
- Laboratory of Molecular Evolution IBILCE/UNESP, São José do Rio Preto, SP, Brazil
| | - Raghuvir K Arni
- Multiuser Center for Biomolecular Innovation, IBILCE/UNESP, São José do Rio Preto, SP, Brazil; Department of Physics, IBILCE/UNESP, São José do Rio Preto, SP, Brazil
| |
Collapse
|
3
|
Mariutti RB, Ullah A, Araujo GC, Murakami MT, Arni RK. Tyrosine binding and promiscuity in the arginine repressor from the pathogenic bacterium Corynebacterium pseudotuberculosis. Biochem Biophys Res Commun 2016; 475:350-5. [PMID: 27233609 DOI: 10.1016/j.bbrc.2016.05.091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 05/19/2016] [Indexed: 11/17/2022]
Abstract
The arginine repressor (ArgR) regulates arginine biosynthesis in a number of microorganisms and consists of two domains interlinked by a short peptide; the N-terminal domain is involved in DNA binding and the C-terminal domain binds arginine and forms a hexamer made-up of a dimer of trimers. The crystal structure of the C-terminal domain of ArgR from the pathogenic Corynebacterium pseudotuberculosis determined at 1.9 Å resolution contains a tightly bound tyrosine at the arginine-binding site indicating hitherto unobserved promiscuity. Structural analysis of the binding pocket displays clear molecular adaptations to accommodate tyrosine binding suggesting the possible existence of an alternative regulatory process in this pathogenic bacterium.
Collapse
Affiliation(s)
- Ricardo Barros Mariutti
- Multiuser Center for Biomolecular Innovation, IBILCE/UNESP, São José do Rio Preto, SP, 15054-000, Brazil.
| | - Anwar Ullah
- Multiuser Center for Biomolecular Innovation, IBILCE/UNESP, São José do Rio Preto, SP, 15054-000, Brazil; Department of Biosciences, COMSATS Institute of Information Technology, Park Road, Islamabad 45550, Pakistan
| | | | - Mario Tyago Murakami
- Biosciences National Laboratory (LNBio), National Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-100, Brazil
| | - Raghuvir Krishnaswamy Arni
- Multiuser Center for Biomolecular Innovation, IBILCE/UNESP, São José do Rio Preto, SP, 15054-000, Brazil; Department of Physics, IBILCE/UNESP, São José do Rio Preto, SP, 15054-000, Brazil.
| |
Collapse
|
4
|
Structural Analysis and Insights into the Oligomeric State of an Arginine-Dependent Transcriptional Regulator from Bacillus halodurans. PLoS One 2016; 11:e0155396. [PMID: 27171430 PMCID: PMC4865122 DOI: 10.1371/journal.pone.0155396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 04/06/2016] [Indexed: 11/19/2022] Open
Abstract
The arginine repressor (ArgR) is an arginine-dependent transcription factor that regulates the expression of genes encoding proteins involved in the arginine biosynthesis and catabolic pathways. ArgR is a functional homolog of the arginine-dependent repressor/activator AhrC from Bacillus subtilis, and belongs to the ArgR/AhrC family of transcriptional regulators. In this research, we determined the structure of the ArgR (Bh2777) from Bacillus halodurans at 2.41 Å resolution by X-ray crystallography. The ArgR from B. halodurans appeared to be a trimer in a size exclusion column and in the crystal structure. However, it formed a hexamer in the presence of L-arginine in multi-angle light scattering (MALS) studies, indicating the oligomerization state was dependent on the presence of L-arginine. The trimeric structure showed that the C-terminal domains form the core, which was made by inter-subunit interactions mainly through hydrophobic contacts, while the N-terminal domains containing a winged helix-turn-helix DNA binding motif were arranged around the periphery. The arrangement of trimeric structure in the B. halodurans ArgR was different from those of other ArgR homologs previously reported. We finally showed that the B. halodurans ArgR has an arginine-dependent DNA binding property by an electrophoretic mobility shift assay.
Collapse
|
5
|
Abstract
Early investigations on arginine biosynthesis brought to light basic features of metabolic regulation. The most significant advances of the last 10 to 15 years concern the arginine repressor, its structure and mode of action in both E. coli and Salmonella typhimurium, the sequence analysis of all arg structural genes in E. coli and Salmonella typhimurium, the resulting evolutionary inferences, and the dual regulation of the carAB operon. This review provides an overall picture of the pathways, their interconnections, the regulatory circuits involved, and the resulting interferences between arginine and polyamine biosynthesis. Carbamoylphosphate is a precursor common to arginine and the pyrimidines. In both Escherichia coli and Salmonella enterica serovar Typhimurium, it is produced by a single synthetase, carbamoylphosphate synthetase (CPSase), with glutamine as the physiological amino group donor. This situation contrasts with the existence of separate enzymes specific for arginine and pyrimidine biosynthesis in Bacillus subtilis and fungi. Polyamine biosynthesis has been particularly well studied in E. coli, and the cognate genes have been identified in the Salmonella genome as well, including those involved in transport functions. The review summarizes what is known about the enzymes involved in the arginine pathway of E. coli and S. enterica serovar Typhimurium; homologous genes were identified in both organisms, except argF (encoding a supplementary OTCase), which is lacking in Salmonella. Several examples of putative enzyme recruitment (homologous enzymes performing analogous functions) are also presented.
Collapse
|
6
|
Cho S, Cho YB, Kang TJ, Kim SC, Palsson B, Cho BK. The architecture of ArgR-DNA complexes at the genome-scale in Escherichia coli. Nucleic Acids Res 2015; 43:3079-88. [PMID: 25735747 PMCID: PMC4381063 DOI: 10.1093/nar/gkv150] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 02/13/2015] [Indexed: 01/26/2023] Open
Abstract
DNA-binding motifs that are recognized by transcription factors (TFs) have been well studied; however, challenges remain in determining the in vivo architecture of TF-DNA complexes on a genome-scale. Here, we determined the in vivo architecture of Escherichia coli arginine repressor (ArgR)-DNA complexes using high-throughput sequencing of exonuclease-treated chromatin-immunoprecipitated DNA (ChIP-exo). The ChIP-exo has a unique peak-pair pattern indicating 5′ and 3′ ends of ArgR-binding region. We identified 62 ArgR-binding loci, which were classified into three groups, comprising single, double and triple peak-pairs. Each peak-pair has a unique 93 base pair (bp)-long (±2 bp) ArgR-binding sequence containing two ARG boxes (39 bp) and residual sequences. Moreover, the three ArgR-binding modes defined by the position of the two ARG boxes indicate that DNA bends centered between the pair of ARG boxes facilitate the non-specific contacts between ArgR subunits and the residual sequences. Additionally, our approach may also reveal other fundamental structural features of TF-DNA interactions that have implications for studying genome-scale transcriptional regulatory networks.
Collapse
Affiliation(s)
- Suhyung Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | - Yoo-Bok Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | - Taek Jin Kang
- Department of Chemical and Biochemical Engineering, Dongguk University-Seoul, Seoul 100-715, Republic of Korea
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | - Bernhard Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| |
Collapse
|
7
|
Theron G, Reid SJ. ArgR-promoter interactions inCorynebacterium glutamicumarginine biosynthesis. Biotechnol Appl Biochem 2011. [DOI: 10.1002/bab.15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Sénéchal H, Delesques J, Szatmari G. Escherichia coli ArgR mutants defective in cer/Xer recombination, but not in DNA binding. FEMS Microbiol Lett 2010; 305:162-9. [PMID: 20659168 DOI: 10.1111/j.1574-6968.2010.01921.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The Escherichia coli arginine repressor (ArgR) is an L-arginine-dependent DNA-binding protein that controls the expression of the arginine biosynthetic genes and is required as an accessory factor for Xer site-specific recombination at cer and related recombination sites in plasmids. We used the technique of pentapeptide scanning mutagenesis to isolate a series of ArgR mutants that were considerably reduced in cer recombination, but were still able to repress an argA::lacZ fusion. DNA sequence analysis showed that all of the mutants mapped to the same nucleotide, resulting in a five amino acid insertion between residues 149 and 150 of ArgR, corresponding to the end of the alpha6 helix. A truncated ArgR containing a stop codon at residue 150 displayed the same phenotype as the protein with the five amino acid insertion, and both mutants displayed sequence-specific DNA-binding activity that was L-arginine dependent. These results show that the C-terminus of ArgR is more important in cer/Xer site-specific recombination than in DNA binding.
Collapse
Affiliation(s)
- Hélène Sénéchal
- Département de Biochimie, Université de Montréal, Montréal, QC, Canada
| | | | | |
Collapse
|
9
|
Garnett JA, Marincs F, Baumberg S, Stockley PG, Phillips SE. Structure and Function of the Arginine Repressor-Operator Complex from Bacillus subtilis. J Mol Biol 2008; 379:284-98. [DOI: 10.1016/j.jmb.2008.03.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 02/29/2008] [Accepted: 03/03/2008] [Indexed: 10/22/2022]
|
10
|
Fujiwara K, Tsubouchi T, Kuzuyama T, Nishiyama M. Involvement of the arginine repressor in lysine biosynthesis of Thermus thermophilus. Microbiology (Reading) 2006; 152:3585-3594. [PMID: 17159211 DOI: 10.1099/mic.0.29222-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lysine biosynthesis of Thermus thermophilus proceeds in a similar way to arginine biosynthesis, and some lysine biosynthetic enzymes from T. thermophilus so far investigated have the potential to function in arginine biosynthesis. These observations suggest that arginine might regulate the expression of genes for lysine biosynthesis. To test this hypothesis, the argR gene encoding the regulator of arginine biosynthesis was cloned from T. thermophilus and its function in lysine biosynthesis was analysed. The addition of arginine to the culture medium inhibited the growth of an arginase gene knockout mutant of T. thermophilus, which presumably accumulates arginine inside the cells. Arginine-dependent growth inhibition was not alleviated by the addition of ornithine, which is a biosynthetic intermediate of arginine and serves as a peptidoglycan component of the cell wall in T. thermophilus. However, the growth inhibition was cancelled either by the simultaneous addition of lysine and ornithine or by a knockout of the argR gene, suggesting the involvement of argR in regulation of lysine biosynthesis in T. thermophilus. Electrophoretic mobility shift assay and DNase I footprinting revealed that the ArgR protein specifically binds to the promoter region of the major lysine biosynthetic gene cluster. Furthermore, an α-galactosidase reporter assay for this promoter indicated that arginine repressed the promoter in an argR-dependent manner. These results indicate that lysine biosynthesis is regulated by arginine in T. thermophilus.
Collapse
Affiliation(s)
- Kei Fujiwara
- Biotechnology Research Center, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Taishi Tsubouchi
- Biotechnology Research Center, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tomohisa Kuzuyama
- Biotechnology Research Center, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Makoto Nishiyama
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Biotechnology Research Center, the University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
11
|
Gupta A, Varner JD, Maranas CD. Large-scale inference of the transcriptional regulation of Bacillus subtilis. Comput Chem Eng 2005. [DOI: 10.1016/j.compchemeng.2004.08.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Samalíková M, Carey J, Grandori R. Assembly of the hexameric Escherichia coli arginine repressor investigated by nano-electrospray ionization time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2005; 19:2549-52. [PMID: 16106344 DOI: 10.1002/rcm.2094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The arginine repressor (ArgR) from Escherichia coli regulates genes for L-arginine metabolism and is a required recombination factor for colE1 plasmid replication. Both functions require binding of L-arginine to the protein. In this work, nano-electrospray ionization time-of-flight mass spectrometry (nano-ESI-TOFMS) is used to study conformational and oligomeric states of intact ArgR and its isolated structural domains. In agreement with X-ray diffraction studies, it is shown that ArgR oligomerizes to form hexamers in both the presence and absence of L-arginine, and the basic unit of oligomerization appears to be the trimer. Higher-order assembly into dodecamers is also detected. The isolated C-terminal domain is found to associate into trimers and hexamers whereas the N-terminal domain is detected in its monomeric form. The observed species distributions suggest a role for the N-terminal domain in hexamer stabilization.
Collapse
Affiliation(s)
- Mária Samalíková
- Institute of Organic Chemistry, Johannes Kepler University, Altenbergerstrasse 69, 4040 Linz, Austria
| | | | | |
Collapse
|
13
|
Nicoloff H, Arsène-Ploetze F, Malandain C, Kleerebezem M, Bringel F. Two arginine repressors regulate arginine biosynthesis in Lactobacillus plantarum. J Bacteriol 2004; 186:6059-69. [PMID: 15342575 PMCID: PMC515133 DOI: 10.1128/jb.186.18.6059-6069.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2004] [Accepted: 06/09/2004] [Indexed: 11/20/2022] Open
Abstract
The repression of the carAB operon encoding carbamoyl phosphate synthase leads to Lactobacillus plantarum FB331 growth inhibition in the presence of arginine. This phenotype was used in a positive screening to select spontaneous mutants deregulated in the arginine biosynthesis pathway. Fourteen mutants were genetically characterized for constitutive arginine production. Mutations were located either in one of the arginine repressor genes (argR1 or argR2) present in L. plantarum or in a putative ARG operator in the intergenic region of the bipolar carAB-argCJBDF operons involved in arginine biosynthesis. Although the presence of two ArgR regulators is commonly found in gram-positive bacteria, only single arginine repressors have so far been well studied in Escherichia coli or Bacillus subtilis. In L. plantarum, arginine repression was abolished when ArgR1 or ArgR2 was mutated in the DNA binding domain, or in the oligomerization domain or when an A123D mutation occurred in ArgR1. A123, equivalent to the conserved residue A124 in E. coli ArgR involved in arginine binding, was different in the wild-type ArgR2. Thus, corepressor binding sites may be different in ArgR1 and ArgR2, which have only 35% identical residues. Other mutants harbored wild-type argR genes, and 20 mutants have lost their ability to grow in normal air without carbon dioxide enrichment; this revealed a link between arginine biosynthesis and a still-unknown CO2-dependent metabolic pathway. In many gram-positive bacteria, the expression and interaction of different ArgR-like proteins may imply a complex regulatory network in response to environmental stimuli.
Collapse
MESH Headings
- Adaptation, Physiological
- Amino Acid Sequence
- Amino Acid Substitution/genetics
- Amino Acid Substitution/physiology
- Arginine/biosynthesis
- Bacillus subtilis/genetics
- Bacillus subtilis/physiology
- Bacterial Proteins/genetics
- Bacterial Proteins/physiology
- Base Sequence
- Carbon Dioxide/metabolism
- DNA Mutational Analysis
- DNA, Bacterial/chemistry
- DNA, Intergenic
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Escherichia coli/genetics
- Escherichia coli/physiology
- Escherichia coli Proteins
- Gene Expression Regulation, Bacterial/genetics
- Gene Expression Regulation, Bacterial/physiology
- Genes, Bacterial
- Lactobacillus/genetics
- Lactobacillus/metabolism
- Molecular Sequence Data
- Mutation
- Mutation, Missense/genetics
- Mutation, Missense/physiology
- Operator Regions, Genetic
- Operon
- Protein Structure, Tertiary/genetics
- Protein Structure, Tertiary/physiology
- Repressor Proteins/genetics
- Repressor Proteins/physiology
- Sequence Alignment
Collapse
Affiliation(s)
- Hervé Nicoloff
- Laboratoire de Dynamique, Evolution et Expression de Génomes de Microorganismes, Université Louis Pasteur/CNRS FRE 2326, 28 rue Goethe, 67083 Strasbourg, France
| | | | | | | | | |
Collapse
|
14
|
Morin A, Huysveld N, Braun F, Dimova D, Sakanyan V, Charlier D. Hyperthermophilic Thermotoga arginine repressor binding to full-length cognate and heterologous arginine operators and to half-site targets. J Mol Biol 2003; 332:537-53. [PMID: 12963366 DOI: 10.1016/s0022-2836(03)00951-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The degree of sequence conservation of arginine repressor proteins (ArgR) and of the cognate operators (tandem pairs of 18 bp imperfect palindromes, ARG boxes) in evolutionarily distant bacteria is unusually high, and the global mechanism of ArgR-mediated regulation appears to be similar. However, here we demonstrate that the arginine repressor from the hyperthermophilic bacterium Thermotoga neapolitana (ArgR(Tn)) exhibits characteristics that clearly distinguish this regulator from the well-studied homologues from Escherichia coli, Bacillus subtilis and B.stearothermophilus. A high-resolution contact map of ArgR(Tn) binding to the operator of the biosynthetic argGHCJBD operon of Thermotoga maritima indicates that ArgR(Tn) establishes all of its strong contacts with a single ARG box-like sequence of the operator only. Protein array and electrophoretic mobility-shift data demonstrate that ArgR(Tn) has a remarkable capacity to bind to arginine operators from Gram-negative and Gram-positive bacteria, and to single ARG box-bearing targets. Moreover, the overall effect of L-arginine on the apparent K(d) of ArgR(Tn) binding to various cognate and heterologous operator fragments was minor with respect to that observed with diverse bacterial arginine repressors. We demonstrate that this unusual behaviour for an ArgR protein can, to a large extent, be ascribed to the presence of a serine residue at position 107 of ArgR(Tn), instead of the highly conserved glutamine that is involved in arginine binding in the E.coli repressor. Consistent with these results, ArR(Tn) was found to behave as a superrepressor in E.coli, inhibiting growth in minimal medium, even supplemented with arginine, whereas similar constructs bearing the S107Q mutant allele did not inhibit growth. We assume that ArgR(Tn), owing to its broad target specificity and its ability to bind single ARG box sequences, might play a more general regulatory role in Thermotoga
Collapse
Affiliation(s)
- Amélie Morin
- Laboratoire de Biotechnologie, FRE CNRS 2230 Unité Biocatalyse, Faculté des Sciences et Techniques, Université de Nantes, 2 rue de la Houssinière, 44322, Nantes, France
| | | | | | | | | | | |
Collapse
|
15
|
Harding SE, Tombs MP. The analytical ultracentrifuge as a probe for interface transport phenomena. Biotechnol Genet Eng Rev 2003; 19:55-69. [PMID: 12520871 DOI: 10.1080/02648725.2002.10648022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Stephen E Harding
- NCMH Physical Biochemistry Laboratory, University of Nottingham, School of Biosciences, Sutton Bonington LE12 5RD, UK.
| | | |
Collapse
|
16
|
Abstract
The accessory genes of Staphylococcus aureus, including those involved in pathogenesis, are controlled by a complex regulatory network that includes at least four two-component systems, one of which, agr, is a quorum sensor, an alternative sigma factor and a large set of transcription factors, including at least two of the superantigen genes, tst and seb. These regulatory genes are hypothesized to act in a time- and population density-dependent manner to integrate signals received from the external environment with the internal metabolic machinery of the cell, in order to achieve the production of particular subsets of accessory/virulence factors at the time and in quantities that are appropriate to the needs of the organism at any given location. From the standpoint of pathogenesis, the regulatory agenda is presumably tuned to particular sites in the host organism. To address this hypothesis, it will be necessary to understand in considerable detail the regulatory interactions among the organism's numerous controlling systems. This review is an attempt to integrate a large body of data into the beginnings of a model that will hopefully help to guide research towards a full-scale test.
Collapse
Affiliation(s)
- Richard P Novick
- Program in Molecular Pathogenesis, Skirball Institute, Department of Microbiology, New York University School of Medicine, 10016, USA.
| |
Collapse
|
17
|
Snapyan M, Lecocq M, Guével L, Arnaud MC, Ghochikyan A, Sakanyan V. Dissecting DNA-protein and protein-protein interactions involved in bacterial transcriptional regulation by a sensitive protein array method combining a near-infrared fluorescence detection. Proteomics 2003; 3:647-57. [PMID: 12748944 DOI: 10.1002/pmic.200300390] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The protein array methodology is used to study DNA-protein and protein-protein interactions governing gene expression from the Bacillus stearothermophilus PargCo promoter-operator region. Using probes labelled with near-infrared fluorescence dyes with exitation characteristics close to 700 or 800 nm, it is possible to detect signals from proteins (purified or non-purified in Escherichia coli cell extracts) immobilised on a nitrocellulose membrane with a high sensitivity (almost 12 amol of a spotted protein for protein-DNA interactions). Protein array data are confirmed by other methods indicating that molecular interactions of the order 10(-7) M can be monitored with the proposed protein array approach. We show that the PargCo region is a target for binding at least three types of regulatory proteins, ArgR repressors from thermophilic bacteria, the E. coli RNA polymerase alpha subunit and cyclic AMP binding protein CRP. We also demonstrate that the high strength of the PargC promoter is related to an upstream element that binds to the E. coli RNA polymerase alpha subunit.
Collapse
Affiliation(s)
- Marina Snapyan
- Laboratoire de Biotechnologie, FRE-CNRS 2230 Biocatalyse, Université de Nantes, Nantes, France
| | | | | | | | | | | |
Collapse
|
18
|
Ghochikyan A, Karaivanova IM, Lecocq M, Vusio P, Arnaud MC, Snapyan M, Weigel P, Guével L, Buckle M, Sakanyan V. Arginine operator binding by heterologous and chimeric ArgR repressors from Escherichia coli and Bacillus stearothermophilus. J Bacteriol 2002; 184:6602-14. [PMID: 12426349 PMCID: PMC135427 DOI: 10.1128/jb.184.23.6602-6614.2002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2002] [Accepted: 08/27/2002] [Indexed: 11/20/2022] Open
Abstract
Bacillus stearothermophilus ArgR binds efficiently to the Escherichia coli carAB operator, whereas the E. coli repressor binds very poorly to the argCo operator of B. stearothermophilus. In order to elucidate this contradictory behavior between ArgRs, we constructed chimeric proteins by swapping N-terminal DNA-binding and C-terminal oligomerization domains or by exchanging the linker peptide. Chimeras carrying the E. coli DNA-binding domain and the B. stearothermophilus oligomerization domain showed sequence-nonspecific rather than sequence-specific interactions with arg operators. Chimeras carrying the B. stearothermophilus DNA-binding domain and E. coli oligomerization domain exhibited a high DNA-binding affinity for the B. stearothermophilus argCo and E. coli carAB operators and repressed the reporter-gene transcription from the B. stearothermophilus PargCo control region in vitro; arginine had no effect on, and indeed even decreased, their DNA-binding affinity. With the protein array method, we showed that the wild-type B. stearothermophilus ArgR and derivatives of it containing only the exchanged linker from E. coli ArgR or carrying the B. stearothermophilus DNA-binding domain along with the linker and the alpha4 regions were able to bind argCo containing the single Arg box. This binding was weaker than binding to the two-box operator but was no longer arginine dependent. Several lines of observations indicate that the alpha4 helix in the oligomerization domain and the linker peptide can contribute to the recognition of single or double Arg boxes and therefore to the operator DNA-binding specificity in similar but not identical ArgR repressors from two distant bacteria.
Collapse
Affiliation(s)
- Anahit Ghochikyan
- Laboratoire de Biotechnologie, FRE CNRS 2230, Unité Biocatalyse, Faculté des Sciences et des Techniques, Université de Nantes, 44322 Nantes. IFR 26, INSERM, 44035 Nantes, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Chakraborty S, Chakraborty N, Jain D, Salunke DM, Datta A. Active site geometry of oxalate decarboxylase from Flammulina velutipes: Role of histidine-coordinated manganese in substrate recognition. Protein Sci 2002; 11:2138-47. [PMID: 12192069 PMCID: PMC2373591 DOI: 10.1110/ps.0206802] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Oxalate decarboxylase (OXDC) from the wood-rotting fungus Flammulina velutipes, which catalyzes the conversion of oxalate to formic acid and CO(2) in a single-step reaction, is a duplicated double-domain germin family enzyme. It has agricultural as well as therapeutic importance. We reported earlier the purification and molecular cloning of OXDC. Knowledge-based modeling of the enzyme reveals a beta-barrel core in each of the two domains organized in the hexameric state. A cluster of three histidines suitably juxtaposed to coordinate a divalent metal ion exists in both the domains. Involvement of the two histidine clusters in the catalytic mechanism of the enzyme, possibly through coordination of a metal cofactor, has been hypothesized because all histidine knockout mutants showed total loss of decarboxylase activity. The atomic absorption spectroscopy analysis showed that OXDC contains Mn(2+) at up to 2.5 atoms per subunit. Docking of the oxalate in the active site indicates a similar electrostatic environment around the substrate-binding site in the two domains. We suggest that the histidine coordinated manganese is critical for substrate recognition and is directly involved in the catalysis of the enzyme.
Collapse
Affiliation(s)
- Subhra Chakraborty
- National Center for Plant Genome Research, Jawaharlal Nehru University Campus, New Delhi 110067, India
| | | | | | | | | |
Collapse
|
20
|
Song H, Wang H, Gigot D, Dimova D, Sakanyan V, Glansdorff N, Charlier D. Transcription regulation in thermophilic bacteria: high resolution contact probing of Bacillus stearothermophilus and Thermotoga neapolitana arginine repressor-operator interactions. J Mol Biol 2002; 315:255-74. [PMID: 11786010 DOI: 10.1006/jmbi.2001.5236] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Arginine-mediated regulation is remarkably well conserved in very divergent bacteria, and shows a number of unusual features that distinguish arginine regulation from other transcriptional control mechanisms. The arginine repressor subunit consists of a basic N-terminal DNA-binding domain, which belongs to the winged helix-turn-helix family, connected through a flexible linker to an acidic C-terminal domain responsible for binding of arginine and assembly of the high-affinity holohexamer, which binds an approximately 40 bp target. To gain further insight into the molecular details of arginine repressor-operator interactions we have established a high resolution contact map of the argC operator from Bacillus stearothermophilus, a moderate thermophilic Gram-positive bacterium, and the argR operator from Thermotoga neapolitana, a Gram-negative hyperthermophile, with the corresponding ArgR proteins. Enzymatic and chemical footprinting have been combined with missing contact, pre-modification, base substitution, and small ligand binding interference techniques to gather information on backbone and base-specific contacts with major and minor groove determinants of the operators. Wild-type and mutant argC operators have been compared for their interaction with the repressor, using both in vivo and in vitro approaches. Our results indicate that the operators of B. stearothermophilus and T. neapolitana consist of two ARG box-like sequences, 18 bp imperfect palindromes, separated by two and three base-pairs, respectively, and that the repressors from thermophilic origin establish base-specific contacts with two major groove segments and the intervening minor groove of each ARG box, all aligned on one face of the helix. In contrast, no specific contacts are established in the minor groove facing the repressor in the centre of the operator, nevertheless this region plays a crucial structural role in complex formation, as indicated by mutant studies. This picture is reminiscent of arginine repressor binding in Escherichia coli, and therefore reinforces the uniform view of arginine regulation, but also reveals a number of striking differences at particular positions of the boxes and in the length and base-pair composition of the spacer connecting two ARG boxes in the operator. These might be responsible, in part, for subtle but important functional and mechanistic differences in the way species-specific repressors interact with their cognate target sites. These variations are underlined by the different behaviour of the repressors from E. coli, B. stearothermophilus and T. neapolitana in their potential to bind heterologous operators, their requirement for arginine, and the resistance of complex formation to non-specific competitor DNA. Our findings are discussed in view of the crystal structure of the arginine repressor from B. stearothermophilus.
Collapse
Affiliation(s)
- Hui Song
- Microbiologie en Erfelijkheidsleer, Vrije Universiteit Brussel, 1-av. E. Gryson B-1070, Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Proteins that function in regulation of transcription initiation are typically homo or hetero-oligomeric. Results of recent biophysical studies of transcription regulators indicate that the assembly of these proteins is often subject to regulation. This regulation of assembly dictates the frequency of transcription initiation via its influence on the affinity of a transcription regulator for DNA and its affect on target site selection. Factors that modulate transcription factor assembly include binding of small molecules, post-translational modification, DNA binding and interactions with other proteins. Here, the results of recent structural and/or thermodynamic studies of a number of transcription regulators that are subject to regulated assembly are reviewed. The accumulated data indicate that this phenomenon is ubiquitous and that mechanisms utilized in eukaryotes and prokaryotes share common features.
Collapse
Affiliation(s)
- D Beckett
- Department of Chemistry & Biochemistry, University of Maryland, MD 20472, USA.
| |
Collapse
|
22
|
Szwajkajzer D, Dai L, Fukayama JW, Abramczyk B, Fairman R, Carey J. Quantitative analysis of DNA binding by the Escherichia coli arginine repressor. J Mol Biol 2001; 312:949-62. [PMID: 11580241 DOI: 10.1006/jmbi.2001.4941] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Allosteric activation of the hexameric arginine repressor (ArgR) for specific operator DNA binding appears to involve alteration in its quaternary structure. Current models for activation include subunit assembly and/or domain rearrangements in response to binding of the coeffector l-arginine. To investigate the molecular basis for ArgR operator interactions, we have carried out a series of quantitative analyses of ArgR subunit assembly and of the affinity, stoichiometry, cooperativity, and l-arginine- and DNA sequence-dependence of ArgR-DNA binding. The results indicate that subunit assembly plays no role in activation, although communication among subunits of the ArgR hexamer is required for specific DNA binding. The data suggest that DNA is also an allosteric effector of ArgR.
Collapse
Affiliation(s)
- D Szwajkajzer
- Chemistry Department, Princeton University, Princeton, NJ 08544-1009, USA
| | | | | | | | | | | |
Collapse
|