1
|
Hendershot LM. A BiP-centric view of endoplasmic reticulum functions and of my career. J Mol Biol 2025:169052. [PMID: 40024435 DOI: 10.1016/j.jmb.2025.169052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
After completing my post-doctoral training at the University of Alabama, Birmingham and a brief period on the faculty there, I joined the Department of Tumor Cell Biology at St. Jude Children's Research Hospital in 1987 as an Assistant Member and started my independent research program. For the following 37 years, I led a relatively small basic research group comprised at various times of post-doctoral fellows, graduate students, undergraduate students, and research technicians; many of whom I am still in contact. Last year I closed the lab and transitioned to an emeritus position at St. Jude. I continue to maintain several research collaborations covering areas of research that have long been dear to my heart. My post-doctoral studies on BiP revealed that it controlled immunoglobulin assembly and transport, and as such, played a critical role in fidelity of the immune response. My lab continued to define BiP's functions in protein folding and subunit assembly, as well as, in degradation using biochemical, cell-based, and biophysical analyses. Several ER localized co-factors that regulate the activity of BiP and allow it to contribute to its multiple ER functions were identified by our group. These include DnaJ family members and nucleotide change factors. Through a variety of collaborative studies, we pursued BiP's functions in maintaining the permeability barrier of the translocon, contributing to ER calcium stores, and regulating the up-stream transducers of the UPR, a stress response that is activated by the accumulation of unfolded proteins in the ER.
Collapse
Affiliation(s)
- Linda M Hendershot
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105
| |
Collapse
|
2
|
Al Qaraghuli MM, Kubiak-Ossowska K, Ferro VA, Mulheran PA. Exploiting the Fc base of IgG antibodies to create functional nanoparticle conjugates. Sci Rep 2024; 14:14832. [PMID: 38937649 PMCID: PMC11211340 DOI: 10.1038/s41598-024-65822-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024] Open
Abstract
The structures of the Fc base of various IgG antibodies have been examined with a view to understanding how this region can be used to conjugate IgG to nanoparticles. The base structure is found to be largely consistent across a range of species and subtypes, comprising a hydrophobic region surrounded by hydrophilic residues, some of which are charged at physiological conditions. In addition, atomistic Molecular Dynamics simulations were performed to explore how model nanoparticles interact with the base using neutral and negatively charged gold nanoparticles. Both types of nanoparticle interacted readily with the base, leading to an adaptation of the antibody base surface to enhance the interactions. Furthermore, these interactions left the rest of the domain at the base of the Fc region structurally intact. This implies that coupling nanoparticles to the base of an IgG molecule is both feasible and desirable, since it leaves the antibody free to interact with its surroundings so that antigen-binding functionality can be retained. These results will therefore help guide future attempts to develop new nanotechnologies that exploit the unique properties of both antibodies and nanoparticles.
Collapse
Affiliation(s)
- Mohammed M Al Qaraghuli
- EPSRC Future Manufacturing Research Hub for Continuous Manufacturing and Advanced Crystallisation, University of Strathclyde, Glasgow, UK.
- SiMologics Ltd. The Enterprise Hub, Level 6 Graham Hills Building, 50 Richmond Street, Glasgow, G1 1XP, UK.
- Department of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow, G1 1XJ, UK.
| | - Karina Kubiak-Ossowska
- Department of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow, G1 1XJ, UK
- Archie-West, Department of Physics, University of Strathclyde, 107 Rottenrow East, Glasgow, G4 0NG, UK
| | - Valerie A Ferro
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Paul A Mulheran
- Department of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow, G1 1XJ, UK
| |
Collapse
|
3
|
Caputo V, Negri I, Moudoud L, Libera M, Bonizzi L, Clementi M, Diotti RA. Anti-HIV Humoral Response Induced by Different Anti-Idiotype Antibody Formats: An In Silico and In Vivo Approach. Int J Mol Sci 2024; 25:5737. [PMID: 38891926 PMCID: PMC11171986 DOI: 10.3390/ijms25115737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Despite advancements in vaccinology, there is currently no effective anti-HIV vaccine. One strategy under investigation is based on the identification of epitopes recognized by broadly neutralizing antibodies to include in vaccine preparation. Taking into account the benefits of anti-idiotype molecules and the diverse biological attributes of different antibody formats, our aim was to identify the most immunogenic antibody format. This format could serve as a foundational element for the development of an oligo-polyclonal anti-idiotype vaccine against HIV-1. For our investigation, we anchored our study on an established b12 anti-idiotype, referred to as P1, and proposed four distinct formats: two single chains and two minibodies, both in two different orientations. For a deeper characterization of these molecules, we used immunoinformatic tools and tested them on rabbits. Our studies have revealed that a particular minibody conformation, MbVHVL, emerges as the most promising candidate. It demonstrates a significant binding affinity with b12 and elicits a humoral anti-HIV-1 response in rabbits similar to the Fab format. This study marks the first instance where the minibody format has been shown to provoke a humoral response against a pathogen. Furthermore, this format presents biological advantages over the Fab format, including bivalency and being encoded by a monocistronic gene, making it better suited for the development of RNA-based vaccines.
Collapse
Affiliation(s)
- Valeria Caputo
- Pomona Ricerca S.r.l, Via Assarotti 7, 10122 Turin, Italy
- One Health Unit, Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milan, Via Pascal 36, 20133 Milan, Italy
| | - Ilaria Negri
- Pomona Ricerca S.r.l, Via Assarotti 7, 10122 Turin, Italy
| | - Louiza Moudoud
- Pomona Ricerca S.r.l, Via Assarotti 7, 10122 Turin, Italy
- One Health Unit, Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milan, Via Pascal 36, 20133 Milan, Italy
| | - Martina Libera
- Pomona Ricerca S.r.l, Via Assarotti 7, 10122 Turin, Italy
- One Health Unit, Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milan, Via Pascal 36, 20133 Milan, Italy
| | - Luigi Bonizzi
- One Health Unit, Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milan, Via Pascal 36, 20133 Milan, Italy
| | - Massimo Clementi
- Pomona Ricerca S.r.l, Via Assarotti 7, 10122 Turin, Italy
- Laboratory of Microbiology and Virology, ‘Vita-Salute’ San Raffaele University, Via Olgettina 58, 20132 Milan, Italy
| | - Roberta Antonia Diotti
- Pomona Ricerca S.r.l, Via Assarotti 7, 10122 Turin, Italy
- One Health Unit, Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milan, Via Pascal 36, 20133 Milan, Italy
| |
Collapse
|
4
|
Chen Q, Menon R, Calder LJ, Tolar P, Rosenthal PB. Cryomicroscopy reveals the structural basis for a flexible hinge motion in the immunoglobulin M pentamer. Nat Commun 2022; 13:6314. [PMID: 36274064 PMCID: PMC9588798 DOI: 10.1038/s41467-022-34090-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 10/12/2022] [Indexed: 12/25/2022] Open
Abstract
Immunoglobulin M (IgM) is the most ancient of the five isotypes of immunoglobulin (Ig) molecules and serves as the first line of defence against pathogens. Here, we use cryo-EM to image the structure of the human full-length IgM pentamer, revealing antigen binding domains flexibly attached to the asymmetric and rigid core formed by the Cμ4 and Cμ3 constant regions and the J-chain. A hinge is located at the Cμ3/Cμ2 domain interface, allowing Fabs and Cμ2 to pivot as a unit both in-plane and out-of-plane. This motion is different from that observed in IgG and IgA, where the two Fab arms are able to swing independently. A biased orientation of one pair of Fab arms results from asymmetry in the constant domain (Cμ3) at the IgM subunit interacting most extensively with the J-chain. This may influence the multi-valent binding to surface-associated antigens and complement pathway activation. By comparison, the structure of the Fc fragment in the IgM monomer is similar to that of the pentamer, but is more dynamic in the Cμ4 domain.
Collapse
Affiliation(s)
- Qu Chen
- grid.451388.30000 0004 1795 1830Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT UK
| | - Rajesh Menon
- grid.451388.30000 0004 1795 1830Immune Receptor Activation Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT UK
| | - Lesley J. Calder
- grid.451388.30000 0004 1795 1830Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT UK
| | - Pavel Tolar
- Immune Receptor Activation Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK. .,Institute of Immunity and Transplantation, University College London, Rowland Hill Street, London, NW3 2PP, UK.
| | - Peter B. Rosenthal
- grid.451388.30000 0004 1795 1830Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT UK
| |
Collapse
|
5
|
Masiero A, Nelly L, Marianne G, Christophe S, Florian L, Ronan C, Claire B, Cornelia Z, Grégoire B, Eric L, Ludovic L, Dominique B, Sylvie A, Marie G, Francis D, Fabienne S, Cécile C, Isabelle A, Jacques D, Jérôme D, Bruno G, Katarina R, Jean-Michel M, Catherine P. The impact of proline isomerization on antigen binding and the analytical profile of a trispecific anti-HIV antibody. MAbs 2021; 12:1698128. [PMID: 31791173 PMCID: PMC8675452 DOI: 10.1080/19420862.2019.1698128] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Proline cis-trans conformational isomerization is a mechanism that affects different types of protein functions and behaviors. Using analytical characterization, structural analysis, and molecular dynamics simulations, we studied the causes of an aberrant two-peak size-exclusion chromatography profile observed for a trispecific anti-HIV antibody. We found that proline isomerization in the tyrosine-proline-proline (YPP) motif in the heavy chain complementarity-determining region (CDR)3 domain of one of the antibody arms (10e8v4) was a component of this profile. The pH effect on the conformational equilibrium that led to these two populations was presumably caused by a histidine residue (H147) in the light chain that is in direct contact with the YPP motif. Finally, we demonstrated that, due to chemical equilibrium between the cis and trans proline conformers, the antigen-binding potency of the trispecific anti-HIV antibody was not significantly affected in spite of a potential structural clash of 10e8v4 YPtransPtrans conformers with the membrane-proximal ectodomain region epitope in the GP41 antigen. Altogether, these results reveal at mechanistic and molecular levels the effect of proline isomerization in the CDR on the antibody binding and analytical profiles, and support further development of the trispecific anti-HIV antibody.
Collapse
Affiliation(s)
| | - Lechat Nelly
- Biologics Development, SANOFI R&D, Vitry-sur-Seine, France
| | | | | | | | - Crépin Ronan
- Biologics Development, SANOFI R&D, Vitry-sur-Seine, France
| | - Borel Claire
- Biologics Development, SANOFI R&D, Vitry-sur-Seine, France
| | | | - Bisch Grégoire
- Biologics Development, SANOFI R&D, Vitry-sur-Seine, France
| | - Leclerc Eric
- Biologics Development, SANOFI R&D, Vitry-sur-Seine, France
| | | | | | | | | | | | | | | | | | - Dumas Jacques
- Biologics Research, SANOFI R&D, Vitry-sur-Seine, France
| | - Dabin Jérôme
- Biologics Development, SANOFI R&D, Vitry-sur-Seine, France
| | - Genet Bruno
- Biologics Development, SANOFI R&D, Vitry-sur-Seine, France
| | | | | | | |
Collapse
|
6
|
Komatsu K, Kumon K, Arita M, Onitsuka M, Omasa T, Yohda M. Effect of the disulfide isomerase PDIa4 on the antibody production of Chinese hamster ovary cells. J Biosci Bioeng 2020; 130:637-643. [PMID: 32878739 DOI: 10.1016/j.jbiosc.2020.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/22/2020] [Accepted: 08/02/2020] [Indexed: 12/30/2022]
Abstract
Therapeutic monoclonal antibodies recognize and bind specific molecules on the surface of target cells, stimulating the immune system, which can attack these targeted cells. These antibodies are produced by mammalian cells, including Chinese hamster ovary (CHO) cells, because the formation of antibodies requires complicated posttranslational modifications, including peptidyl-prolyl cis/trans isomerization, disulfide bond formation, and glycosylation. Currently, it is thought that the efficient production of secretory proteins is limited by posttranslational processes. The ER is the biosynthesis site of all secreted and membrane proteins. The accumulation of unfolded proteins in the ER causes the ER stress response. During the ER stress state, various molecular chaperones are expressed to prevent proteins from the aggregate formation. The molecular chaperone involved in ER stress likely plays an essential role in the production of secretory proteins. The purpose of this study was to improve the production of monoclonal antibodies by cells. We elucidated the function of ER chaperones in the production of a monoclonal antibody. First, we quantitatively measured the mRNA expression levels of protein disulfide-isomerase family members. In CHO HcD6 cells treated with tunicamycin, the expression level of pdia4 was significantly increased. Second, we investigated the relationship between PDIa4 and antibody productivity in pdia4-knockdown cells. Both a decrease in the amount of secreted antibody and the accumulation of immature antibodies inside the cells were observed. Recombinant PDIa4 was able to refold the antibodies and Fabs. These results indicate that PDIa4 affects the production of monoclonal antibodies by catalyzing disulfide bond formation in these antibodies in CHO cells.
Collapse
Affiliation(s)
- Kei Komatsu
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Kento Kumon
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Mayuno Arita
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Masayoshi Onitsuka
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8513, Japan
| | - Takeshi Omasa
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masafumi Yohda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
7
|
Weber B, Brandl MJ, Pulido Cendales MD, Berner C, Pradhan T, Feind GM, Zacharias M, Reif B, Buchner J. A single residue switch reveals principles of antibody domain integrity. J Biol Chem 2018; 293:17107-17118. [PMID: 30228183 DOI: 10.1074/jbc.ra118.005475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/14/2018] [Indexed: 11/06/2022] Open
Abstract
Despite their importance for antibody architecture and design, the principles governing antibody domain stability are still not understood in sufficient detail. Here, to address this question, we chose a domain from the invariant part of IgG, the CH2 domain. We found that compared with other Ig domains, the isolated CH2 domain is a surprisingly unstable monomer, exhibiting a melting temperature of ∼44 °C. We further show that the presence of an additional C-terminal lysine in a CH2 variant substantially increases the melting temperature by ∼14 °C relative to CH2 WT. To explore the molecular mechanism of this effect, we employed biophysical approaches to probe structural features of CH2. The results revealed that Lys101 is key for the formation of three secondary structure elements: the very C-terminal β-strand and two adjacent α-helices. We also noted that a dipole interaction between Lys101 and the nearby α-helix, is important for stabilizing the CH2 architecture by protecting the hydrophobic core. Interestingly, this interaction between the α-helix and C-terminal charged residues is highly conserved in antibody domains, suggesting that it represents a general mechanism for maintaining their integrity. We conclude that the observed interactions involving terminal residues have practical applications for defining domain boundaries in the development of antibody therapeutics and diagnostics.
Collapse
Affiliation(s)
- Benedikt Weber
- From the Center for Integrated Protein Science Munich, Departments of Chemie and
| | - Matthias J Brandl
- From the Center for Integrated Protein Science Munich, Departments of Chemie and
| | | | - Carolin Berner
- From the Center for Integrated Protein Science Munich, Departments of Chemie and
| | - Tejaswini Pradhan
- From the Center for Integrated Protein Science Munich, Departments of Chemie and
| | - Gina Maria Feind
- From the Center for Integrated Protein Science Munich, Departments of Chemie and
| | | | - Bernd Reif
- From the Center for Integrated Protein Science Munich, Departments of Chemie and
| | - Johannes Buchner
- From the Center for Integrated Protein Science Munich, Departments of Chemie and
| |
Collapse
|
8
|
You J, Shi Y, Zhu W, Wu Z, Xiong J. Characterization of disulfide linkages at the hinge region of IgG antibodies by HPLC mass spectrometry. Biomed Chromatogr 2018; 32:e4371. [PMID: 30121965 DOI: 10.1002/bmc.4371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 07/31/2018] [Accepted: 08/13/2018] [Indexed: 11/10/2022]
Abstract
There are two types of disulfide linkages in IgG antibodies at the hinge region: intra- and inter-disulfide linkages. Characterization of intra-disulfide linked isomer will provide important information on the stability of the antibodies and better understanding of the mechanism of Fab-arm exchange. In this report, HPLC coupled with high-resolution mass spectrometry was applied for characterization of disulfide linkages in IgG antibodies at the hinge region. We were able to accurately identify both inter- and intra-disulfide linked peptides and correctly quantify intra-disulfide isomers. It is the first study to quantify intra-disulfide isomers in IgG antibodies with a mass spectrometry approach. It will help to achieve efficient generation of bispecific antibodies with Fab-arm exchange.
Collapse
Affiliation(s)
- Jia You
- West China School of Public Health and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Ying Shi
- West China School of Public Health and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Wenli Zhu
- Chengdu MediMass Technology CO., LTD, P.R China
| | - Zhigang Wu
- Chengdu MediMass Technology CO., LTD, P.R China
| | - Jingyuan Xiong
- West China School of Public Health and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Abstract
Distal renal tubular acidosis (DRTA) is defined as hyperchloremic, non-anion gap metabolic acidosis with impaired urinary acid excretion in the presence of a normal or moderately reduced glomerular filtration rate. Failure in urinary acid excretion results from reduced H+ secretion by intercalated cells in the distal nephron. This results in decreased excretion of NH4+ and other acids collectively referred as titratable acids while urine pH is typically above 5.5 in the face of systemic acidosis. The clinical phenotype in patients with DRTA is characterized by stunted growth with bone abnormalities in children as well as nephrocalcinosis and nephrolithiasis that develop as the consequence of hypercalciuria, hypocitraturia, and relatively alkaline urine. Hypokalemia is a striking finding that accounts for muscle weakness and requires continued treatment together with alkali-based therapies. This review will focus on the mechanisms responsible for impaired acid excretion and urinary potassium wastage, the clinical features, and diagnostic approaches of hypokalemic DRTA, both inherited and acquired.
Collapse
|
10
|
Koskela EV, de Ruijter JC, Frey AD. Following nature's roadmap: folding factors from plasma cells led to improvements in antibody secretion in S. cerevisiae. Biotechnol J 2017; 12. [PMID: 28429845 DOI: 10.1002/biot.201600631] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 04/12/2017] [Accepted: 04/20/2017] [Indexed: 12/21/2022]
Abstract
Therapeutic protein production in yeast is a reality in industry with an untapped potential to expand to more complex proteins, such as full-length antibodies. Despite numerous engineering approaches, cellular limitations are preventing the use of Saccharomyces cerevisiae as the titers of recombinant antibodies are currently not competitive. Instead of a host specific approach, the possibility of adopting the features from native producers of antibodies, plasma cells, to improve antibody production in yeast. A subset of mammalian folding factors upregulated in plasma cells for expression in yeast and screened for beneficial effects on antibody secretion using a high-throughput ELISA platform was selected. Co-expression of the mammalian chaperone BiP, the co-chaperone GRP170, or the peptidyl-prolyl isomerase FKBP2, with the antibody improved specific product yields up to two-fold. By comparing strains expressing FKBP2 or the yeast PPIase Cpr5p, the authors demonstrate that speeding up peptidyl-prolyl isomerization by upregulation of catalyzing enzymes is a key factor to improve antibody titers in yeast. The findings show that following the route of plasma cells can improve product titers and contribute to developing an alternative yeast-based antibody factory.
Collapse
Affiliation(s)
- Essi V Koskela
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Jorg C de Ruijter
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland.,Current address: Department of Biocatalysis and Isotope Chemistry, Almac Sciences, Craigavon, Northern Ireland, United Kingdom
| | - Alexander D Frey
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| |
Collapse
|
11
|
Garg DK, Kundu B. Hyperthermophilic l -asparaginase bypasses monomeric intermediates during folding to retain cooperativity and avoid amyloid assembly. Arch Biochem Biophys 2017; 622:36-46. [DOI: 10.1016/j.abb.2017.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 10/19/2022]
|
12
|
Yageta S, Shibuya R, Imamura H, Honda S. Conformational and Colloidal Stabilities of Human Immunoglobulin G Fc and Its Cyclized Variant: Independent and Compensatory Participation of Domains in Aggregation of Multidomain Proteins. Mol Pharm 2017; 14:699-711. [DOI: 10.1021/acs.molpharmaceut.6b00983] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Seiki Yageta
- Department of Computational
Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, AIST Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Risa Shibuya
- Department of Computational
Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Hiroshi Imamura
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, AIST Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Shinya Honda
- Department of Computational
Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, AIST Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| |
Collapse
|
13
|
Genetic and antigenic characterization of fragments of the pheasant immunoglobulin Y heavy chain constant region. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0421-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
de Ruijter JC, Koskela EV, Frey AD. Enhancing antibody folding and secretion by tailoring the Saccharomyces cerevisiae endoplasmic reticulum. Microb Cell Fact 2016; 15:87. [PMID: 27216259 PMCID: PMC4878073 DOI: 10.1186/s12934-016-0488-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 05/11/2016] [Indexed: 01/20/2023] Open
Abstract
Background The yeast Saccharomyces cerevisiae provides intriguing possibilities for synthetic biology and bioprocess applications, but its use is still constrained by cellular characteristics that limit the product yields. Considering the production of advanced biopharmaceuticals, a major hindrance lies in the yeast endoplasmic reticulum (ER), as it is not equipped for efficient and large scale folding of complex proteins, such as human antibodies. Results Following the example of professional secretory cells, we show that inducing an ER expansion in yeast by deleting the lipid-regulator gene OPI1 can improve the secretion capacity of full-length antibodies up to fourfold. Based on wild-type and ER-enlarged yeast strains, we conducted a screening of a folding factor overexpression library to identify proteins and their expression levels that enhance the secretion of antibodies. Out of six genes tested, addition of the peptidyl-prolyl isomerase CPR5 provided the most beneficial effect on specific product yield while PDI1, ERO1, KAR2, LHS1 and SIL1 had a mild or even negative effect to antibody secretion efficiency. Combining genes for ER enhancement did not induce any significant additional effect compared to addition of just one element. By combining the Δopi1 strain, with the enlarged ER, with CPR5 overexpression, we were able to boost the specific antibody product yield by a factor of 10 relative to the non-engineered strain. Conclusions Engineering protein folding in vivo is a major task for biopharmaceuticals production in yeast and needs to be optimized at several levels. By rational strain design and high-throughput screening applications we were able to increase the specific secreted antibody yields of S. cerevisiae up to 10-fold, providing a promising strain for further process optimization and platform development for antibody production. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0488-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jorg C de Ruijter
- Department of Biotechnology and Chemical Technology, Aalto University, Kemistintie 1, 02150, Espoo, Finland
| | - Essi V Koskela
- Department of Biotechnology and Chemical Technology, Aalto University, Kemistintie 1, 02150, Espoo, Finland
| | - Alexander D Frey
- Department of Biotechnology and Chemical Technology, Aalto University, Kemistintie 1, 02150, Espoo, Finland.
| |
Collapse
|
15
|
Gruber T, Balbach J. Protein Folding Mechanism of the Dimeric AmphiphysinII/Bin1 N-BAR Domain. PLoS One 2015; 10:e0136922. [PMID: 26368922 PMCID: PMC4569573 DOI: 10.1371/journal.pone.0136922] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/10/2015] [Indexed: 11/23/2022] Open
Abstract
The human AmphyphisinII/Bin1 N-BAR domain belongs to the BAR domain superfamily, whose members sense and generate membrane curvatures. The N-BAR domain is a 57 kDa homodimeric protein comprising a six helix bundle. Here we report the protein folding mechanism of this protein as a representative of this protein superfamily. The concentration dependent thermodynamic stability was studied by urea equilibrium transition curves followed by fluorescence and far-UV CD spectroscopy. Kinetic unfolding and refolding experiments, including rapid double and triple mixing techniques, allowed to unravel the complex folding behavior of N-BAR. The equilibrium unfolding transition curve can be described by a two-state process, while the folding kinetics show four refolding phases, an additional burst reaction and two unfolding phases. All fast refolding phases show a rollover in the chevron plot but only one of these phases depends on the protein concentration reporting the dimerization step. Secondary structure formation occurs during the three fast refolding phases. The slowest phase can be assigned to a proline isomerization. All kinetic experiments were also followed by fluorescence anisotropy detection to verify the assignment of the dimerization step to the respective folding phase. Based on these experiments we propose for N-BAR two parallel folding pathways towards the homodimeric native state depending on the proline conformation in the unfolded state.
Collapse
Affiliation(s)
- Tobias Gruber
- Martin-Luther University Halle-Wittenberg, Institute of Physics, Betty-Heimann Str. 7, 06120, Halle, Germany
| | - Jochen Balbach
- Martin-Luther University Halle-Wittenberg, Institute of Physics, Betty-Heimann Str. 7, 06120, Halle, Germany
- * E-mail:
| |
Collapse
|
16
|
Sakurai K, Nakahata R, Lee YH, Kardos J, Ikegami T, Goto Y. Effects of a reduced disulfide bond on aggregation properties of the human IgG1 CH3 domain. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1526-35. [PMID: 25748879 DOI: 10.1016/j.bbapap.2015.02.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/13/2015] [Accepted: 02/26/2015] [Indexed: 10/23/2022]
Abstract
Recombinant human monoclonal antibodies have become important protein-based therapeutics for the treatment of various diseases. An IgG1 molecule, which is now mainly used for antibody preparation, consists of a total of 12 immunoglobulin domains. Each domain has one disulfide bond. The CH3 domain is the C-terminal domain of the heavy chain of IgG1. The disulfide bonds of some of the CH3 domains are known to be reduced in recombinant human monoclonal antibodies. The lack of intramolecular disulfide bonds may decrease the stability and increase the aggregation propensity of an antibody molecule. To investigate the effects of a reduced disulfide bond in the CH3 domain on conformational stability and aggregation propensity, we performed several physicochemical measurements including circular dichroism, differential scanning calorimetry (DSC), and 2D NMR. DSC measurements showed that both the stability and reversibility of the reduced form were lower than those of the oxidized form. In addition, detailed analyses of the thermal denaturation data revealed that, although a dominant fraction of the reduced form retained a stable dimeric structure, some fractions assumed a less-specifically associated oligomeric state between monomers. The results of the present study revealed the characteristic aggregation properties of antibody molecules.
Collapse
Affiliation(s)
- Kazumasa Sakurai
- High Pressure Protein Research Center, Institute of Advanced Technology, Kinki University, 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan; Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Ryosuke Nakahata
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Young-Ho Lee
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - József Kardos
- Department of Biochemistry, Eötvös Loránd University, Pázmány P. sétány 1/C, Budapest, H-1117 Hungary; MTA-ELTE NAP B Neuroimmunology Research Group, Eötvös Loránd University, Pázmány P. sétány 1/C, Budapest, H-1117 Hungary
| | - Takahisa Ikegami
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuji Goto
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
17
|
Greenwood AI, Kwon J, Nicholson LK. Isomerase-catalyzed binding of interleukin-1 receptor-associated kinase 1 to the EVH1 domain of vasodilator-stimulated phosphoprotein. Biochemistry 2014; 53:3593-607. [PMID: 24857403 DOI: 10.1021/bi500031e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Interleukin-1 receptor-associated kinase 1 (IRAK1) is a crucial signaling kinase in the immune system, involved in Toll-like receptor signaling. Vasodilator-stimulated phosphoprotein (VASP) is a central player in cell migration that regulates actin polymerization and connects signaling events to cytoskeletal remodeling. A VASP–IRAK1 interaction is thought to be important in controlling macrophage migration in response to protein kinase C-ε activation. We show that the monomeric VASP EVH1 domain directly binds to the 168WPPPP172 motif in the IRAK1 undefined domain (IRAK1-UD) with moderate affinity (KDApp = 203 ± 3 μM). We further show that this motif adopts distinct cis and trans isomers for the Trp168–Pro169 peptide bond with nearly equal populations, and that binding to the VASP EVH1 domain is specific for the trans isomer, coupling binding to isomerization. Nuclear magnetic resonance line shape analysis and tryptophan fluorescence experiments reveal the complete kinetics and thermodynamics of the binding reaction, showing diffusion-limited binding to the trans isomer followed by slow, isomerization-dependent binding. We further demonstrate that the peptidyl-prolyl isomerase cyclophilin A (CypA) catalyzes isomerization of the Trp168–Pro169 peptide bond and accelerates binding of the IRAK1-UD to the VASP EVH1 domain. We propose that binding of IRAK1 to tetrameric VASP is regulated by avidity through the assembly of IRAK1 onto receptor-anchored signaling complexes and that an isomerase such as CypA may modulate IRAK1 signaling in vivo. These studies demonstrate a direct interaction between IRAK1 and VASP and suggest a potential mechanism for how this interaction might be regulated by both assembly of IRAK1 onto an activated signaling complex and PPIase enzymes.
Collapse
Affiliation(s)
- Alexander I Greenwood
- Department of Molecular Biology and Genetics, Cornell University , Ithaca, New York 14853, United States
| | | | | |
Collapse
|
18
|
Rispens T, Davies AM, Ooijevaar-de Heer P, Absalah S, Bende O, Sutton BJ, Vidarsson G, Aalberse RC. Dynamics of inter-heavy chain interactions in human immunoglobulin G (IgG) subclasses studied by kinetic Fab arm exchange. J Biol Chem 2014; 289:6098-109. [PMID: 24425871 PMCID: PMC3937676 DOI: 10.1074/jbc.m113.541813] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interdomain interactions between the CH3 domains of antibody heavy chains are the first step in antibody assembly and are of prime importance for maintaining the native structure of IgG. For human IgG4 it was shown that CH3-CH3 interactions are weak, resulting in the potential for half-molecule exchange (“Fab arm exchange”). Here we systematically investigated non-covalent interchain interactions for CH3 domains in the other human subclasses, including polymorphisms (allotypes), using real-time monitoring of Fab arm exchange with a FRET-based kinetic assay. We identified structural variation between human IgG subclasses and allotypes at three amino acid positions (Lys/Asn-392, Val/Met-397, Lys/Arg-409) to alter the strength of inter-domain interactions by >6 orders of magnitude. Each substitution affected the interactions independent from the other substitutions in terms of affinity, but the enthalpic and entropic contributions were non-additive, suggesting a complex interplay. Allotypic variation in IgG3 resulted in widely different CH3 interaction strengths that were even weaker for IgG3 than for IgG4 in the case of allotype G3m(c3c5*/6,24*), whereas G3m(s*/15*) was equally stable to IgG1. These interactions are sufficiently strong to maintain the structural integrity of IgG1 during its normal life span; for IgG2 and IgG3 the inter-heavy chain disulfide bonds are essential to prevent half-molecule dissociation, whereas the labile hinge disulfide bonds favor half-molecule exchange in vivo for IgG4.
Collapse
Affiliation(s)
- Theo Rispens
- From Sanquin Research, 1066 CX Amsterdam, The Netherlands, and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, 1105 AZ, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Molecular cloning and characterization of the α-chain gene of goose immunoglobulin heavy chain. Biotechnol Lett 2013; 36:805-11. [PMID: 24322770 DOI: 10.1007/s10529-013-1415-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/12/2013] [Indexed: 10/25/2022]
Abstract
A novel gene encoding the α-chain of goose immunoglobulin heavy-chain (Igα) was cloned by reverse transcription-PCR. The cDNA had 1,760 bp and encompassed a partial V-D-J region of the heavy chain, a constant region (Cα) and 3'-untranslated region of α-chain. The Cα gene contains four constant region domains (CH1-CH4). Phylogenetic analysis indicated that goose IgCα has a close genetic relationship with duck, ostrich and chicken IgCα. Three-dimensional modeling and glycosylation analysis revealed the goose Igα is consistent with the characterization of immunoglobulin. Western blotting suggested the goose IgCα has the same antigenicity to natural IgA. In general, the identification of goose immunoglobulin not only provides insights into the evolution of the Ig heavy-chain gene family, but may also benefit future studies of the avian immune system.
Collapse
|
20
|
Nishimiya D. Proteins improving recombinant antibody production in mammalian cells. Appl Microbiol Biotechnol 2013; 98:1031-42. [PMID: 24327213 DOI: 10.1007/s00253-013-5427-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/20/2013] [Accepted: 11/21/2013] [Indexed: 12/13/2022]
Abstract
Mammalian cells have been successfully used for the industrial manufacture of antibodies due to their ability to synthesize antibodies correctly. Nascent polypeptides must be subjected to protein folding and assembly in the ER and the Golgi to be secreted as mature proteins. If these reactions do not proceed appropriately, unfolded or misfolded proteins are degraded by the ER-associated degradation (ERAD) pathway. The accumulation of unfolded proteins or intracellular antibody crystals accompanied by this failure triggers the unfolded protein response (UPR), which can considerably attenuate the levels of translation, folding, assembly, and secretion, resulting in reduction of antibody productivity. Accumulating studies by omics-based analysis of recombinant mammalian cells suggest that not only protein secretion processes including protein folding and assembly but also translation are likely to be the rate-limiting factors for increasing antibody production. Here, this review describes the mechanism of antibody folding and assembly and recent advantages which could improve recombinant antibody production in mammalian cells by utilizing proteins such as ER chaperones or UPR-related proteins.
Collapse
Affiliation(s)
- Daisuke Nishimiya
- New Modality Research Laboratories, R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo, 140-8710, Japan,
| |
Collapse
|
21
|
Protein engineering and the use of molecular modeling and simulation: the case of heterodimeric Fc engineering. Methods 2013; 65:77-94. [PMID: 24211748 DOI: 10.1016/j.ymeth.2013.10.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 10/12/2013] [Accepted: 10/25/2013] [Indexed: 11/23/2022] Open
Abstract
Computational and structure guided methods can make significant contributions to the development of solutions for difficult protein engineering problems, including the optimization of next generation of engineered antibodies. In this paper, we describe a contemporary industrial antibody engineering program, based on hypothesis-driven in silico protein optimization method. The foundational concepts and methods of computational protein engineering are discussed, and an example of a computational modeling and structure-guided protein engineering workflow is provided for the design of best-in-class heterodimeric Fc with high purity and favorable biophysical properties. We present the engineering rationale as well as structural and functional characterization data on these engineered designs.
Collapse
|
22
|
Bertz M, Buchner J, Rief M. Mechanical Stability of the Antibody Domain CH3 Homodimer in Different Oxidation States. J Am Chem Soc 2013; 135:15085-91. [DOI: 10.1021/ja405076j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Morten Bertz
- Physik Department
E22, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Johannes Buchner
- Chemie Department, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
- Munich Center for Integrated Protein Science (CIPSM), 81377 München, Germany
| | - Matthias Rief
- Physik Department
E22, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
- Munich Center for Integrated Protein Science (CIPSM), 81377 München, Germany
| |
Collapse
|
23
|
Ying T, Chen W, Feng Y, Wang Y, Gong R, Dimitrov DS. Engineered soluble monomeric IgG1 CH3 domain: generation, mechanisms of function, and implications for design of biological therapeutics. J Biol Chem 2013; 288:25154-25164. [PMID: 23867459 DOI: 10.1074/jbc.m113.484154] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most of the therapeutic antibodies approved for clinical use are full-size IgG1 molecules. The interaction of the IgG1 Fc with the neonatal Fc receptor (FcRn) plays a critical role in maintaining their long half-life. We have hypothesized that isolated Fc domains could be engineered to functionally mimic full-size IgG1 (nanoantibodies) but with decreased (10-fold) size. Here, we report for the first time the successful generation of a soluble, monomeric CH3 domain (mCH3). In contrast to the wild-type dimeric CH3, the mCH3 exhibited pH-dependent binding to FcRn similar to that of Fc. The binding free energy of mCH3 to FcRn was higher than that of isolated CH2 but lower than that of Fc. Therefore, CH3 may contribute a larger portion of the free energy of binding to FcRn than CH2. A fusion protein of mCH3 with an engineered antibody domain (m36.4) also bound to FcRn in a pH-dependent fashion and exhibited significantly higher neutralizing activity against HIV-1 than m36.4-Fc fusion proteins. The m36.4-mCH3 fusion protein was monomeric, stable, soluble, and expressed at a high level in Escherichia coli. We also found that engineering an additional disulfide bond in mCH3 remarkably increased its thermal stability, whereas the FcRn binding was not affected. These data suggest that mCH3 could not only help in the exploration of the dual mechanisms of the CH3 contribution to Fc functions (dimerization and FcRn interactions) but could also be used for the development of candidate therapeutics with optimized half-life, enhanced tissue penetration, access to sterically restricted binding sites, and increased therapeutic efficacy.
Collapse
Affiliation(s)
- Tianlei Ying
- From the Protein Interactions Group, Cancer and Inflammation Program, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702 and.
| | - Weizao Chen
- From the Protein Interactions Group, Cancer and Inflammation Program, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702 and
| | - Yang Feng
- From the Protein Interactions Group, Cancer and Inflammation Program, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702 and
| | - Yanping Wang
- From the Protein Interactions Group, Cancer and Inflammation Program, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702 and; SAIC-Frederick, Inc., Frederick, Maryland 21702
| | - Rui Gong
- From the Protein Interactions Group, Cancer and Inflammation Program, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702 and
| | - Dimiter S Dimitrov
- From the Protein Interactions Group, Cancer and Inflammation Program, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702 and
| |
Collapse
|
24
|
Von Kreudenstein TS, Escobar-Carbrera E, Lario PI, D'Angelo I, Brault K, Kelly J, Durocher Y, Baardsnes J, Woods RJ, Xie MH, Girod PA, Suits MDL, Boulanger MJ, Poon DKY, Ng GYK, Dixit SB. Improving biophysical properties of a bispecific antibody scaffold to aid developability: quality by molecular design. MAbs 2013; 5:646-54. [PMID: 23924797 DOI: 10.4161/mabs.25632] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
While the concept of Quality-by-Design is addressed at the upstream and downstream process development stages, we questioned whether there are advantages to addressing the issues of biologics quality early in the design of the molecule based on fundamental biophysical characterization, and thereby reduce complexities in the product development stages. Although limited number of bispecific therapeutics are in clinic, these developments have been plagued with difficulty in producing materials of sufficient quality and quantity for both preclinical and clinical studies. The engineered heterodimeric Fc is an industry-wide favorite scaffold for the design of bispecific protein therapeutics because of its structural, and potentially pharmacokinetic, similarity to the natural antibody. Development of molecules based on this concept, however, is challenged by the presence of potential homodimer contamination and stability loss relative to the natural Fc. We engineered a heterodimeric Fc with high heterodimeric specificity that also retains natural Fc-like biophysical properties, and demonstrate here that use of engineered Fc domains that mirror the natural system translates into an efficient and robust upstream stable cell line selection process as a first step toward a more developable therapeutic.
Collapse
|
25
|
Dimerization of TCTP and its clinical implications for allergy. Biochimie 2013; 95:659-66. [DOI: 10.1016/j.biochi.2012.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/09/2012] [Indexed: 01/12/2023]
|
26
|
Rosati S, Thompson NJ, Barendregt A, Hendriks LJA, Bakker ABH, de Kruif J, Throsby M, van Duijn E, Heck AJR. Qualitative and Semiquantitative Analysis of Composite Mixtures of Antibodies by Native Mass Spectrometry. Anal Chem 2012; 84:7227-32. [DOI: 10.1021/ac301611d] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sara Rosati
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for
Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The
Netherlands
- Netherlands Proteomics Centre, Padualaan 8, 3584 CH
Utrecht, The Netherlands
| | - Natalie J. Thompson
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for
Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The
Netherlands
- Netherlands Proteomics Centre, Padualaan 8, 3584 CH
Utrecht, The Netherlands
| | - Arjan Barendregt
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for
Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The
Netherlands
- Netherlands Proteomics Centre, Padualaan 8, 3584 CH
Utrecht, The Netherlands
| | - Linda J. A. Hendriks
- Merus Biopharmaceuticals, Postvak 133,
Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | - John de Kruif
- Merus Biopharmaceuticals, Postvak 133,
Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Mark Throsby
- Merus Biopharmaceuticals, Postvak 133,
Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Esther van Duijn
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for
Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The
Netherlands
- Netherlands Proteomics Centre, Padualaan 8, 3584 CH
Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for
Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The
Netherlands
- Netherlands Proteomics Centre, Padualaan 8, 3584 CH
Utrecht, The Netherlands
| |
Collapse
|
27
|
Traxlmayr MW, Hasenhindl C, Hackl M, Stadlmayr G, Rybka JD, Borth N, Grillari J, Rüker F, Obinger C. Construction of a stability landscape of the CH3 domain of human IgG1 by combining directed evolution with high throughput sequencing. J Mol Biol 2012; 423:397-412. [PMID: 22846908 PMCID: PMC3469823 DOI: 10.1016/j.jmb.2012.07.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/13/2012] [Accepted: 07/18/2012] [Indexed: 12/21/2022]
Abstract
One of the most important but still poorly understood issues in protein chemistry is the relationship between sequence and stability of proteins. Here, we present a method for analyzing the influence of each individual residue on the foldability and stability of an entire protein. A randomly mutated library of the crystallizable fragment of human immunoglobulin G class 1 (IgG1-Fc) was expressed on the surface of yeast, followed by heat incubation at 79 °C and selection of stable variants that still bound to structurally specific ligands. High throughput sequencing allowed comparison of the mutation rate between the starting and selected library pools, enabling the generation of a stability landscape for the entire CH3 domain of human IgG1 at single residue resolution. Its quality was analyzed with respect to (i) the structure of IgG1-Fc, (ii) evolutionarily conserved positions and (iii) in silico calculations of the energy of unfolding of all variants in comparison with the wild-type protein. In addition, this new experimental approach allowed the assignment of functional epitopes of structurally specific ligands used for selection [Fc γ‐receptor I (CD64) and anti-human CH2 domain antibody] to distinct binding regions in the CH2 domain.
Collapse
Affiliation(s)
- Michael W Traxlmayr
- Christian Doppler Laboratory for Antibody Engineering, Vienna Institute of BioTechnology, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Liu H, May K. Disulfide bond structures of IgG molecules: structural variations, chemical modifications and possible impacts to stability and biological function. MAbs 2012; 4:17-23. [PMID: 22327427 DOI: 10.4161/mabs.4.1.18347] [Citation(s) in RCA: 332] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The disulfide bond structures established decades ago for immunoglobulins have been challenged by findings from extensive characterization of recombinant and human monoclonal IgG antibodies. Non-classical disulfide bond structure was first identified in IgG4 and later in IgG2 antibodies. Although, cysteine residues should be in the disulfide bonded states, free sulfhydryls have been detected in all subclasses of IgG antibodies. In addition, disulfide bonds are susceptible to chemical modifications, which can further generate structural variants such as IgG antibodies with trisulfide bond or thioether linkages. Trisulfide bond formation has also been observed for IgG of all subclasses. Degradation of disulfide bond through β-elimination generates free sulfhydryls disulfide and dehydroalanine. Further reaction between free sulfhydryl and dehydroalanine leads to the formation of a non-reducible cross-linked species. Hydrolysis of the dehydroalanine residue contributes substantially to antibody hinge region fragmentation. The effect of these disulfide bond variations on antibody structure, stability and biological function are discussed in this review.
Collapse
|
29
|
Rose RJ, Labrijn AF, van den Bremer ETJ, Loverix S, Lasters I, van Berkel PHC, van de Winkel JGJ, Schuurman J, Parren PWHI, Heck AJR. Quantitative analysis of the interaction strength and dynamics of human IgG4 half molecules by native mass spectrometry. Structure 2011; 19:1274-82. [PMID: 21893287 DOI: 10.1016/j.str.2011.06.016] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 05/18/2011] [Accepted: 06/13/2011] [Indexed: 01/20/2023]
Abstract
Native mass spectrometry (MS) is a powerful technique for studying noncovalent protein-protein interactions. Here, native MS was employed to examine the noncovalent interactions involved in homodimerization of antibody half molecules (HL) in hinge-deleted human IgG4 (IgG4Δhinge). By analyzing the concentration dependence of the relative distribution of monomer HL and dimer (HL)(2) species, the apparent dissociation constant (K(D)) for this interaction was determined. In combination with site-directed mutagenesis, the relative contributions of residues at the CH3-CH3 interface to this interaction could be characterized and corresponding K(D) values quantified over a range of 10(-10)-10(-4) M. The critical importance of this noncovalent interaction in maintaining the intact dimeric structure was also proven for the full-length IgG4 backbone. Using time-resolved MS, the kinetics of the interaction could be measured, reflecting the dynamics of IgG4 HL exchange. Hence, native MS has provided a quantitative view of local structural features that define biological properties of IgG4.
Collapse
Affiliation(s)
- Rebecca J Rose
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Guhr T, Derksen N, Aalberse R, Rispens T. Use of a human recombinant immunoglobulin G1 CH3 domain as a probe for detecting alternatively folded human IgG in intravenous Ig products. J Pharm Sci 2011; 101:978-86. [PMID: 22102504 DOI: 10.1002/jps.22828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 11/02/2011] [Accepted: 11/02/2011] [Indexed: 12/24/2022]
Abstract
It has been previously reported that intravenous immunoglobulin (IVIg) contains alternatively folded (aggregation-prone) monomeric immunoglobulin (Ig) G molecules. These alternatively folded IgG molecules may act as precursors for Fc-Fc-mediated dimerization and/or aggregation in IVIg. To study this phenomenon, we set up a fluid-phase binding assay using an acid-shocked (pH 2.5) recombinant human IgG1 CH3 domain as a probe in combination with size-exclusion chromatography. Three IVIg products and a recombinant IgG1 antibody were analyzed. Besides CH3 probe binding to monomeric IgG derived from all IVIg products, the CH3 probe also bound to IgG4 half-molecules. This IgG4 binding could be distinguished from binding to IgG molecules on the basis of molecular weight. In contrast, no CH3 probe binding to IgG from the recombinant IgG1 antibody was observed. After acid-induced aggregation of either IVIg or a recombinant IgG1 antibody, CH3 probe binding to oligomeric complexes was observed, but no longer to monomeric IgG, demonstrating that the alternatively folded monomeric IgG molecules had oligomerized. Our results indicate that the tested IVIg products contain traces of alternatively folded IgG molecules within the "normal" monomeric IgG fraction. Furthermore, we conclude that the fluid-phase binding assay is sensitive to detect these alternatively folded IgG molecules in IVIg.
Collapse
|
31
|
Cyclosporine A suppresses immunoglobulin G biosynthesis via inhibition of cyclophilin B in murine hybridomas and B cells. Int Immunopharmacol 2011; 12:42-9. [PMID: 22032839 DOI: 10.1016/j.intimp.2011.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/09/2011] [Accepted: 10/11/2011] [Indexed: 12/20/2022]
Abstract
Immunoglubulin G (IgG) is a major isotype of antibody, which is predominantly involved in immune response. The complete tetramer is needed to fold and assemble in endoplasmic reticulum (ER) prior to secretion from cells. Protein quality control guided by ER chaperons is most essential for full biological activity. Cyclophilin B (CypB) was initially identified as a high-affinity binding protein for the immunosuppressive drug Cyclosporine A (CsA). CsA suppresses organ rejection by halting productions of pro-inflammatory molecules in T cell and abolishes the enzymatic property of CypB that accelerates the folding of proteins by catalysing the isomerization of peptidyl-proline bonds in ER. Here, we reported that CsA significantly inhibited IgG biosynthesis at posttranslational level in antibody secreting cells. Moreover, CsA stimulated the extracellular secretion of CypB and induced ROS generation, leading to expressions of ER stress markers. In addition, the absence of intracellular CypB impaired the formation of ER multiprotein complex, which is most important for resisting ER stress. Interestingly, CsA interrupted IgG folding via occupying the PPIase domain of CypB in ER. Eventually, unfolded IgG is degraded via Herp-dependent ERAD pathway. Furthermore, IgG biosynthesis was really abrogated by inhibition of CypB in primary B cells. We established for the first time the immunosuppressive effect of CsA on B cells. Conclusively, the combined results of the current study suggest that CypB is a pivotal molecule for IgG biosynthesis in ER quality control.
Collapse
|
32
|
Eichner T, Radford SE. Understanding the complex mechanisms of β2-microglobulin amyloid assembly. FEBS J 2011; 278:3868-83. [PMID: 21595827 PMCID: PMC3229708 DOI: 10.1111/j.1742-4658.2011.08186.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 05/11/2011] [Accepted: 05/13/2011] [Indexed: 11/30/2022]
Abstract
Several protein misfolding diseases are associated with the conversion of native proteins into ordered protein aggregates known as amyloid. Studies of amyloid assemblies have indicated that non-native proteins are responsible for initiating aggregation in vitro and in vivo. Despite the importance of these species for understanding amyloid disease, the structural and dynamic features of amyloidogenic intermediates and the molecular details of how they aggregate remain elusive. This review focuses on recent advances in developing a molecular description of the folding and aggregation mechanisms of the human amyloidogenic protein β(2)-microglobulin under physiologically relevant conditions. In particular, the structural and dynamic properties of the non-native folding intermediate I(T) and its role in the initiation of fibrillation and the development of dialysis-related amyloidosis are discussed.
Collapse
Affiliation(s)
- Timo Eichner
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA.
| | | |
Collapse
|
33
|
Rispens T, Ooijevaar-de Heer P, Bende O, Aalberse RC. Mechanism of Immunoglobulin G4 Fab-arm Exchange. J Am Chem Soc 2011; 133:10302-11. [DOI: 10.1021/ja203638y] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Theo Rispens
- Sanquin Research, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, The Netherlands
| | - Pleuni Ooijevaar-de Heer
- Sanquin Research, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, The Netherlands
| | - Onno Bende
- Sanquin Research, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, The Netherlands
| | - Rob C. Aalberse
- Sanquin Research, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, The Netherlands
| |
Collapse
|
34
|
Peptide Bond cis/trans Isomerases: A Biocatalysis Perspective of Conformational Dynamics in Proteins. Top Curr Chem (Cham) 2011; 328:35-67. [DOI: 10.1007/128_2011_151] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
What lessons can be learned from studying the folding of homologous proteins? Methods 2010; 52:38-50. [PMID: 20570731 PMCID: PMC2965948 DOI: 10.1016/j.ymeth.2010.06.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 05/25/2010] [Accepted: 06/01/2010] [Indexed: 01/30/2023] Open
Abstract
The studies of the folding of structurally related proteins have proved to be a very important tool for investigating protein folding. Here we review some of the insights that have been gained from such studies. Our highlighted studies show just how such an investigation should be designed and emphasise the importance of the synergy between experiment and theory. We also stress the importance of choosing the right system carefully, exploiting the excellent structural and sequence databases at our disposal.
Collapse
|
36
|
Feige MJ, Hendershot LM, Buchner J. How antibodies fold. Trends Biochem Sci 2009; 35:189-98. [PMID: 20022755 DOI: 10.1016/j.tibs.2009.11.005] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Revised: 11/20/2009] [Accepted: 11/20/2009] [Indexed: 10/20/2022]
Abstract
B cells use unconventional strategies for the production of a seemingly unlimited number of antibodies from a very limited amount of DNA. These methods dramatically increase the likelihood of producing proteins that cannot fold or assemble appropriately. B cells are therefore particularly dependent on 'quality control' mechanisms to oversee antibody production. Recent in vitro experiments demonstrate that Ig domains have evolved diverse folding strategies ranging from robust spontaneous folding to intrinsically disordered domains that require assembly with their partner domains to fold; in vivo experiments reveal that these different folding characteristics form the basis for cellular checkpoints in Ig transport. Taken together, these reports provide a detailed understanding of how B cells monitor and ensure the functional fidelity of Ig proteins.
Collapse
Affiliation(s)
- Matthias J Feige
- Center for Integrated Protein Science, Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | | | | |
Collapse
|
37
|
The folding pathway of the antibody V(L) domain. J Mol Biol 2009; 392:1326-38. [PMID: 19647749 DOI: 10.1016/j.jmb.2009.07.075] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 06/22/2009] [Accepted: 07/27/2009] [Indexed: 11/23/2022]
Abstract
Antibodies are modular proteins consisting of domains that exhibit a beta-sandwich structure, the so-called immunoglobulin fold. Despite structural similarity, differences in folding and stability exist between different domains. In particular, the variable domain of the light chain V(L) is unusual as it is associated with misfolding diseases, including the pathologic assembly of the protein into fibrillar structures. Here, we have analysed the folding pathway of a V(L) domain with a view to determine features that may influence the relationship between productive folding and fibril formation. The V(L) domain from MAK33 (murine monoclonal antibody of the subtype kappa/IgG1) has not previously been associated with fibrillisation but is shown here to be capable of forming fibrils. The folding pathway of this V(L) domain is complex, involving two intermediates in different pathways. An obligatory early molten globule-like intermediate with secondary structure but only loose tertiary interactions is inferred. The native state can then be formed directly from this intermediate in a phase that can be accelerated by the addition of prolyl isomerases. However, an alternative pathway involving a second, more native-like intermediate is also significantly populated. Thus, the protein can reach the native state via two distinct folding pathways. Comparisons to the folding pathways of other antibody domains reveal similarities in the folding pathways; however, in detail, the folding of the V(L) domain is striking, with two intermediates populated on different branches of the folding pathway, one of which could provide an entry point for molecules diverted into the amyloid pathway.
Collapse
|
38
|
Kim M, Min HJ, Won HY, Park H, Lee JC, Park HW, Chung J, Hwang ES, Lee K. Dimerization of translationally controlled tumor protein is essential for its cytokine-like activity. PLoS One 2009; 4:e6464. [PMID: 19649253 PMCID: PMC2715101 DOI: 10.1371/journal.pone.0006464] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 06/25/2009] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Translationally Controlled Tumor Protein (TCTP) found in nasal lavage fluids of allergic patients was named IgE-dependent histamine-releasing factor (HRF). Human recombinant HRF (HrHRF) has been recently reported to be much less effective than HRF produced from activated mononuclear cells (HRFmn). METHODS AND FINDINGS We found that only NH(2)-terminal truncated, but not C-terminal truncated, TCTP shows cytokine releasing activity compared to full-length TCTP. Interestingly, only NH(2)-terminal truncated TCTP, unlike full-length TCTP, forms dimers through intermolecular disulfide bonds. We tested the activity of dimerized full-length TCTP generated by fusing it to rabbit Fc region. The untruncated-full length protein (Fc-HrTCTP) was more active than HrTCTP in BEAS-2B cells, suggesting that dimerization of TCTP, rather than truncation, is essential for the activation of TCTP in allergic responses. We used confocal microscopy to evaluate the affinity of TCTPs to its putative receptor. We detected stronger fluorescence in the plasma membrane of BEAS-2B cells incubated with Del-N11TCTP than those incubated with rat recombinant TCTP (RrTCTP). Allergenic activity of Del-N11TCTP prompted us to see whether the NH(2)-terminal truncated TCTP can induce allergic airway inflammation in vivo. While RrTCTP had no influence on airway inflammation, Del-N11TCTP increased goblet cell hyperplasia in both lung and rhinal cavity. The dimerized protein was found in sera from allergic patients, and bronchoalveolar lavage fluids from airway inflamed mice. CONCLUSIONS Dimerization of TCTP seems to be essential for its cytokine-like activity. Our study has potential to enhance the understanding of pathogenesis of allergic disease and provide a target for allergic drug development.
Collapse
Affiliation(s)
- Miyoung Kim
- College of Pharmacy, Center for Cell Signaling Research and Drug Discovery Research, Ewha Womans University, Seoul, Korea
| | - Hyun Jung Min
- College of Pharmacy, Center for Cell Signaling Research and Drug Discovery Research, Ewha Womans University, Seoul, Korea
| | - Hee Yeon Won
- College of Pharmacy, Center for Cell Signaling Research and Drug Discovery Research, Ewha Womans University, Seoul, Korea
| | - Heejin Park
- College of Pharmacy, Center for Cell Signaling Research and Drug Discovery Research, Ewha Womans University, Seoul, Korea
| | | | - Heung-Woo Park
- Division of Allergy and Clinical Immunology, Seoul National University Hospital, Seoul, Korea
| | - Junho Chung
- College of Medicine and Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Eun Sook Hwang
- College of Pharmacy, Center for Cell Signaling Research and Drug Discovery Research, Ewha Womans University, Seoul, Korea
| | - Kyunglim Lee
- College of Pharmacy, Center for Cell Signaling Research and Drug Discovery Research, Ewha Womans University, Seoul, Korea
| |
Collapse
|
39
|
A generic mechanism of beta2-microglobulin amyloid assembly at neutral pH involving a specific proline switch. J Mol Biol 2009; 386:1312-26. [PMID: 19452600 DOI: 10.1016/j.jmb.2009.01.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although numerous measurements of amyloid assembly of different proteins under distinct conditions in vitro have been performed, the molecular mechanisms underlying the specific self-association of proteins into amyloid fibrils remain obscure. Elucidating the nature of the events that initiate amyloid formation remains a particularly difficult challenge because of the heterogeneity and transient nature of the species involved. Here, we have used site-directed mutagenesis to create five proline to glycine variants in the naturally amyloidogenic protein beta2-microglobulin (beta2m). One of these variants, P5G, allowed us to isolate and characterise an intermediate containing a non-native trans Pro32 backbone conformation, a feature that is known to be required for amyloid elongation at neutral pH. By analysing oligomerisation and amyloid formation using analytical size-exclusion chromatography, multi-angle static light-scattering, analytical ultracentrifugation, circular dichroism and thioflavin T fluorescence we reveal a pathway for beta2m amyloid assembly at pH 7.5 that does not require the addition of metal ions, detergents, co-solvents or other co-factors that have been used to facilitate amyloid formation at physiological pH and temperature. Assembly is shown to involve the transient formation of a non-native monomer containing a trans P32 backbone conformation. This is followed by the formation of dimeric species and higher molecular mass oligomers that accumulate before the development of amyloid fibrils. On the basis of these results, we propose a generic mechanism for beta2m fibrillogenesis at neutral pH that is consistent with the wide range of published studies of this protein. In this mechanism, amyloid formation is initiated by a specific cis to trans proline switch, the rate of which we show to be controlled by the amino acid sequence proximal to P32 and to the applied solution conditions.
Collapse
|
40
|
The molecular dating game: an antibody heavy chain hangs loose with a chaperone while waiting for its life partner. Mol Cell 2009; 34:635-6. [PMID: 19560414 DOI: 10.1016/j.molcel.2009.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In a recent issue of Molecular Cell, Feige et al. (2009) utilize the murine immunoglobulin system to shed light on a long-standing puzzle: how do cells coordinate folding of different polypeptides that ultimately form a complex?
Collapse
|
41
|
Feige MJ, Groscurth S, Marcinowski M, Shimizu Y, Kessler H, Hendershot LM, Buchner J. An unfolded CH1 domain controls the assembly and secretion of IgG antibodies. Mol Cell 2009; 34:569-79. [PMID: 19524537 DOI: 10.1016/j.molcel.2009.04.028] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 03/05/2009] [Accepted: 04/28/2009] [Indexed: 01/24/2023]
Abstract
A prerequisite for antibody secretion and function is their assembly into a defined quaternary structure, composed of two heavy and two light chains for IgG. Unassembled heavy chains are actively retained in the endoplasmic reticulum (ER). Here, we show that the C(H)1 domain of the heavy chain is intrinsically disordered in vitro, which sets it apart from other antibody domains. It folds only upon interaction with the light-chain C(L) domain. Structure formation proceeds via a trapped intermediate and can be accelerated by the ER-specific peptidyl-prolyl isomerase cyclophilin B. The molecular chaperone BiP recognizes incompletely folded states of the C(H)1 domain and competes for binding to the C(L) domain. In vivo experiments demonstrate that requirements identified for folding the C(H)1 domain in vitro, including association with a folded C(L) domain and isomerization of a conserved proline residue, are essential for antibody assembly and secretion in the cell.
Collapse
Affiliation(s)
- Matthias J Feige
- Center for Integrated Protein Science Munich and Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Structure of the murine unglycosylated IgG1 Fc fragment. J Mol Biol 2009; 391:599-608. [PMID: 19559712 DOI: 10.1016/j.jmb.2009.06.048] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 06/16/2009] [Accepted: 06/17/2009] [Indexed: 11/22/2022]
Abstract
A prototypic IgG antibody can be divided into two major structural units: the antigen-binding fragment (Fab) and the Fc fragment that mediates effector functions. The IgG Fc fragment is a homodimer of the two C-terminal domains (C(H)2 and C(H)3) of the heavy chains. Characteristic of the Fc part is the presence of a sugar moiety at the inner face of the C(H)2 domains. The structure of this complex branched oligosaccharide is generally resolved in crystal structures of Fc fragments due to numerous well-defined sugar-protein interactions and a small number of sugar-sugar interactions. This suggested that sugars play an important role in the structure of the Fc fragment. To address this question directly, we determined the crystal structure of the unglycosylated Fc fragment of the murine IgG1 MAK33. The structures of the C(H)3 domains of the unglycosylated Fc fragment superimpose perfectly with the structure of the isolated MAK33 C(H)3 domain. The unglycosylated C(H)2 domains, in contrast, approach each other much more closely compared to known structures of partly deglycosylated Fc fragments with rigid-body motions between 10 and 14 A, leading to a strongly "closed" conformation of the unglycosylated Fc fragment. The glycosylation sites in the C'E loop and the BC and FG loops are well defined in the unglycosylated C(H)2 domain, however, with increased mobility and with a significant displacement of about 4.9 A for the unglycosylated Asn residue compared to the glycosylated structure. Thus, glycosylation both stabilizes the C'E-loop conformation within the C(H)2 domain and also helps to ensure an "open" conformation, as seen upon Fc receptor binding. These structural data provide a rationale for the observation that deglycosylation of antibodies often compromises their ability to bind and activate Fcgamma receptors.
Collapse
|
43
|
Sakata M, Chatani E, Kameda A, Sakurai K, Naiki H, Goto Y. Kinetic Coupling of Folding and Prolyl Isomerization of β2-Microglobulin Studied by Mutational Analysis. J Mol Biol 2008; 382:1242-55. [DOI: 10.1016/j.jmb.2008.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 07/28/2008] [Accepted: 08/01/2008] [Indexed: 10/21/2022]
|
44
|
Abstract
Heterogeneity of monoclonal antibodies is common due to the various modifications introduced over the lifespan of the molecules from the point of synthesis to the point of complete clearance from the subjects. The vast number of modifications presents great challenge to the thorough characterization of the molecules. This article reviews the current knowledge of enzymatic and nonenzymatic modifications of monoclonal antibodies including the common ones such as incomplete disulfide bond formation, glycosylation, N-terminal pyroglutamine cyclization, C-terminal lysine processing, deamidation, isomerization, and oxidation, and less common ones such as modification of the N-terminal amino acids by maleuric acid and amidation of the C-terminal amino acid. In addition, noncovalent associations with other molecules, conformational diversity and aggregation of monoclonal antibodies are also discussed. Through a complete understanding of the heterogeneity of monoclonal antibodies, strategies can be employed to better identify the potential modifications and thoroughly characterize the molecules.
Collapse
Affiliation(s)
- Hongcheng Liu
- Process Sciences Department, Abbott Bioresearch Center, 100 Research Drive, Worcester, Massachusetts 01605, USA.
| | | | | | | | | |
Collapse
|
45
|
McAuley A, Jacob J, Kolvenbach CG, Westland K, Lee HJ, Brych SR, Rehder D, Kleemann GR, Brems DN, Matsumura M. Contributions of a disulfide bond to the structure, stability, and dimerization of human IgG1 antibody CH3 domain. Protein Sci 2008; 17:95-106. [PMID: 18156469 DOI: 10.1110/ps.073134408] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Recombinant human monoclonal antibodies have become important protein-based therapeutics for the treatment of various diseases. The antibody structure is complex, consisting of beta-sheet rich domains stabilized by multiple disulfide bridges. The dimerization of the C(H)3 domain in the constant region of the heavy chain plays a pivotal role in the assembly of an antibody. This domain contains a single buried, highly conserved disulfide bond. This disulfide bond was not required for dimerization, since a recombinant human C(H)3 domain, even in the reduced state, existed as a dimer. Spectroscopic analyses showed that the secondary and tertiary structures of reduced and oxidized C(H)3 dimer were similar, but differences were observed. The reduced C(H)3 dimer was less stable than the oxidized form to denaturation by guanidinium chloride (GdmCl), pH, or heat. Equilibrium sedimentation revealed that the reduced dimer dissociated at lower GdmCl concentration than the oxidized form. This implies that the disulfide bond shifts the monomer-dimer equilibrium. Interestingly, the dimer-monomer dissociation transition occurred at lower GdmCl concentration than the unfolding transition. Thus, disulfide bond formation in the human C(H)3 domain is important for stability and dimerization. Here we show the importance of the role played by the disulfide bond and how it affects the stability and monomer-dimer equilibrium of the human C(H)3 domain. Hence, these results may have implications for the stability of the intact antibody.
Collapse
Affiliation(s)
- Arnold McAuley
- Department of Pharmaceutics, Amgen, Inc., Thousand Oaks, California 91320, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Liu D, Cocco M, Matsumura M, Ren D, Becker B, Remmele RL, Brems DN. Assignment of 1H, 13C and 15N resonances of the reduced human IgG1 C(H)3 domain. BIOMOLECULAR NMR ASSIGNMENTS 2007; 1:93-94. [PMID: 19636836 DOI: 10.1007/s12104-007-9026-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 06/09/2007] [Indexed: 05/28/2023]
Abstract
Here we report the NMR resonance assignments for the reduced form of human IgG1 C(H)3 domain, a 26 kDa dimer in solution (residues 341-447). The assignments have been deposited in the BioMagResBank with a BMRB accession number of 15204.
Collapse
Affiliation(s)
- Dingjiang Liu
- Department of Pharmaceutics, Amgen, Inc, One Amgen Center Dr, B2-1-A, Thousand Oaks, CA 91320, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Feige MJ, Hagn F, Esser J, Kessler H, Buchner J. Influence of the Internal Disulfide Bridge on the Folding Pathway of the CL Antibody Domain. J Mol Biol 2007; 365:1232-44. [PMID: 17112539 DOI: 10.1016/j.jmb.2006.10.049] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 08/25/2006] [Accepted: 10/16/2006] [Indexed: 11/26/2022]
Abstract
Disulfide bridges are one of the most important factors stabilizing the native structure of a protein. Whereas the basis for their stabilizing effect is well understood, their role in a protein folding reaction still seems to require further attention. We used the constant domain of the antibody light chain (C(L)), a representative of the ubiquitous immunoglobulin (Ig)-superfamily, to delineate the kinetic role of its single buried disulfide bridge. Independent of its redox state, the monomeric C(L) domain adopts a typical Ig-fold under native conditions and does not retain significant structural elements when unfolded. Interestingly, its folding pathway is strongly influenced by the disulfide bridge. The more stable oxidized protein folds via a highly structured on-pathway intermediate, whereas the destabilized reduced protein populates a misfolded off-pathway species on its way to the native state. In both cases, the formation of the intermediate species is shown to be independent of the isomerization state of the Tyr(141)-Pro(142) bond. Our results demonstrate that the internal disulfide bridge in an antibody domain restricts the folding pathway by bringing residues of the folding nucleus into proximity thus facilitating the way to the native state.
Collapse
Affiliation(s)
- Matthias J Feige
- Institut für Organische Chemie und Biochemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | | | | | | | | |
Collapse
|
48
|
Mano N, Abe K, Goto J. Immunoaffinity extraction of a peptide modified by a small molecule. Anal Biochem 2006; 349:254-61. [PMID: 16376287 DOI: 10.1016/j.ab.2005.11.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Revised: 11/10/2005] [Accepted: 11/16/2005] [Indexed: 10/25/2022]
Abstract
We investigated the affinity extraction conditions required to isolate peptide fragments modified with small molecules using an antibody that has a high affinity for the target small molecule. Investigation of antibody conformation and the retention behavior of the modified peptides on an immunosorbent matrix demonstrated the importance in efficient extraction of both the dissociation of hydrophobic interactions and the breakdown of the antibody conformation. Hydrophobic interactions, which anchor the small ligand to the paratope, were retained even when the three-dimensional structure of the antibody disintegrated in an acidic solution. For efficient extraction of a target peptide modified by a small molecule, it is therefore important to use an acidic solvent containing an organic modifier such as methanol at a concentration greater than 40% (v/v). We demonstrated the feasibility of this immunoaffinity extraction by application of this procedure to the analysis of modified peptide fragments obtained from a digestion of human serum albumin. The peptide fragments were affinity labeled with chenodeoxycholyl adenylate for analysis of the chenodeoxycholate binding site. This purification method could isolate the low levels of modified peptide contained in the reaction mixture, despite the presence of appreciable quantities of unlabeled peptide fragments.
Collapse
Affiliation(s)
- Nariyasu Mano
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai 980-8578, Japan
| | | | | |
Collapse
|
49
|
Schwartz GJ, Al-Awqati Q. Role of hensin in mediating the adaptation of the cortical collecting duct to metabolic acidosis. Curr Opin Nephrol Hypertens 2005; 14:383-8. [PMID: 15931009 DOI: 10.1097/01.mnh.0000172727.82993.aa] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE OF REVIEW The cortical collecting duct is able to secrete HCO3-, a state that can be converted to acid secretion during metabolic acidosis. Bicarbonate secretion in this segment is mediated by beta-intercalated cells whereas alpha-intercalated cells perform acid secretion. During metabolic acidosis, the number of beta-intercalated cells is reduced while that of alpha-intercalated cells increases without a change in the total number of intercalated cells, suggesting conversion of one cell type to another. Using an immortalized intercalated cell line we found that this adaptation is mediated by an extracellular protein named hensin. Hensin is secreted as a monomer which is then polymerized in the extracellular environment by a complex process requiring at least three other proteins. RECENT FINDINGS We describe that a cyclophilin, via its cis/trans prolyl isomerase activity, is required for this polymerization. This may explain the distal renal tubular acidosis observed with cyclosporin A therapy. In addition, galectin-3 is needed to aggregate the protein. Finally, we recently found that activation of integrins is also necessary for the development of the hensin fiber. Hensin is expressed in all epithelia and deletion of its gene is embryonic lethal at an early stage when the first columnar epithelia develop. SUMMARY These studies suggest that the response of intercalated cells to metabolic acidosis uses a pathway that is involved in terminal differentiation of columnar epithelia.
Collapse
Affiliation(s)
- George J Schwartz
- Departments of Pediatrics and Medicine, University of Rochester School of Medicine, Rochester, New York 14642, USA.
| | | |
Collapse
|
50
|
Chierici S, Figuet M, Dettori A, Dumy P. Thiazolidines to lock cis Xaa-Pro amide bond: new synthetic approach. CR CHIM 2005. [DOI: 10.1016/j.crci.2005.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|