1
|
Campitelli P, Ross D, Swint-Kruse L, Ozkan SB. Dynamics-based protein network features accurately discriminate neutral and rheostat positions. Biophys J 2024; 123:3612-3626. [PMID: 39277794 PMCID: PMC11494493 DOI: 10.1016/j.bpj.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/03/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024] Open
Abstract
In some proteins, a unique class of nonconserved positions is characterized by their ability to generate diverse functional outcomes through single amino acid substitutions. Due to their ability to tune protein function, accurately identifying such "rheostat" positions is crucial for protein design, for understanding the impact of mutations observed in humans, and for predicting the evolution of pathogen drug resistance. However, identifying rheostat positions has been challenging, due-in part-to the absence of a clear structural relationship with binding sites. In this study, experimental data from our previous study of the Escherichia coli lactose repressor protein (LacI) was used to identify rheostat positions for which mutations tune in vivo EC50 for the allosteric ligand "IPTG." We next used the rheostat assignments to test the hypothesis that rheostat positions have unique dynamic features that will enable their identification. To that end, we integrated all-atom molecular dynamics simulations with perturbation residue response analysis. Results first revealed distinct dynamic behavior in IPTG-bound LacI compared with apo LacI, which was consistent with IPTG's role as an allosteric inducer. Next, we used a variety of dynamic features to build a classification model that discriminates experimentally characterized rheostat positions in LacI from positions with other types of substitution outcomes. In parallel, we built a second classifier model based on the 3D structural "static" network features of LacI. In comparative studies, the dynamic model better identified rheostat positions that were >8 Å from the binding site. In summary, our study provides insights into the dynamic characteristics of rheostat positions and suggests that models built on dynamic features may be useful for predicting the locations of rheostat positions in a wide range of proteins.
Collapse
Affiliation(s)
- P Campitelli
- Department of Physics, Center for Biological Physics, Arizona State University, Tempe, Arizona
| | - D Ross
- Biosystems and Biomaterials Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland
| | - L Swint-Kruse
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas.
| | - S B Ozkan
- Department of Physics, Center for Biological Physics, Arizona State University, Tempe, Arizona.
| |
Collapse
|
2
|
Campitelli P, Swint-Kruse L, Ozkan SB. Substitutions at Nonconserved Rheostat Positions Modulate Function by Rewiring Long-Range, Dynamic Interactions. Mol Biol Evol 2021; 38:201-214. [PMID: 32780837 PMCID: PMC7783170 DOI: 10.1093/molbev/msaa202] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Amino acid substitutions at nonconserved protein positions can have noncanonical and "long-distance" outcomes on protein function. Such outcomes might arise from changes in the internal protein communication network, which is often accompanied by changes in structural flexibility. To test this, we calculated flexibilities and dynamic coupling for positions in the linker region of the lactose repressor protein. This region contains nonconserved positions for which substitutions alter DNA-binding affinity. We first chose to study 11 substitutions at position 52. In computations, substitutions showed long-range effects on flexibilities of DNA-binding positions, and the degree of flexibility change correlated with experimentally measured changes in DNA binding. Substitutions also altered dynamic coupling to DNA-binding positions in a manner that captured other experimentally determined functional changes. Next, we broadened calculations to consider the dynamic coupling between 17 linker positions and the DNA-binding domain. Experimentally, these linker positions exhibited a wide range of substitution outcomes: Four conserved positions tolerated hardly any substitutions ("toggle"), ten nonconserved positions showed progressive changes from a range of substitutions ("rheostat"), and three nonconserved positions tolerated almost all substitutions ("neutral"). In computations with wild-type lactose repressor protein, the dynamic couplings between the DNA-binding domain and these linker positions showed varied degrees of asymmetry that correlated with the observed toggle/rheostat/neutral substitution outcomes. Thus, we propose that long-range and noncanonical substitutions outcomes at nonconserved positions arise from rewiring long-range communication among functionally important positions. Such calculations might enable predictions for substitution outcomes at a range of nonconserved positions.
Collapse
Affiliation(s)
- Paul Campitelli
- Department of Physics, Center for Biological Physics, Arizona State University, Tempe, AZ
| | - Liskin Swint-Kruse
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS
| | - S Banu Ozkan
- Department of Physics, Center for Biological Physics, Arizona State University, Tempe, AZ
| |
Collapse
|
3
|
Dokainish HM, Sugita Y. Exploring Large Domain Motions in Proteins Using Atomistic Molecular Dynamics with Enhanced Conformational Sampling. Int J Mol Sci 2020; 22:ijms22010270. [PMID: 33383937 PMCID: PMC7796230 DOI: 10.3390/ijms22010270] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 11/26/2022] Open
Abstract
Conformational transitions in multidomain proteins are essential for biological functions. The Apo conformations are typically open and flexible, while the Holo states form more compact conformations stabilized by protein-ligand interactions. Unfortunately, the atomically detailed mechanisms for such open-closed conformational changes are difficult to be accessed experimentally as well as computationally. To simulate the transitions using atomistic molecular dynamics (MD) simulations, efficient conformational sampling algorithms are required. In this work, we propose a new approach based on generalized replica-exchange with solute tempering (gREST) for exploring the open-closed conformational changes in multidomain proteins. Wherein, selected surface charged residues in a target protein are defined as the solute region in gREST simulation and the solute temperatures are different in replicas and exchanged between them to enhance the domain motions. This approach is called gREST selected surface charged residues (gREST_SSCR) and is applied to the Apo and Holo states of ribose binding protein (RBP) in solution. The conformational spaces sampled with gREST_SSCR are much wider than those with the conventional MD, sampling open-closed conformational changes while maintaining RBP domains’ stability. The free-energy landscapes of RBP in the Apo and Holo states are drawn along with twist and hinge angles of the two moving domains. The inter-domain salt-bridges that are not observed in the experimental structures are also important in the intermediate states during the conformational changes.
Collapse
Affiliation(s)
- Hisham M. Dokainish
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan;
| | - Yuji Sugita
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan;
- RIKEN Center for Computational Science, Integrated Innovation Building 7F, 6-7-1 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- RIKEN Center for Biosystems Dynamics Research, Integrated Innovation Building 7F, 6-7-1 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Correspondence: ; Tel.: +81-48-462-1407
| |
Collapse
|
4
|
Shinobu A, Kobayashi C, Matsunaga Y, Sugita Y. Building a macro-mixing dual-basin Gō model using the Multistate Bennett Acceptance Ratio. Biophys Physicobiol 2019; 16:310-321. [PMID: 31984186 PMCID: PMC6975896 DOI: 10.2142/biophysico.16.0_310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/02/2019] [Indexed: 12/01/2022] Open
Abstract
The dual-basin Gō-model is a structural-based coarsegrained model for simulating a conformational transition between two known structures of a protein. Two parameters are required to produce a dual-basin potential mixed using two single-basin potentials, although the determination of mixing parameters is usually not straightforward. Here, we have developed an efficient scheme to determine the mixing parameters using the Multistate Bennett Acceptance Ratio (MBAR) method after short simulations with a set of parameters. In the scheme, MBAR allows us to predict observables at various unsimulated conditions, which are useful to improve the mixing parameters in the next round of iterative simulations. The number of iterations that are necessary for obtaining the converged mixing parameters are significantly reduced in the scheme. We applied the scheme to two proteins, the glutamine binding protein and the ribose binding protein, for showing the effectiveness in the parameter determination. After obtaining the converged parameters, both proteins show frequent conformational transitions between open and closed states, providing the theoretical basis to investigate structure-dynamics-function relationships of the proteins.
Collapse
Affiliation(s)
- Ai Shinobu
- Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe, Hyogo 650-0047, Japan
| | - Chigusa Kobayashi
- Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe, Hyogo 650-0047, Japan
| | - Yasuhiro Matsunaga
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Yuji Sugita
- Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe, Hyogo 650-0047, Japan
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
5
|
Tullman J, Nicholes N, Dumont MR, Ribeiro LF, Ostermeier M. Enzymatic protein switches built from paralogous input domains. Biotechnol Bioeng 2015; 113:852-8. [DOI: 10.1002/bit.25852] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/25/2015] [Accepted: 10/05/2015] [Indexed: 12/30/2022]
Affiliation(s)
- Jennifer Tullman
- Department of Chemical and Biomolecular EngineeringJohns Hopkins University3400 N. Charles St. Maryland Hall 119BaltimoreMD21218
| | - Nathan Nicholes
- Department of Chemical and Biomolecular EngineeringJohns Hopkins University3400 N. Charles St. Maryland Hall 119BaltimoreMD21218
| | - Matt R. Dumont
- Department of Chemical and Biomolecular EngineeringJohns Hopkins University3400 N. Charles St. Maryland Hall 119BaltimoreMD21218
| | - Lucas F. Ribeiro
- Department of Chemical and Biomolecular EngineeringJohns Hopkins University3400 N. Charles St. Maryland Hall 119BaltimoreMD21218
| | - Marc Ostermeier
- Department of Chemical and Biomolecular EngineeringJohns Hopkins University3400 N. Charles St. Maryland Hall 119BaltimoreMD21218
| |
Collapse
|
6
|
Bondos SE, Swint-Kruse L, Matthews KS. Flexibility and Disorder in Gene Regulation: LacI/GalR and Hox Proteins. J Biol Chem 2015; 290:24669-77. [PMID: 26342073 DOI: 10.1074/jbc.r115.685032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
To modulate transcription, a variety of input signals must be sensed by genetic regulatory proteins. In these proteins, flexibility and disorder are emerging as common themes. Prokaryotic regulators generally have short, flexible segments, whereas eukaryotic regulators have extended regions that lack predicted secondary structure (intrinsic disorder). Two examples illustrate the impact of flexibility and disorder on gene regulation: the prokaryotic LacI/GalR family, with detailed information from studies on LacI, and the eukaryotic family of Hox proteins, with specific insights from investigations of Ultrabithorax (Ubx). The widespread importance of structural disorder in gene regulatory proteins may derive from the need for flexibility in signal response and, particularly in eukaryotes, in protein partner selection.
Collapse
Affiliation(s)
- Sarah E Bondos
- From the Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas 77843
| | - Liskin Swint-Kruse
- the Department of Biochemistry and Molecular Biology, the University of Kansas Medical Center, Kansas City, Kansas 66160, and
| | | |
Collapse
|
7
|
Raut N, Joel S, Pasini P, Daunert S. Bacterial autoinducer-2 detection via an engineered quorum sensing protein. Anal Chem 2015; 87:2608-14. [PMID: 25654248 DOI: 10.1021/ac504172f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Autoinducer-2 (AI-2) is a Quorum Sensing (QS) molecule utilized by bacteria in interspecies communication. More recently, it is identified to be vital in regulating QS pathways in a number of human and foodborne pathogens. Methods to detect AI-2 in a rapid and highly sensitive manner can help in the early detection of bacterial infections. Herein, we describe a rapid, selective, and highly sensitive protein based biosensing system employing the Fluorescence Resonance Energy Transfer (FRET) between a protein fusion LuxP-EGFP and 7-diethylamino-3-[N-(2-maleimidoethyl)carbamoyl]coumarin (MDCC). The developed biosensing system, which can detect AI-2 at subnanomolar levels, was successfully applied to detect AI-2 in clinical samples such as saliva and blood serum.
Collapse
Affiliation(s)
- Nilesh Raut
- Department of Chemistry, University of Kentucky , Lexington, Kentucky 40506, United States
| | | | | | | |
Collapse
|
8
|
Meinhardt S, Manley MW, Becker NA, Hessman JA, Maher LJ, Swint-Kruse L. Novel insights from hybrid LacI/GalR proteins: family-wide functional attributes and biologically significant variation in transcription repression. Nucleic Acids Res 2012; 40:11139-54. [PMID: 22965134 PMCID: PMC3505978 DOI: 10.1093/nar/gks806] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
LacI/GalR transcription regulators have extensive, non-conserved interfaces between their regulatory domains and the 18 amino acids that serve as ‘linkers’ to their DNA-binding domains. These non-conserved interfaces might contribute to functional differences between paralogs. Previously, two chimeras created by domain recombination displayed novel functional properties. Here, we present a synthetic protein family, which was created by joining the LacI DNA-binding domain/linker to seven additional regulatory domains. Despite ‘mismatched’ interfaces, chimeras maintained allosteric response to their cognate effectors. Therefore, allostery in many LacI/GalR proteins does not require interfaces with precisely matched interactions. Nevertheless, the chimeric interfaces were not silent to mutagenesis, and preliminary comparisons suggest that the chimeras provide an ideal context for systematically exploring functional contributions of non-conserved positions. DNA looping experiments revealed higher order (dimer–dimer) oligomerization in several chimeras, which might be possible for the natural paralogs. Finally, the biological significance of repression differences was determined by measuring bacterial growth rates on lactose minimal media. Unexpectedly, moderate and strong repressors showed an apparent induction phase, even though inducers were not provided; therefore, an unknown mechanism might contribute to regulation of the lac operon. Nevertheless, altered growth correlated with altered repression, which indicates that observed functional modifications are significant.
Collapse
Affiliation(s)
- Sarah Meinhardt
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | | | |
Collapse
|
9
|
Procházková K, Čermáková K, Pachl P, Sieglová I, Fábry M, Otwinowski Z, Řezáčová P. Structure of the effector-binding domain of the arabinose repressor AraR from Bacillus subtilis. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:176-85. [PMID: 22281747 PMCID: PMC3337009 DOI: 10.1107/s090744491105414x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 12/15/2011] [Indexed: 11/10/2022]
Abstract
In Bacillus subtilis, the arabinose repressor AraR negatively controls the expression of genes in the metabolic pathway of arabinose-containing polysaccharides. The protein is composed of two domains of different phylogenetic origin and function: an N-terminal DNA-binding domain belonging to the GntR family and a C-terminal effector-binding domain that shows similarity to members of the GalR/LacI family. The crystal structure of the C-terminal effector-binding domain of AraR in complex with the effector L-arabinose has been determined at 2.2 Å resolution. The L-arabinose binding affinity was characterized by isothermal titration calorimetry and differential scanning fluorimetry; the K(d) value was 8.4 ± 0.4 µM. The effect of L-arabinose on the protein oligomeric state was investigated in solution and detailed analysis of the crystal identified a dimer organization which is distinctive from that of other members of the GalR/LacI family.
Collapse
Affiliation(s)
- Kateřina Procházková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, Prague 6, Czech Republic
| | - Kateřina Čermáková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, Prague 6, Czech Republic
| | - Petr Pachl
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, Prague 6, Czech Republic
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, Czech Republic
| | - Irena Sieglová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, Prague 6, Czech Republic
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, Czech Republic
| | - Milan Fábry
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, Czech Republic
| | | | - Pavlína Řezáčová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, Prague 6, Czech Republic
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, Czech Republic
| |
Collapse
|
10
|
Swint-Kruse L, Matthews KS. Allostery in the LacI/GalR family: variations on a theme. Curr Opin Microbiol 2009; 12:129-37. [PMID: 19269243 DOI: 10.1016/j.mib.2009.01.009] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 01/22/2009] [Accepted: 01/26/2009] [Indexed: 12/21/2022]
Abstract
The lactose repressor protein (LacI) was among the very first genetic regulatory proteins discovered, and more than 1000 members of the bacterial LacI/GalR family are now identified. LacI has been the prototype for understanding how transcription is controlled using small metabolites to modulate protein association with specific DNA sites. This understanding has been greatly expanded by the study of other LacI/GalR homologues. A general picture emerges in which the conserved fold provides a scaffold for multiple types of interactions - including oligomerization, small molecule binding, and protein-protein binding - that in turn influence target DNA binding and thereby regulate mRNA production. Although many different functions have evolved from this basic scaffold, each homologue retains functional flexibility: For the same protein, different small molecules can have disparate impact on DNA binding and hence transcriptional outcome. In turn, binding to alternative DNA sequences may impact the degree of allosteric response. Thus, this family exhibits a symphony of variations by which transcriptional control is achieved.
Collapse
Affiliation(s)
- Liskin Swint-Kruse
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, 66160, United States.
| | | |
Collapse
|
11
|
Zhan H, Taraban M, Trewhella J, Swint-Kruse L. Subdividing repressor function: DNA binding affinity, selectivity, and allostery can be altered by amino acid substitution of nonconserved residues in a LacI/GalR homologue. Biochemistry 2008; 47:8058-69. [PMID: 18616293 DOI: 10.1021/bi800443k] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Many mutations that impact protein function occur at residues that do not directly contact ligand. To understand the functional contributions from the sequence that links the DNA-binding and regulatory domains of the LacI/GalR homologues, we have created a chimeric protein (LLhP), which comprises the LacI DNA-binding domain, the LacI linker, and the PurR regulatory domain. Although DNA binding site residues are identical in LLhP and LacI, thermodynamic measurements of DNA binding affinity show that LLhP does not discriminate between alternative DNA ligands as well as LacI. In addition, small-angle scattering experiments show that LLhP is more compact than LacI. When DNA is released, LacI shows a 20 A increase in length that was previously attributed to unfolding of the linker. This change is not seen in apo-LLhP, even though the linker sequences of the two proteins are identical. Together, results indicate that long-range functional and structural changes are propagated across the interface that forms between the linker and regulatory domain. These changes could be mediated via the side chains of several linker residues that contact the regulatory domains of the naturally occurring proteins, LacI and PurR. Substitution of these residues in LLhP leads to a range of functional effects. Four variants exhibit altered affinity for DNA, with no changes in selectivity or allosteric response. Another two result in proteins that bind operator DNA with very low affinity and no allosteric response, similar to LacI binding nonspecific DNA sequences. Two more substitutions simultaneously diminish affinity, enhance allostery, and profoundly alter DNA ligand selectivity. Thus, positions within the linker can be varied to modulate different aspects of repressor function.
Collapse
Affiliation(s)
- Hongli Zhan
- Department of Biochemistry and Molecular Biology, MSN 3030, 3901 Rainbow Boulevard, The University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | |
Collapse
|
12
|
Okumoto S, Looger LL, Micheva KD, Reimer RJ, Smith SJ, Frommer WB. Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors. Proc Natl Acad Sci U S A 2005; 102:8740-5. [PMID: 15939876 PMCID: PMC1143584 DOI: 10.1073/pnas.0503274102] [Citation(s) in RCA: 284] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Indexed: 11/18/2022] Open
Abstract
Glutamate is the predominant excitatory neurotransmitter in the mammalian brain. Once released, its rapid removal from the synaptic cleft is critical for preventing excitotoxicity and spillover to neighboring synapses. Despite consensus on the role of glutamate in normal and disease physiology, technical issues limit our understanding of its metabolism in intact cells. To monitor glutamate levels inside and at the surface of living cells, genetically encoded nanosensors were developed. The fluorescent indicator protein for glutamate (FLIPE) consists of the glutamate/aspartate binding protein ybeJ from Escherichia coli fused to two variants of the green fluorescent protein. Three sensors with lower affinities for glutamate were created by mutation of residues peristeric to the ybeJ binding pocket. In the presence of ligands, FLIPEs show a concentration-dependent decrease in FRET efficiency. When expressed on the surface of rat hippocampal neurons or PC12 cells, the sensors respond to extracellular glutamate with a reversible concentration-dependent decrease in FRET efficiency. Depolarization of neurons leads to a reduction in FRET efficiency corresponding to 300 nM glutamate at the cell surface. No change in FRET was observed when cells expressing sensors in the cytosol were superfused with up to 20 mM glutamate, consistent with a minimal contribution of glutamate uptake to cytosolic glutamate levels. The results demonstrate that FLIPE sensors can be used for real-time monitoring of glutamate metabolism in living cells, in tissues, or in intact organisms, providing tools for studying metabolism or for drug discovery.
Collapse
Affiliation(s)
- Sakiko Okumoto
- Department of Plant Biology, Carnegie Institution of Washington, 260 Panama Street, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
13
|
Swint-Kruse L. Using networks to identify fine structural differences between functionally distinct protein states. Biochemistry 2004; 43:10886-95. [PMID: 15323549 DOI: 10.1021/bi049450k] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The vast increase in available data from the "-omics" revolution has enabled the fields of structural proteomics and structure prediction to make great progress in assigning realistic three-dimensional structures to each protein molecule. The challenge now lies in determining the fine structural details that endow unique functions to sequences that assume a common fold. Similar problems are encountered in understanding how distinct conformations contribute to different phases of a single protein's dynamic function. However, efforts are hampered by the complexity of these large, three-dimensional molecules. To overcome this limitation, structural data have been recast as two-dimensional networks. This analysis greatly reduces visual complexity but retains information about individual residues. Such diagrams are very useful for comparing multiple structures, including (1) homologous proteins, (2) time points throughout a dynamics simulation, and (3) functionally different conformations of a given protein. Enhanced structural examination results in new functional hypotheses to test experimentally. Here, network representations were key to discerning a difference between unliganded and inducer-bound lactose repressor protein (LacI), which were previously presumed to be identical structures. Further, the interface of unliganded LacI was surprisingly similar to that of the K84L variant and various structures generated by molecular dynamics simulations. Apo-LacI appears to be poised to adopt the conformation of either the DNA- or inducer-bound structures, and the K84L mutation appears to freeze the structure partway through the conformational transition. Additional examination of the effector binding pocket results in specific hypotheses about how inducer, anti-inducer, and neutral sugars exert their effects on repressor function.
Collapse
Affiliation(s)
- Liskin Swint-Kruse
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, MS 3030, Kansas City, Kansas 66160, USA.
| |
Collapse
|
14
|
Flynn TC, Swint-Kruse L, Kong Y, Booth C, Matthews KS, Ma J. Allosteric transition pathways in the lactose repressor protein core domains: asymmetric motions in a homodimer. Protein Sci 2004; 12:2523-41. [PMID: 14573864 PMCID: PMC2366968 DOI: 10.1110/ps.03188303] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The crystal structures of lactose repressor protein (LacI) provide static endpoint views of the allosteric transition between DNA- and IPTG-bound states. To obtain an atom-by-atom description of the pathway between these two conformations, motions were simulated with targeted molecular dynamics (TMD). Strikingly, this homodimer exhibited asymmetric dynamics. All asymmetries observed in this simulation are reproducible and can begin on either of the two monomers. Asymmetry in the simulation originates around D149 and was traced back to the pre-TMD equilibrations of both conformations. In particular, hydrogen bonds between D149 and S193 adopt a variety of configurations during repetitions of this process. Changes in this region propagate through the structure via noncovalent interactions of three interconnected pathways. The changes of pathway 1 occur first on one monomer. Alterations move from the inducer-binding pocket, through the N-subdomain beta-sheet, to a hydrophobic cluster at the top of this region and then to the same cluster on the second monomer. These motions result in changes at (1) side chains that form an interface with the DNA-binding domains and (2) K84 and K84', which participate in the monomer-monomer interface. Pathway 2 reflects consequent reorganization across this subunit interface, most notably formation of a H74-H74rsquo; pi-stacking intermediate. Pathway 3 extends from the rear of the inducer-binding pocket, across a hydrogen-bond network at the bottom of the pocket, and transverses the monomer-monomer interface via changes in H74 and H74rsquo;. In general, intermediates detected in this study are not apparent in the crystal structures. Observations from the simulations are in good agreement with biochemical data and provide a spatial and sequential framework for interpreting existing genetic data.
Collapse
Affiliation(s)
- Terence C Flynn
- Department of Bioengineering, Rice University, Houston, Texas 77005, USA
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Understanding the early events in T cell activation and signaling is an active area of research. A recent study has described a new trigger for T cell activation, involving a TCR-ligand-induced conformational change in CD3epsilon that permits binding of the adaptor protein Nck.
Collapse
Affiliation(s)
- Mark M Davis
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
16
|
Magnusson U, Chaudhuri BN, Ko J, Park C, Jones TA, Mowbray SL. Hinge-bending motion of D-allose-binding protein from Escherichia coli: three open conformations. J Biol Chem 2002; 277:14077-84. [PMID: 11825912 DOI: 10.1074/jbc.m200514200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Conformational changes of periplasmic binding proteins are essential for their function in chemotaxis and transport. The allose-binding protein from Escherichia coli is, like other receptors in its family, composed of two alpha/beta domains joined by a three-stranded hinge. In the previously determined structure of the closed, ligand-bound form (Chaudhuri, B. N., Ko, J., Park, C., Jones, T. A., and Mowbray, S. L. (1999) J. Mol. Biol. 286, 1519-1531), the ligand-binding site is buried between the two domains. We report here the structures of three distinct open, ligand-free forms of this receptor, one solved at 3.1-A resolution and two others at 1.7-A resolution. Together, these allow a description of the conformational changes associated with ligand binding. A few large, coupled torsional changes in the hinge strands are sufficient to generate the overall bending motion, with only minor disruption of the individual domains. Integral water molecules appear to act as structural "ball bearings" in this process. The conformational changes of the related ribose-binding protein follow a distinct pattern. The observed differences between the two proteins can be interpreted in the context of changes in sequence and in crystal packing and provide new insights into the nature of hinge bending motion in this class of periplasmic binding proteins.
Collapse
Affiliation(s)
- Ulrika Magnusson
- Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, Uppsala SE 751 24, Sweden
| | | | | | | | | | | |
Collapse
|
17
|
Swint-Kruse L, Larson C, Pettitt BM, Matthews KS. Fine-tuning function: correlation of hinge domain interactions with functional distinctions between LacI and PurR. Protein Sci 2002; 11:778-94. [PMID: 11910022 PMCID: PMC2373529 DOI: 10.1110/ps.4050102] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
LacI and PurR are highly homologous proteins. Their functional units are homodimers, with an N-terminal DNA binding domain that comprises the helix-turn-helix (HTH), N-linker, and hinge regions from both monomers. Hinge structural changes are known to occur upon DNA dissociation but are difficult to monitor experimentally. The initial steps of hinge unfolding were therefore examined using molecular dynamics simulations, utilizing a truncated, chimeric protein comprising the LacI HTH/N-linker and PurR hinge. A terminal Gly-Cys-Gly was added to allow "dimerization" through disulfide bond formation. Simulations indicate that differences in LacI and PurR hinge primary sequence affect the quaternary structure of the hinge x hinge' interface. However, these alternate hinge orientations would be sterically restricted by the core domain. These results prompted detailed comparison of recently available DNA-bound structures for LacI and truncated LacI(1-62) with the PurR structure. Examination revealed that different N-linker and hinge contacts to the core domain of the partner monomer (which binds effector molecule) affect the juxtapositions of the HTH, N-linker, and hinge regions in the DNA binding domain. In addition, the two full-length repressors exhibit significant differences in the interactions between the core and the C-linker connection to the DNA binding domain. Both linkers and the hinge have been implicated in the allosteric response of these repressors. Intriguingly, one functional difference between these two proteins is that they exhibit opposite allosteric response to effector. Simulations and observed structural distinctions are correlated with mutational analysis and sequence information from the LacI/GalR family to formulate a mechanism for fine-tuning individual repressor function.
Collapse
Affiliation(s)
- Liskin Swint-Kruse
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA.
| | | | | | | |
Collapse
|
18
|
Abstract
As in the case of many ligand-gated ion channels, the biochemical and electrophysiological properties of the ionotropic glutamate receptors have been studied extensively. Nevertheless, we still do not understand the molecular mechanisms that harness the free energy of agonist binding, first to drive channel opening, and then to allow the channel to close (desensitize) even though agonist remains bound. Recent crystallographic analyses of the ligand-binding domains of these receptors have identified conformational changes associated with agonist binding, yielding a working hypothesis of channel function. This opens the way to determining how the domains and subunits are assembled into an oligomeric channel, how the domains are connected, how the channel is formed, and where it is located relative to the ligand-binding domains, all of which govern the processes of channel activation and desensitization.
Collapse
Affiliation(s)
- Dean R Madden
- Ion Channel Structure Research Group, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany.
| |
Collapse
|
19
|
Martick MM, Garcia KC. Allosteric activation of a spring-loaded natriuretic peptide receptor dimer by hormone. Science 2001; 293:1657-62. [PMID: 11533490 DOI: 10.1126/science.1062246] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Natriuretic peptides (NPs) are vasoactive cyclic-peptide hormones important in blood pressure regulation through interaction with natriuretic cell-surface receptors. We report the hormone-binding thermodynamics and crystal structures at 2.9 and 2.0 angstroms, respectively, of the extracellular domain of the unliganded human NP receptor (NPR-C) and its complex with CNP, a 22-amino acid NP. A single CNP molecule is bound in the interface of an NPR-C dimer, resulting in asymmetric interactions between the hormone and the symmetrically related receptors. Hormone binding induces a 20 angstrom closure between the membrane-proximal domains of the dimer. In each monomer, the opening of an interdomain cleft, which is tethered together by a linker peptide acting as a molecular spring, is likely a conserved allosteric trigger for intracellular signaling by the natriuretic receptor family.
Collapse
|
20
|
Swint-Kruse L, Elam CR, Lin JW, Wycuff DR, Shive Matthews K. Plasticity of quaternary structure: twenty-two ways to form a LacI dimer. Protein Sci 2001; 10:262-76. [PMID: 11266612 PMCID: PMC2373939 DOI: 10.1110/ps.35801] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The repressor proteins of the LacI/GalR family exhibit significant similarity in their secondary and tertiary structures despite less than 35% identity in their primary sequences. Furthermore, the core domains of these oligomeric repressors, which mediate dimerization, are homologous with the monomeric periplasmic binding proteins, extending the issue of plasticity to quaternary structure. To elucidate the determinants of assembly, a structure-based alignment has been created for three repressors and four periplasmic binding proteins. Contact maps have also been constructed for the three repressor interfaces to distinguish any conserved interactions. These analyses show few strict requirements for assembly of the core N-subdomain interface. The interfaces of repressor core C-subdomains are well conserved at the structural level, and their primary sequences differ significantly from the monomeric periplasmic binding proteins at positions equivalent to LacI 281 and 282. However, previous biochemical and phenotypic analyses indicate that LacI tolerates many mutations at 281. Mutations at LacI 282 were shown to abrogate assembly, but for Y282D this could be compensated by a second-site mutation in the core N-subdomain at K84 to L or A. Using the link between LacI assembly and function, we have further identified 22 second-site mutations that compensate the Y282D dimerization defect in vivo. The sites of these mutations fall into several structural regions, each of which may influence assembly by a different mechanism. Thus, the 360-amino acid scaffold of LacI allows plasticity of its quaternary structure. The periplasmic binding proteins may require only minimal changes to facilitate oligomerization similar to the repressor proteins.
Collapse
Affiliation(s)
- L Swint-Kruse
- The W. M. Keck Center for Computational Biology, Rice University, Houston, Texas 77005, USA.
| | | | | | | | | |
Collapse
|
21
|
Abele R, Keinanen K, Madden DR. Agonist-induced isomerization in a glutamate receptor ligand-binding domain. A kinetic and mutagenetic analysis. J Biol Chem 2000; 275:21355-63. [PMID: 10748170 DOI: 10.1074/jbc.m909883199] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Agonist binding to glutamate receptor ion channels occurs within an extracellular domain (S1S2) that retains ligand affinity when expressed separately. S1S2 is homologous to periplasmic binding proteins, and it has been proposed that a Venus flytrap-style cleft closure triggers opening of glutamate receptor ion channels. Here we compare the kinetics of S1S2-agonist binding to those of the periplasmic binding proteins and show that the reaction involves an initial rapid association, followed by slower conformational changes that stabilize the complex: "docking" followed by "locking." The motion detected here reflects the mechanism by which the energy of glutamate binding is converted into protein conformational changes within S1S2 alone. In the intact channel, these load-free conformational changes are harnessed and possibly modified as the agonist binding reaction is used to drive channel opening and subsequent desensitization. Using mutagenesis, key residues in each step were identified, and their roles were interpreted in light of a published S1S2 crystal structure. In contrast to the Venus flytrap proposal, which focuses on motion between the two lobes as the readout for agonist binding, we argue that smaller, localized conformational rearrangements allow agonists to bridge the cleft, consistent with published hydrodynamic measurements.
Collapse
Affiliation(s)
- R Abele
- Ion Channel Structure Research Group, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
22
|
Madden DR, Abele R, Andersson A, Keinänen K. Large-scale expression and thermodynamic characterization of a glutamate receptor agonist-binding domain. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:4281-9. [PMID: 10866833 DOI: 10.1046/j.1432-1033.2000.01481.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ionotropic glutamate receptors (GluR) are the primary mediators of excitatory synaptic transmission in the brain. GluR agonist binding has been localized to an extracellular domain whose core is homologous to the bacterial periplasmic binding proteins (PBP). We have established routine, baculovirus-mediated expression of a complete ligand-binding domain construct at the 10-L scale, yielding 10-40 milligrams of purified protein. This construct contains peptides that lie outside the PBP-homologous core and that connect the domain core to the transmembrane domains of the channel and to the N-terminal 'X'-domain. These linker peptides have been implicated in modulating channel physiology. Such extended constructs have proven difficult to express in bacteria, but the protein described here is stable and monomeric. Isothermal titration calorimetry reveals that glutamate binding to the domain involves a substantial heat capacity change and that at physiological temperatures, the reaction is both entropically and enthalpically favorable.
Collapse
Affiliation(s)
- D R Madden
- Ion Channel Structure Research Group, Max Planck Institute for Medical Research, Heidelberg, Germany.
| | | | | | | |
Collapse
|