1
|
Ali A, Xiao W, Babar ME, Bi Y. Double-Stranded Break Repair in Mammalian Cells and Precise Genome Editing. Genes (Basel) 2022; 13:genes13050737. [PMID: 35627122 PMCID: PMC9142082 DOI: 10.3390/genes13050737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/16/2022] Open
Abstract
In mammalian cells, double-strand breaks (DSBs) are repaired predominantly by error-prone non-homologous end joining (NHEJ), but less prevalently by error-free template-dependent homologous recombination (HR). DSB repair pathway selection is the bedrock for genome editing. NHEJ results in random mutations when repairing DSB, while HR induces high-fidelity sequence-specific variations, but with an undesirable low efficiency. In this review, we first discuss the latest insights into the action mode of NHEJ and HR in a panoramic view. We then propose the future direction of genome editing by virtue of these advancements. We suggest that by switching NHEJ to HR, full fidelity genome editing and robust gene knock-in could be enabled. We also envision that RNA molecules could be repurposed by RNA-templated DSB repair to mediate precise genetic editing.
Collapse
Affiliation(s)
- Akhtar Ali
- Key Laboratory of Animal Embryo and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (A.A.); (W.X.)
- Department of Biotechnology, Virtual University of Pakistan, Lahore 54000, Pakistan
| | - Wei Xiao
- Key Laboratory of Animal Embryo and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (A.A.); (W.X.)
| | - Masroor Ellahi Babar
- The University of Agriculture Dera Ismail Khan, Dera Ismail Khan 29220, Pakistan;
| | - Yanzhen Bi
- Key Laboratory of Animal Embryo and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (A.A.); (W.X.)
- Correspondence: ; Tel.: +86-151-0714-8708
| |
Collapse
|
2
|
Uchiyama Y, Takeuchi R, Kodera H, Sakaguchi K. Distribution and roles of X-family DNA polymerases in eukaryotes. Biochimie 2008; 91:165-70. [PMID: 18706967 DOI: 10.1016/j.biochi.2008.07.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 07/15/2008] [Indexed: 01/11/2023]
Abstract
Four types of DNA polymerase (Pol beta, Pol lambda, Pol mu and TdT) have been identified in eukaryotes as members of the polymerase X-family. Only vertebrates have all four types of enzyme. Plants and fungi have one or two X-family polymerases, while protostomes, such as fruit flies and nematodes, do not appear to have any. It is possible that the well-known metabolic pathways in which these enzymes are involved are restricted to the vertebrate world. The distribution of the DNA polymerases involved in DNA repair across the various biological kingdoms differs from that of the DNA polymerases involved in chromosomal DNA replication. In this review, we focus on the interesting pattern of distribution of the X-family enzymes across biological kingdoms and speculate on their roles.
Collapse
Affiliation(s)
- Yukinobu Uchiyama
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, Japan
| | | | | | | |
Collapse
|
3
|
Cherrier M, D'Andon MF, Rougeon F, Doyen N. Identification of a new cis-regulatory element of the terminal deoxynucleotidyl transferase gene in the 5' region of the murine locus. Mol Immunol 2007; 45:1009-17. [PMID: 17854898 DOI: 10.1016/j.molimm.2007.07.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 07/26/2007] [Accepted: 07/27/2007] [Indexed: 10/22/2022]
Abstract
Terminal deoxynucleotidyl transferase (TdT) expression is controlled at the transcriptional level, however, the TdT core promoter combining D, D', an initiator (Inr) and downstream basal elements (DBE) does not recapitulate the whole complex regulation of TdT expression. We hypothesized that important cis-regulatory elements of the gene are located outside of the TdT promoter. In an attempt to identify these elements, we performed DNase I hypersensitivity assays over 24kb including a 10kb region located upstream of the transcription start site (+1) and a 14kb region spanning exons and introns I to VI. Hypersensitive sites (HS) HS1 and HS2 were localized 8.5 and 8kb upstream of the transcription start site, respectively, and were exclusively detected in TdT+ cell types. HS3, HS4 and HS5 were mapped at positions -7, -3.4 and -3kb, respectively, and detected in both TdT negative and positive cells. HS6, HS7 and HS8 were detected immediately upstream of the TdT promoter. HS10 and HS11 were localized in the first and third intron of the gene. Luciferase reporter assays revealed that HS1, HS2 and HS3 synergize with the TdT promoter to activate transcription in a TdT+ pre-T cell line but not in a TdT+ pro-B cell line. In summary novel cis-regulatory elements have been identified in the 5' region of the TdT locus that synergize with the promoter to activate gene expression and our results suggest these elements may be more active in T cells.
Collapse
Affiliation(s)
- Marie Cherrier
- Développement des tissus lymphoïdes, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | | | | | | |
Collapse
|
4
|
Thai TH, Kearney JF. Isoforms of terminal deoxynucleotidyltransferase: developmental aspects and function. Adv Immunol 2005; 86:113-36. [PMID: 15705420 DOI: 10.1016/s0065-2776(04)86003-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The immune system develops in a series of programmed developmental stages. Although recombination-activating gene (RAG) and nonhomologous end-joining (NHEJ) proteins are indispensable in the generation of immunoglobulins and T-cell receptors (TCRs), most CDR3 diversity is contributed by nontemplated addition of nucleotides catalyzed by the nuclear enzyme terminal deoxynucleotidyltransferase (TdT) and most nucleotide deletion is performed by exonucleases at V(D)J joins. Increasing TdT expression continuing into adult life results in N region addition and diversification of the T and B cell repertoires. In several species including mice and humans, there are multiple isoforms of TdT resulting from alternative mRNA splicing. The short form (TdTS) produces N additions during TCR and B-cell receptor (BCR) gene rearrangements. Other long isoforms, TdTL1 and TdTL2, have 3' --> 5' exonuclease activity. The two forms of TdT therefore have distinct and opposite functions in lymphocyte development. The enzymatic activities of the splice variants of TdT play an essential role in the diversification of lymphocyte repertoires by modifying the composition and length of the gene segments involved in the production of antibodies and T-cell receptors.
Collapse
Affiliation(s)
- To-Ha Thai
- Division of Developmental and Clinical Immunology, Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35204, USA
| | | |
Collapse
|
5
|
Varga AE, Leonardos L, Jackson P, Marreiros A, Cowled PA. Methylation of a CpG island within the uroplakin Ib promoter: a possible mechanism for loss of uroplakin Ib expression in bladder carcinoma. Neoplasia 2004; 6:128-35. [PMID: 15140401 PMCID: PMC1502093 DOI: 10.1593/neo.03337] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Uroplakin Ib is a structural protein on the surface of urothelial cells. Expression of uroplakin Ib mRNA is reduced or absent in many transitional cell carcinomas (TCCs) but molecular mechanisms underlying loss of expression remain to be determined. Analysis of the uroplakin Ib promoter identified a weak CpG island spanning the proximal promoter, exon 1, and the beginning of intron 1. This study examined the hypothesis that methylation of this CpG island regulates uroplakin Ib expression. Uroplakin Ib mRNA levels were determined by reverse transcription polymerase chain reaction and CpG methylation was assessed by bisulfite modification of DNA, PCR, and sequencing. A correlation was demonstrated in 15 TCC lines between uroplakin Ib mRNA expression and lack of CpG methylation. In support of a regulatory role for methylation, incubating uroplakin Ib-negative lines with 5-aza-2'-deoxycytidine reactivated uroplakin Ib mRNA expression. A trend between uroplakin Ib mRNA expression and CpG methylation was also observed in normal urothelium and bladder carcinomas. In particular, loss of uroplakin Ib expression correlated with methylation of a putative Sp1/NFkappaB binding motif. The data are consistent with the hypothesis that methylation of specific sites within the uroplakin Ib promoter may be an important factor in the loss of uroplakin Ib expression in TCCs.
Collapse
Affiliation(s)
- Andrea E Varga
- Department of Surgery, The University of Adelaide, The Queen Elizabeth Hospital, Woodville, South Australia, Australia
| | | | | | | | | |
Collapse
|
6
|
Peralta-Zaragoza O, Recillas-Targa F, Madrid-Marina V. Terminal deoxynucleotidyl transferase is down-regulated by AP-1-like regulatory elements in human lymphoid cells. Immunology 2004; 111:195-203. [PMID: 15027905 PMCID: PMC1782414 DOI: 10.1111/j.0019-2805.2003.01791.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Terminal deoxynucleotidyl transferase (TdT) is a template-independent DNA polymerase that catalyses the incorporation of deoxyribonucleotides into the 3'-hydroxyl end of DNA templates and is thought to increase junctional diversity of antigen receptor genes. TdT is expressed only on immature lymphocytes and acute lymphoblastic leukaemia cells and its transcriptional expression is tightly regulated. We had previously found that protein kinase C (PKC) activation down-regulates TdT expression. PKC-activation induces the synthesis of the Fos and Jun proteins, known as the major components of activation protein 1 (AP-1) transcriptional factor implicated in transcriptional control. Here we report the identification of several DNA-protein interactions within the TdT promoter region in non-TdT expressing human cells. Sequence analysis revealed the presence of a putative AP-1-like DNA-binding site, suggesting that AP-1 may play a relevant role in TdT transcriptional regulation. Using a different source of nuclear extracts and the AP-1-TdT motif as a probe we identified several DNA-protein retarded complexes in electrophoretic mobility shift assays. Super-band shifting analysis using an antibody against c-Jun protein confirmed that the main interaction is produced by a nuclear factor that belongs to the AP-1 family transcription factors. Our findings suggest that the TdT gene expression is down-regulated, at least in part, through AP-1-like transcription factors.
Collapse
Affiliation(s)
- Oscar Peralta-Zaragoza
- National Institute of Public Health, Division of Molecular Biology of Pathogens, Morelos, México
| | | | | |
Collapse
|
7
|
Cherrier M, Cardona A, Rosinski-Chupin I, Rougeon F, Doyen N. Substantial N diversity is generated in T cell receptor alpha genes at birth despite low levels of terminal deoxynucleotidyl transferase expression in mouse thymus. Eur J Immunol 2002; 32:3651-6. [PMID: 12516554 DOI: 10.1002/1521-4141(200212)32:12<3651::aid-immu3651>3.0.co;2-d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
N region diversity in antigen receptors is a developmentally regulated process in B and T lymphocytes, which correlates with the differential expression of terminal deoxynucleotidyl transferase (TdT). To precisely determine the onset of TdT gene activation during T cell differentiation and thymic ontogeny, TdT expression was directly detected at the cellular level by in situ hybridization and TdT function was assessed by analyzing the distribution of N additions in alpha and beta TCR genes at early stages of development. Even though TdT transcripts were undetectable at birth, substantial N additions were observed in ValphaJalpha junctions and 3 days later in VbetaDbetaJbeta junctions, indicating that TdT expression could be induced in immature thymocytes much earlier than expected. Indeed low TdT expression level was found in TN3/4 and DP from fetal day 17, suggesting that the onset of TdT expression occurs simultaneously in both populations and may depend on microenvironmental cues. Moreover significant increase in the proportion of thymocytes expressing high levels of TdT mRNA during the first week after birth without a similar increase in the level of N diversity suggests that TdT expression and TdT function in the generation of N diversity are not strictly correlated.
Collapse
Affiliation(s)
- Marie Cherrier
- Genetics and Developmental Biochemistry Unit CNRS, URA 1960, Department of Immunology, Pasteur Institute, Paris, France
| | | | | | | | | |
Collapse
|
8
|
Villagra A, Gutiérrez J, Paredes R, Sierra J, Puchi M, Imschenetzky M, Wijnen Av AV, Lian J, Stein G, Stein J, Montecino M. Reduced CpG methylation is associated with transcriptional activation of the bone-specific rat osteocalcin gene in osteoblasts. J Cell Biochem 2002. [PMID: 11891855 DOI: 10.1002/jcb.10113] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chromatin remodeling of the bone-specific rat osteocalcin (OC) gene accompanies the onset and increase in OC expression during osteoblast differentiation. In osseous cells expressing OC, the promoter region contains two nuclease hypersensitive sites that encompass the elements that regulate basal tissue-specific and vitamin D-enhanced OC transcription. Multiple lines of evidence indicate that DNA methylation is involved in maintaining a stable and condensed chromatin organization that represses eukaryotic transcription. Here we report that DNA methylation at the OC gene locus is associated with the condensed chromatin structure found in cells not expressing OC. In addition, we find that reduced CpG methylation of the OC gene accompanies active transcription in ROS 17/2.8 rat osteosarcoma cells. Interestingly, during differentiation of primary diploid rat osteoblasts in culture, as the OC gene becomes increasingly expressed, CpG methylation of the OC promoter is significantly reduced. Inhibition of OC transcription does not occur by a direct mechanism because in vitro methylated OC promoter DNA is still recognized by the key regulators Runx/Cbfa and the vitamin D receptor complex. Furthermore, CpG methylation affects neither basal nor vitamin D-enhanced OC promoter activity in transient expression experiments. Together, our results indicate that DNA methylation may contribute indirectly to OC transcriptional control in osteoblasts by maintaining a highly condensed and repressed chromatin structure.
Collapse
Affiliation(s)
- Alejandro Villagra
- Departamento de Biologia Molecular, Facultad de Ciencias Biologicas, Universidad de Concepcion, Casilla 160-C, Concepcion, Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kudo S, Nomura Y, Segawa M, Fujita N, Nakao M, Dragich J, Schanen C, Tamura M. Functional analyses of MeCP2 mutations associated with Rett syndrome using transient expression systems. Brain Dev 2001; 23 Suppl 1:S165-73. [PMID: 11738866 DOI: 10.1016/s0387-7604(01)00345-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Rett syndrome, an X-linked neurodevelopmental disorder, is a major cause of mental retardation in females. Recent genetic analyses have revealed that mutations in the methyl-CpG-binding protein gene encoding MeCP2 are associated with Rett syndrome. In this study, we used transient expression systems to investigate the functional significance of mutations seen in patients with Rett syndrome. Missense mutations in the methyl-CpG-binding domain were analyzed by the transfection in mouse L929 cells and Drosophila SL2 cells. The L929 cells were utilized to investigate the effects of mutations on the affinity for heterochromatin, where methylated CpG dinucleotides are extremely enriched. The SL2 cells were utilized to analyze their effects on transcriptional repression activities. R106W and F155S mutations led to the substantial impairment of MeCP2 functions, showing the loss of accumulation of the mutated protein to mouse heterochromatin and the reduction of the transcriptional repressive activity in Drosophila SL2 cells. Intriguingly, the R133C mutant retained the functionality equivalent to MeCP2 in these analyses. On the other hand, the T158M mutation exhibited the intermediate level of the impairment of functions in both analyses. Thus, these functional assays are useful to evaluate the consequences of mutation in the methyl-CpG-binding domain of MeCP2 and provide an insight into the relationship between the genotype and the severity of Rett syndrome.
Collapse
Affiliation(s)
- S Kudo
- Hokkaido Institute of Public Health, 060-0819, Sapporo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Cabaniols JP, Fazilleau N, Casrouge A, Kourilsky P, Kanellopoulos JM. Most alpha/beta T cell receptor diversity is due to terminal deoxynucleotidyl transferase. J Exp Med 2001; 194:1385-90. [PMID: 11696602 PMCID: PMC2195970 DOI: 10.1084/jem.194.9.1385] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The contribution of template-independent nucleotide addition to antigen receptor diversity is unknown. We therefore determined the size of the T cell receptor (TCR)alpha/beta repertoire in mice bearing a null mutation on both alleles of the terminal deoxynucleotidyl transferase (Tdt) gene. We used a method based upon polymerase chain reaction amplification and exhaustive sequencing of various AV-AJ and BV-BJ combinations. In both wild-type and Tdt degrees / degrees mice, TCRAV diversity is one order of magnitude lower than the TCRBV diversity. In Tdt degrees / degrees animals, TCRBV chain diversity is reduced 10-fold compared with wild-type mice. In addition, in Tdt degrees / degrees mice, one BV chain can associate with three to four AV chains as in wild-type mice. The alpha/beta repertoire size in Tdt degrees / degrees mice is estimated to be 10(5) distinct receptors, approximately 5-10% of that calculated for wild-type mice. Thus, while Tdt activity is not involved in the combinatorial diversity resulting from alpha/beta pairing, it contributes to at least 90% of TCRalpha/beta diversity.
Collapse
Affiliation(s)
- J P Cabaniols
- Unité de Biologie Moléculaire du Gène, Institut National de la Sante et de la Recherche Medicale U277, Institut Pasteur, 75 724 Paris, France
| | | | | | | | | |
Collapse
|
11
|
Boatright JH, Nickerson JM, Borst DE. Site-specific DNA hypomethylation permits expression of the IRBP gene. Brain Res 2000; 887:211-21. [PMID: 11134609 DOI: 10.1016/s0006-8993(00)02990-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Interphotoreceptor retinoid binding protein (IRBP), a putative component of the visual cycle, is expressed selectively in the retina and pineal gland. This study examined whether site-specific DNA hypomethylation plays a role in this expression regulation. Southern blotting of HpaII and MspI digests of DNA from various bovine and murine tissues (whole brain, retina, pineal gland, superior colliculus, cortex, thymus, habenular nucleus, cornea, liver, tail, and kidney) revealed that specific CpG dinucleotides in the IRBP gene promoter are hypomethylated in DNA from retinal photoreceptor cells and pineal gland compared to DNA from other tissues. These sites are methylated in DNA from non-photoreceptor retinal cells. Exogenous methylation of these sites diminished DNA:protein binding in electrophoretic mobility shift assays. HpaII methylation of chloramphenicol acetyltransferase reporter constructs suppressed IRBP but not SV40 promoter activity in transiently transfected primary cultures of embryonic chick retinal cells. These data indicate that specific cytosines in the bovine and murine IRBP promoters are unmethylated in photoreceptive cells but methylated in other tissues. This differential DNA methylation may modulate IRBP gene expression since exogenous methylation of the murine sites suppresses reporter gene transcription, apparently by inhibiting DNA:protein binding events.
Collapse
Affiliation(s)
- J H Boatright
- Department of Ophthalmology, B5511, Emory Eye Center, 1365-B Clifton Road, N.E., Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|