1
|
Parker DJ, Lalanne JB, Kimura S, Johnson GE, Waldor MK, Li GW. Growth-Optimized Aminoacyl-tRNA Synthetase Levels Prevent Maximal tRNA Charging. Cell Syst 2020; 11:121-130.e6. [PMID: 32726597 DOI: 10.1016/j.cels.2020.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 05/07/2020] [Accepted: 07/02/2020] [Indexed: 01/28/2023]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) serve a dual role in charging tRNAs. Their enzymatic activities both provide protein synthesis flux and reduce uncharged tRNA levels. Although uncharged tRNAs can negatively impact bacterial growth, substantial concentrations of tRNAs remain deacylated even under nutrient-rich conditions. Here, we show that tRNA charging in Bacillus subtilis is not maximized due to optimization of aaRS production during rapid growth, which prioritizes demands in protein synthesis over charging levels. The presence of uncharged tRNAs is alleviated by precisely tuned translation kinetics and the stringent response, both insensitive to aaRS overproduction but sharply responsive to underproduction, allowing for just enough aaRS production atop a "fitness cliff." Notably, we find that the stringent response mitigates fitness defects at all aaRS underproduction levels even without external starvation. Thus, adherence to minimal, flux-satisfying protein production drives limited tRNA charging and provides a basis for the sensitivity and setpoints of an integrated growth-control network.
Collapse
Affiliation(s)
- Darren J Parker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jean-Benoît Lalanne
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Satoshi Kimura
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Grace E Johnson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Gene-Wei Li
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
2
|
Evans ME, Clark WC, Zheng G, Pan T. Determination of tRNA aminoacylation levels by high-throughput sequencing. Nucleic Acids Res 2017; 45:e133. [PMID: 28586482 PMCID: PMC5737633 DOI: 10.1093/nar/gkx514] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/15/2017] [Accepted: 05/31/2017] [Indexed: 01/03/2023] Open
Abstract
Transfer RNA (tRNA) decodes mRNA codons when aminoacylated (charged) with an amino acid at its 3' end. Charged tRNAs turn over rapidly in cells, and variations in charged tRNA fractions are known to be a useful parameter in cellular responses to stress. tRNA charging fractions can be measured for individual tRNA species using acid denaturing gels, or comparatively at the genome level using microarrays. These hybridization-based approaches cannot be used for high resolution analysis of mammalian tRNAs due to their large sequence diversity. Here we develop a high-throughput sequencing method that enables accurate determination of charged tRNA fractions at single-base resolution (Charged DM-tRNA-seq). Our method takes advantage of the recently developed DM-tRNA-seq method, but includes additional chemical steps that specifically remove the 3'A residue in uncharged tRNA. Charging fraction is obtained by counting the fraction of A-ending reads versus A+C-ending reads for each tRNA species in the same sequencing reaction. In HEK293T cells, most cytosolic tRNAs are charged at >80% levels, whereas tRNASer and tRNAThr are charged at lower levels. These low charging levels were validated using acid denaturing gels. Our method should be widely applicable for investigations of tRNA charging as a parameter in biological regulation.
Collapse
Affiliation(s)
- Molly E. Evans
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Wesley C. Clark
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Guanqun Zheng
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Tao Pan
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
3
|
Naganuma M, Sekine SI, Chong YE, Guo M, Yang XL, Gamper H, Hou YM, Schimmel P, Yokoyama S. The selective tRNA aminoacylation mechanism based on a single G•U pair. Nature 2014; 510:507-11. [PMID: 24919148 DOI: 10.1038/nature13440] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/06/2014] [Indexed: 11/09/2022]
Abstract
Ligation of tRNAs with their cognate amino acids, by aminoacyl-tRNA synthetases, establishes the genetic code. Throughout evolution, tRNA(Ala) selection by alanyl-tRNA synthetase (AlaRS) has depended predominantly on a single wobble base pair in the acceptor stem, G3•U70, mainly on the kcat level. Here we report the crystal structures of an archaeal AlaRS in complex with tRNA(Ala) with G3•U70 and its A3•U70 variant. AlaRS interacts with both the minor- and the major-groove sides of G3•U70, widening the major groove. The geometry difference between G3•U70 and A3•U70 is transmitted along the acceptor stem to the 3'-CCA region. Thus, the 3'-CCA region of tRNA(Ala) with G3•U70 is oriented to the reactive route that reaches the active site, whereas that of the A3•U70 variant is folded back into the non-reactive route. This novel mechanism enables the single wobble pair to dominantly determine the specificity of tRNA selection, by an approximate 100-fold difference in kcat.
Collapse
Affiliation(s)
- Masahiro Naganuma
- 1] RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan [2] Department of Biophysics and Biochemistry and Laboratory of Structural Biology, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan [3] RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Shun-ichi Sekine
- 1] RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan [2] Department of Biophysics and Biochemistry and Laboratory of Structural Biology, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan [3] Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Yeeting Esther Chong
- 1] The Skaggs Institute for Chemical Biology and the Department of Cell and Molecular Biology, The Scripps Research Institute, BCC-379, 10550 North Torrey Pines Road, La Jolla, California 92037, USA [2] aTyr Pharma, 3545 John Hopkins Court, San Diego, California 92121, USA (Y.E.C.); Department of Cancer Biology, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, USA (M.G.)
| | - Min Guo
- 1] The Skaggs Institute for Chemical Biology and the Department of Cell and Molecular Biology, The Scripps Research Institute, BCC-379, 10550 North Torrey Pines Road, La Jolla, California 92037, USA [2] aTyr Pharma, 3545 John Hopkins Court, San Diego, California 92121, USA (Y.E.C.); Department of Cancer Biology, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, USA (M.G.)
| | - Xiang-Lei Yang
- The Skaggs Institute for Chemical Biology and the Department of Cell and Molecular Biology, The Scripps Research Institute, BCC-379, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Howard Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Paul Schimmel
- 1] The Skaggs Institute for Chemical Biology and the Department of Cell and Molecular Biology, The Scripps Research Institute, BCC-379, 10550 North Torrey Pines Road, La Jolla, California 92037, USA [2] The Scripps Florida Research Institute, 130 Scripps Way, 3B3 Jupiter, Florida 33458-5284, USA
| | - Shigeyuki Yokoyama
- 1] RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan [2] Department of Biophysics and Biochemistry and Laboratory of Structural Biology, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan [3] RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
4
|
Mohanty BK, Maples VF, Kushner SR. Polyadenylation helps regulate functional tRNA levels in Escherichia coli. Nucleic Acids Res 2012; 40:4589-603. [PMID: 22287637 PMCID: PMC3378859 DOI: 10.1093/nar/gks006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 12/19/2011] [Accepted: 12/23/2011] [Indexed: 12/24/2022] Open
Abstract
Here we demonstrate a new regulatory mechanism for tRNA processing in Escherichia coli whereby RNase T and RNase PH, the two primary 3' → 5' exonucleases involved in the final step of 3'-end maturation, compete with poly(A) polymerase I (PAP I) for tRNA precursors in wild-type cells. In the absence of both RNase T and RNase PH, there is a >30-fold increase of PAP I-dependent poly(A) tails that are ≤10 nt in length coupled with a 2.3- to 4.2-fold decrease in the level of aminoacylated tRNAs and a >2-fold decrease in growth rate. Only 7 out of 86 tRNAs are not regulated by this mechanism and are also not substrates for RNase T, RNase PH or PAP I. Surprisingly, neither PNPase nor RNase II has any effect on tRNA poly(A) tail length. Our data suggest that the polyadenylation of tRNAs by PAP I likely proceeds in a distributive fashion unlike what is observed with mRNAs.
Collapse
Affiliation(s)
| | | | - Sidney R. Kushner
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
5
|
Russell JH, Keiler KC. Subcellular localization of a bacterial regulatory RNA. Proc Natl Acad Sci U S A 2009; 106:16405-9. [PMID: 19805312 PMCID: PMC2752561 DOI: 10.1073/pnas.0904904106] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Indexed: 01/22/2023] Open
Abstract
Eukaryotes and bacteria regulate the activity of some proteins by localizing them to discrete subcellular structures, and eukaryotes localize some RNAs for the same purpose. To explore whether bacteria also spatially regulate RNAs, the localization of tmRNA was determined using fluorescence in situ hybridization. tmRNA is a small regulatory RNA that is ubiquitous in bacteria and that interacts with translating ribosomes in a reaction known as trans-translation. In Caulobacter crescentus, tmRNA was localized in a cell-cycle-dependent manner. In G(1)-phase cells, tmRNA was found in regularly spaced foci indicative of a helix-like structure. After initiation of DNA replication, most of the tmRNA was degraded, and the remaining molecules were spread throughout the cytoplasm. Immunofluorescence assays showed that SmpB, a protein that binds tightly to tmRNA, was colocalized with tmRNA in the helix-like pattern. RNase R, the nuclease that degrades tmRNA, was localized in a helix-like pattern that was separate from the SmpB-tmRNA complex. These results suggest a model in which tmRNA-SmpB is localized to sequester tmRNA from RNase R, and localization might also regulate tmRNA-SmpB interactions with ribosomes.
Collapse
Affiliation(s)
- Jay H. Russell
- The Pennsylvania State University, Department of Biochemistry and Molecular Biology, 401 Althouse Lab, University Park, PA 16802
| | - Kenneth C. Keiler
- The Pennsylvania State University, Department of Biochemistry and Molecular Biology, 401 Althouse Lab, University Park, PA 16802
| |
Collapse
|
6
|
McClain WH. Surprising contribution to aminoacylation and translation of non-Watson-Crick pairs in tRNA. Proc Natl Acad Sci U S A 2006; 103:4570-5. [PMID: 16537400 PMCID: PMC1450212 DOI: 10.1073/pnas.0600592103] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecules of transfer RNA (tRNA) typically contain four stems composed of Watson-Crick (W-C) base pairs and infrequent mispairs such as G-U and A-C. The latter mispairs are fundamental units of RNA secondary structure found in nearly every class of RNA and are nearly isomorphic to W-C pairs. Therefore, they often substitute for G-C or A-U base pairs. The mispairs also have unique chemical, structural, and dynamic conformational properties, which can only be partially mimicked by W-C base pairs. Here, I characterize the identities and tasks of six mutant G-U and A-C mispairs in Escherichia coli tRNA(Gly) using genetic and bioinformatic tools and show that mispairs are significantly more important for aminoacylation and translation than previously realized. Mispairs boost aminoacylation and translation primarily because they activate tRNA by means of their conformational flexibility. The statistical preservation of the six mutant mispair sites across tRNA(Gly) in many organisms points to a fundamental structure-function signature within tRNA(Gly) with possible analogous missions in other RNAs.
Collapse
Affiliation(s)
- William H McClain
- Department of Bacteriology, University of Wisconsin, 420 Henry Mall, Madison, WI 53706-1569, USA.
| |
Collapse
|
7
|
Dittmar KA, Sørensen MA, Elf J, Ehrenberg M, Pan T. Selective charging of tRNA isoacceptors induced by amino-acid starvation. EMBO Rep 2005; 6:151-7. [PMID: 15678157 PMCID: PMC1299251 DOI: 10.1038/sj.embor.7400341] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 12/07/2004] [Accepted: 12/17/2004] [Indexed: 11/08/2022] Open
Abstract
Aminoacylated (charged) transfer RNA isoacceptors read different messenger RNA codons for the same amino acid. The concentration of an isoacceptor and its charged fraction are principal determinants of the translation rate of its codons. A recent theoretical model predicts that amino-acid starvation results in 'selective charging' where the charging levels of some tRNA isoacceptors will be low and those of others will remain high. Here, we developed a microarray for the analysis of charged fractions of tRNAs and measured charging for all Escherichia coli tRNAs before and during leucine, threonine or arginine starvation. Before starvation, most tRNAs were fully charged. During starvation, the isoacceptors in the leucine, threonine or arginine families showed selective charging when cells were starved for their cognate amino acid, directly confirming the theoretical prediction. Codons read by isoacceptors that retain high charging can be used for efficient translation of genes that are essential during amino-acid starvation. Selective charging can explain anomalous patterns of codon usage in the genes for different families of proteins.
Collapse
Affiliation(s)
- Kimberly A Dittmar
- Department of Biochemistry and Molecular Biology, University of Chicago, 920 East 58th street, Chicago, Illinois 60637, USA
| | - Michael A Sørensen
- Department of Molecular Cell Biology, University of Copenhagen, Oester Farimagsgade 2A, DK-1353 Copenhagen, Denmark
| | - Johan Elf
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, 751 24 Uppsala, Sweden
| | - Måns Ehrenberg
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, 751 24 Uppsala, Sweden
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, 920 East 58th street, Chicago, Illinois 60637, USA
- Tel: +1 773 702 4179; Fax: +1 773 702 0439; E-mail:
| |
Collapse
|
8
|
Leipuviene R, Björk GR. A reduced level of charged tRNAArgmnm5UCU triggers the wild-type peptidyl-tRNA to frameshift. RNA (NEW YORK, N.Y.) 2005; 11:796-807. [PMID: 15840821 PMCID: PMC1370764 DOI: 10.1261/rna.7256705] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Accepted: 01/25/2005] [Indexed: 05/24/2023]
Abstract
Frameshift mutations can be suppressed by a variety of differently acting external suppressors. The +1 frameshift mutation hisC3072, which has an extra G in a run of Gs, is corrected by the external suppressor mutation sufF44. We have shown that sufF44 and five additional allelic suppressor mutations are located in the gene argU coding for the minor tRNAArgmnm5UCU and alter the secondary and/or tertiary structure of this tRNA. The C61U, G53A, and C32U mutations influence the stability, whereas the C56U, C61U, G53A, and G39A mutations decrease the arginylation of tRNAArgmnm5UCU. The T-10C mutant has a base substitution in the -10 consensus sequence of the argU promoter that reduces threefold the synthesis of tRNAArgmnm5UCU . The lower amount of tRNAArgmnm5UCU or impaired arginylation, either independently or in conjunction, results in inefficient reading of the cognate AGA codon that, in turn, induces frameshifts. According to the sequence of the peptide produced from the suppressed -GGG-GAA-AGA- frameshift site, the frameshifting tRNA in the argU mutants is tRNAGlumnm5s2UUC, which decodes the GAA codon located upstream of the AGA arginine codon, and not the mutated tRNAArgmnm5UCU. We propose that an inefficient decoding of the AGA codon by a defective tRNAArgmnm5UCU stalls the ribosome at the A-site codon allowing the wild-type form of peptidyl-tRNAGlumnm5s2UUC to slip forward 1 nucleotide and thereby re-establish the ribosome in the 0-frame. Similar frame-shifting events could be the main cause of various phenotypes associated with environmental or genetically induced changes in the levels of aminoacylated tRNA.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Base Sequence
- Codon/genetics
- Frameshift Mutation/genetics
- Frameshifting, Ribosomal/genetics
- Genes, Bacterial/genetics
- Models, Genetic
- Molecular Sequence Data
- RNA, Transfer, Arg/genetics
- RNA, Transfer, Arg/metabolism
- RNA, Transfer, Glu/genetics
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Salmonella enterica/genetics
- Suppression, Genetic/genetics
- Transfer RNA Aminoacylation
Collapse
Affiliation(s)
- Ramune Leipuviene
- Department of Molecular Biology, Umeå University, S-90187 Umeå, Sweden
| | | |
Collapse
|
9
|
Lee D, McClain WH. Aptamer redesigned tRNA is nonfunctional and degraded in cells. RNA (NEW YORK, N.Y.) 2004; 10:7-11. [PMID: 14681579 PMCID: PMC1370512 DOI: 10.1261/rna.5165804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2003] [Accepted: 09/22/2003] [Indexed: 05/24/2023]
Abstract
An RNA aptamer derived from tRNA(Gln) isolated in vitro and a rationally redesigned tRNA(Gln) were used to address the relationship between structure and function of tRNA(Gln) aminoacylation in Escherichia coli. Two mutant tRNA(Gln) sequences were studied: an aptamer that binds 26-fold tighter to glutaminyl-tRNA synthetase than wild-type tRNA(Gln) in vitro, redesigned in the variable loop, and a mutant with near-normal aminoacylation kinetics for glutamine, redesigned to contain a long variable arm. Both mutants were tested in a tRNA(Gln) knockout strain of E. coli, but neither supported knockout cell growth. It was later found that both mutant tRNAs were present in very low amounts in the cell. These results reveal the difference between in vitro and in vivo studies, demonstrating the complexities of in vivo systems that have not been replicated in vitro.
Collapse
Affiliation(s)
- Dennis Lee
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706-1569, USA
| | | |
Collapse
|
10
|
Geslain R, Martin F, Camasses A, Eriani G. A yeast knockout strain to discriminate between active and inactive tRNA molecules. Nucleic Acids Res 2003; 31:4729-37. [PMID: 12907713 PMCID: PMC169964 DOI: 10.1093/nar/gkg685] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Here we report the construction of a yeast genetic screen designed to identify essential residues in tRNA(Arg). The system consists of a tRNA(Arg) knockout strain and a set of vectors designed to rescue and select for variants of tRNA(Arg). By plasmid shuffling we selected inactive tRNA mutants that were further analyzed by northern blotting. The mutational analysis focused on the tRNA D and anticodon loops that contact the aminoacyl-tRNA synthetase. The anticodon triplet was excluded from the analysis because of its role in decoding the Arg codons. Most of the inactivating mutations are residues involved in tertiary interactions. These mutations had dramatic effects on tRNA(Arg) abundance. Other inactivating mutations were located in the anticodon loop, where they did not affect transcription and aminoacylation but probably altered interaction with the translation machinery. No lethal effects were observed when residues 16, 20 and 38 were individually mutated, despite the fact that they are involved in sequence-specific interactions with the aminoacyl-tRNA synthetase. However, the steady-state levels of the aminoacylated forms of U20A and U20G were decreased by a factor of 3.5-fold in vivo. This suggests that, unlike in the Escherichia coli tRNA(Arg):ArgRS system where residue 20 (A) is a major identity element, in yeast this position is of limited consequence.
Collapse
Affiliation(s)
- Renaud Geslain
- UPR 9002 SMBMR du CNRS, Institut de Biologie Moléculaire et Cellulaire, 15 Rue René Descartes, 67084 Strasbourg, France
| | | | | | | |
Collapse
|
11
|
Choi H, Otten S, Schneider J, McClain WH. Genetic perturbations of RNA reveal structure-based recognition in protein-RNA interaction. J Mol Biol 2002; 324:573-6. [PMID: 12460561 DOI: 10.1016/s0022-2836(02)01098-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Protein-RNA recognition is an essential foundation of cellular processes, yet much remains unknown about these important interactions. The recognition between aminoacyl-tRNA synthetases and their cognate tRNA substrates is highly specific and essential for cell viability, due to the necessity for accurate translation of the genetic code into protein sequences. We selected an active tRNA that is highly mutated in the recognition nucleotides of the acceptor stem region in the alanine system. The functional properties of this mutant and its secondary derivatives demonstrate that recognition cannot be reduced to isolated structural elements, but rather the amino acid acceptor stem is being recognized as a unit.
Collapse
MESH Headings
- Amino Acyl-tRNA Synthetases/chemistry
- Amino Acyl-tRNA Synthetases/genetics
- Amino Acyl-tRNA Synthetases/metabolism
- Bacterial Proteins/chemistry
- Bacterial Proteins/metabolism
- Escherichia coli/genetics
- Mutagenesis, Site-Directed
- Protein Binding
- Protein Conformation
- Protein Structure, Secondary
- RNA/genetics
- RNA, Bacterial/metabolism
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Amino Acyl/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Structure-Activity Relationship
- Substrate Specificity
- Transformation, Bacterial
Collapse
Affiliation(s)
- Hyunsic Choi
- Department of Bacteriology, University of Wisconsin, 1550 Linden Drive, E.B. Fred Hall, Madison, WI 53706-1567, USA
| | | | | | | |
Collapse
|
12
|
Wolfson AD, Uhlenbeck OC. Modulation of tRNAAla identity by inorganic pyrophosphatase. Proc Natl Acad Sci U S A 2002; 99:5965-70. [PMID: 11983895 PMCID: PMC122885 DOI: 10.1073/pnas.092152799] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A highly sensitive assay of tRNA aminoacylation was developed that directly measures the fraction of aminoacylated tRNA by following amino acid attachment to the 3'-(32)P-labeled tRNA. When applied to Escherichia coli alanyl-tRNA synthetase, the assay allowed accurate measurement of aminoacylation of the most deleterious mutants of tRNA(Ala). The effect of tRNA(Ala) identity mutations on both aminoacylation efficiency (k(cat)/K(M)) and steady-state level of aminoacyl-tRNA was evaluated in the absence and presence of inorganic pyrophosphatase and elongation factor Tu. Significant levels of aminoacylation were achieved for tRNA mutants even when the k(cat)/K(M) value is reduced by as much as several thousandfold. These results partially reconcile the discrepancy between in vivo and in vitro analysis of tRNA(Ala) identity.
Collapse
Affiliation(s)
- Alexey D Wolfson
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215, USA
| | | |
Collapse
|
13
|
Biała E, Strazewski P. Internally mismatched RNA: pH and solvent dependence of the thermal unfolding of tRNA(Ala) acceptor stem microhairpins. J Am Chem Soc 2002; 124:3540-5. [PMID: 11929241 DOI: 10.1021/ja0161305] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The thermal unfolding of two RNA hairpin systems derived from the aminoacyl accepting arm of Escherichia coli tRNA(Ala) that included all possible single internal mismatches mostly in the third base pair position was measured spectroscopically in 0.1 M NaCl at pH 7.5 and, in part, 5.5. The thermodynamic parameters DeltaH(o), DeltaS(o), DeltaG(o), and T(m) of a total of 36 RNA strands were determined through nonlinear curve fitting of the melting profiles (22 tetralooped 22mers and 14 heptalooped 25mers, same stem sequence). Only three of the 22mers, the A.C-containing variants, were shown to be significantly more stable at pH 5.5. A number of remarkable differences-most likely of more general relevance-between the thermodynamics of certain structurally very similar hairpin variants (e.g., G.C versus A.U, G.U versus I.U) at pH 7.5 are discussed with respect to two possible ways of helix stabilization: pronounced hydration versus low entropic penalty. Four selected 22mers were additionally analyzed in 1 M NaCl and in solvent mixtures containing ethanol, ethylene glycol, and dimethylformamide. The wealth of thermodynamic data suggest that the exothermicity DeltaH(o) and entropic penalty T x DeltaS(o) of folding are strongly dominated by the rearrangement and formation of hydration layers around the solutes, while it is well-known that the stability of folding results only from the difference (DeltaG(o)) and ratio of both parameters (T(m) = DeltaH (o)/DeltaS(o)).
Collapse
Affiliation(s)
- Ewa Biała
- Institute of Organic Chemistry, University of Basel, St. Johanns-Ring 19, CH - 4056 Basel, Switzerland.
| | | |
Collapse
|
14
|
Raney A, Law GL, Mize GJ, Morris DR. Regulated translation termination at the upstream open reading frame in s-adenosylmethionine decarboxylase mRNA. J Biol Chem 2002; 277:5988-94. [PMID: 11741992 DOI: 10.1074/jbc.m108375200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The upstream open reading frame (uORF) in the mRNA encoding S-adenosylmethionine decarboxylase is a cis-acting element that confers feedback control by cellular polyamines on translation of this message. Recent studies demonstrated that elevated polyamines inhibit synthesis of the peptide encoded by the uORF by stabilizing a ribosome paused in the vicinity of the termination codon. These studies suggested that polyamines act at the termination step of uORF translation. In this paper, we demonstrate that elevated polyamines stabilize an intermediate in the termination process, the complete nascent peptide linked to the tRNA that decodes the final codon. The peptidyl-tRNA molecule is found associated with the ribosome fraction, and decay of this molecule correlated with release of the paused ribosome from the message. Furthermore, the stability of this complex is influenced by the same parameters that influence regulation by the uORF in vivo, namely the concentration of polyamines and the sequence of the uORF-encoded peptide. These results suggest that the regulated step in uORF translation is after formation of the peptidyl-tRNA molecule but before hydrolysis of the peptidyl-tRNA bond. This regulation may involve an interaction between the peptide, polyamines, and a target in the translational apparatus.
Collapse
Affiliation(s)
- Alexa Raney
- Department of Biochemistry, University of Washington, Seattle, Washington 98195-7350, USA
| | | | | | | |
Collapse
|
15
|
Bourdeau V, Paquin B, Cedergren R, Delihas N. Cleavage of mitochondria-like transfer RNAs expressed in Escherichia coli. FEBS Lett 2001; 497:90-4. [PMID: 11377419 DOI: 10.1016/s0014-5793(01)02443-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mitochondrial (mt) transfer RNAs (tRNAs) often harbor unusual structural features causing their secondary structure to differ from the conventional cloverleaf. tRNAs designed with such irregularities, termed mt-like tRNAs, are active in Escherichia coli as suppressors of reporter genes, although they display low steady-state levels. Characterization of fragments produced during mt-like tRNA processing in vitro and in vivo suggests that these RNAs are not fully processed at their 5' ends and are cleaved internally. These abnormal processing events may account for the low levels of mature mt-like RNAs in vivo and are most likely related to defective processing by RNase P.
Collapse
Affiliation(s)
- V Bourdeau
- Département de Biochimie, Université de Montréal, Montréal, QC, Canada.
| | | | | | | |
Collapse
|
16
|
Abstract
Aminoacyl-tRNAs are substrates for translation and are pivotal in determining how the genetic code is interpreted as amino acids. The function of aminoacyl-tRNA synthesis is to precisely match amino acids with tRNAs containing the corresponding anticodon. This is primarily achieved by the direct attachment of an amino acid to the corresponding tRNA by an aminoacyl-tRNA synthetase, although intrinsic proofreading and extrinsic editing are also essential in several cases. Recent studies of aminoacyl-tRNA synthesis, mainly prompted by the advent of whole genome sequencing and the availability of a vast body of structural data, have led to an expanded and more detailed picture of how aminoacyl-tRNAs are synthesized. This article reviews current knowledge of the biochemical, structural, and evolutionary facets of aminoacyl-tRNA synthesis.
Collapse
Affiliation(s)
- M Ibba
- Center for Biomolecular Recognition, IMBG Laboratory B, The Panum Institute, DK-2200, Copenhagen N, Denmark.
| | | |
Collapse
|
17
|
Varani G, McClain WH. The G x U wobble base pair. A fundamental building block of RNA structure crucial to RNA function in diverse biological systems. EMBO Rep 2000; 1:18-23. [PMID: 11256617 PMCID: PMC1083677 DOI: 10.1093/embo-reports/kvd001] [Citation(s) in RCA: 328] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The G x U wobble base pair is a fundamental unit of RNA secondary structure that is present in nearly every class of RNA from organisms of all three phylogenetic domains. It has comparable thermodynamic stability to Watson-Crick base pairs and is nearly isomorphic to them. Therefore, it often substitutes for G x C or A x U base pairs. The G x U wobble base pair also has unique chemical, structural, dynamic and ligand-binding properties, which can only be partially mimicked by Watson-Crick base pairs or other mispairs. These features mark sites containing G x U pairs for recognition by proteins and other RNAs and allow the wobble pair to play essential functional roles in a remarkably wide range of biological processes.
Collapse
Affiliation(s)
- G Varani
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | |
Collapse
|
18
|
Barends S, Wower J, Kraal B. Kinetic parameters for tmRNA binding to alanyl-tRNA synthetase and elongation factor Tu from Escherichia coli. Biochemistry 2000; 39:2652-8. [PMID: 10704215 DOI: 10.1021/bi992439d] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aminoacylation and transportation of tmRNA to stalled ribosomes constitute prerequisite steps for trans-translation, a process facilitating the release of stalled ribosomes from 3' ends of truncated mRNAs and the degradation of incompletely synthesized proteins. Kinetic analysis of the aminoacylation of tmRNA indicates that tmRNA has both a lower affinity and a lower turnover number than cognate tRNA(Ala) for alanyl-tRNA synthetase, resulting in a 75-fold lower k(cat)/K(M) value. The association rate constant of Ala-tmRNA for elongation factor Tu in complex with GTP is about 150-fold lower than that of Ala-tRNA(Ala), whereas its dissocation rate constant is about 5-fold lower. These observations can be interpreted to suggest that additional factors facilitate tmRNA binding to ribosomes.
Collapse
Affiliation(s)
- S Barends
- Department of Biochemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | |
Collapse
|
19
|
Chang KY, Varani G, Bhattacharya S, Choi H, McClain WH. Correlation of deformability at a tRNA recognition site and aminoacylation specificity. Proc Natl Acad Sci U S A 1999; 96:11764-9. [PMID: 10518524 PMCID: PMC18360 DOI: 10.1073/pnas.96.21.11764] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/1999] [Accepted: 08/12/1999] [Indexed: 11/18/2022] Open
Abstract
The fidelity of protein synthesis depends on specific tRNA aminoacylation by aminoacyl-tRNA synthetase enzymes, which in turn depends on the recognition of the identity of particular nucleotides and structural features in the substrate tRNA. These features generally reside within the acceptor helix, the anticodon stem-loop, and in some systems the variable pocket of the tRNA. In the alanine system, fidelity is ensured by a G.U wobble base pair located at the third position within the acceptor helix of alanine tRNA. We have investigated the activity of mutant alanine tRNAs to explore the mechanism of enzyme recognition. Here we show that the mismatched pair C-C is an excellent substitute for G.U in alanine-tRNA-knockout cells. A structural investigation by NMR spectroscopy of the C-C RNA acceptor end reveals that the two cytosines are intercalated into the helix, and that C-C exists in multiple conformations. Structural heterogeneity also is present in the wild-type G.U RNA, whereas inactive Watson-Crick helices are structurally rigid. The correlation between functional and structural data suggests that the G.U pair provides a distinctive structure and a point of deformability that allow the tRNA acceptor end to fit into the active site of the alanyl-tRNA synthetase. Fidelity is ensured because noncognate and inactive mutant tRNAs are bound in the active site in an incorrect conformation that reduces enzymatic activity.
Collapse
Affiliation(s)
- K Y Chang
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom
| | | | | | | | | |
Collapse
|
20
|
Gabriel K, McClain WH. A set of plasmids constitutively producing different RNA levels in Escherichia coli. J Mol Biol 1999; 290:385-9. [PMID: 10390339 DOI: 10.1006/jmbi.1999.2885] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
New plasmids were developed for the in vivo expression of RNA in Escherichia coli. These plasmids combine constitutive promoters of different strengths with different origins of replication to provide a 75-fold range of expression of amber suppressor tRNA. The plasmids are either pMB1, p15A or temperature-sensitive SC101 replicons, and can be used in two plasmid systems for studying RNA-protein interactions. The temperature-sensitive SC101 plasmids may be useful as gene replacement vectors. Another vector that is suitable for generating lethal mutations was constructed in a plasmid containing a regulatable phage T7 promoter.
Collapse
Affiliation(s)
- K Gabriel
- Department of Bacteriology, University of Wisconsin, Madison, WI, 53706-1567, USA
| | | |
Collapse
|