1
|
Welty R, Rau M, Pabit S, Dunstan MS, Conn GL, Pollack L, Hall KB. Ribosomal Protein L11 Selectively Stabilizes a Tertiary Structure of the GTPase Center rRNA Domain. J Mol Biol 2019; 432:991-1007. [PMID: 31874150 DOI: 10.1016/j.jmb.2019.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 01/14/2023]
Abstract
The GTPase Center (GAC) RNA domain in bacterial 23S rRNA is directly bound by ribosomal protein L11, and this complex is essential to ribosome function. Previous cocrystal structures of the 58-nucleotide GAC RNA bound to L11 revealed the intricate tertiary fold of the RNA domain, with one monovalent and several divalent ions located in specific sites within the structure. Here, we report a new crystal structure of the free GAC that is essentially identical to the L11-bound structure, which retains many common sites of divalent ion occupation. This new structure demonstrates that RNA alone folds into its tertiary structure with bound divalent ions. In solution, we find that this tertiary structure is not static, but rather is best described as an ensemble of states. While L11 protein cannot bind to the GAC until the RNA has adopted its tertiary structure, new experimental data show that L11 binds to Mg2+-dependent folded states, which we suggest lie along the folding pathway of the RNA. We propose that L11 stabilizes a specific GAC RNA tertiary state, corresponding to the crystal structure, and that this structure reflects the functionally critical conformation of the rRNA domain in the fully assembled ribosome.
Collapse
Affiliation(s)
- Robb Welty
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S Euclid Ave, St Louis, MO, 63110, USA; Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Michael Rau
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S Euclid Ave, St Louis, MO, 63110, USA
| | - Suzette Pabit
- School of Applied and Engineering Physics, Cornell University, Clark Hall, Ithaca, NY, 14853, USA
| | - Mark S Dunstan
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta GA, 30322, USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Clark Hall, Ithaca, NY, 14853, USA
| | - Kathleen B Hall
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S Euclid Ave, St Louis, MO, 63110, USA.
| |
Collapse
|
2
|
Pal A, Levy Y. Structure, stability and specificity of the binding of ssDNA and ssRNA with proteins. PLoS Comput Biol 2019; 15:e1006768. [PMID: 30933978 PMCID: PMC6467422 DOI: 10.1371/journal.pcbi.1006768] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 04/16/2019] [Accepted: 01/01/2019] [Indexed: 02/06/2023] Open
Abstract
Recognition of single-stranded DNA (ssDNA) or single-stranded RNA (ssRNA) is important for many fundamental cellular functions. A variety of single-stranded DNA-binding proteins (ssDBPs) and single-stranded RNA-binding proteins (ssRBPs) have evolved that bind ssDNA and ssRNA, respectively, with varying degree of affinities and specificities to form complexes. Structural studies of these complexes provide key insights into their recognition mechanism. However, computational modeling of the specific recognition process and to predict the structure of the complex is challenging, primarily due to the heterogeneity of their binding energy landscape and the greater flexibility of ssDNA or ssRNA compared with double-stranded nucleic acids. Consequently, considerably fewer computational studies have explored interactions between proteins and single-stranded nucleic acids compared with protein interactions with double-stranded nucleic acids. Here, we report a newly developed energy-based coarse-grained model to predict the structure of ssDNA–ssDBP and ssRNA–ssRBP complexes and to assess their sequence-specific interactions and stabilities. We tuned two factors that can modulate specific recognition: base–aromatic stacking strength and the flexibility of the single-stranded nucleic acid. The model was successfully applied to predict the binding conformations of 12 distinct ssDBP and ssRBP structures with their cognate ssDNA and ssRNA partners having various sequences. Estimated binding energies agreed well with the corresponding experimental binding affinities. Bound conformations from the simulation showed a funnel-shaped binding energy distribution where the native-like conformations corresponded to the energy minima. The various ssDNA–protein and ssRNA–protein complexes differed in the balance of electrostatic and aromatic energies. The lower affinity of the ssRNA–ssRBP complexes compared with the ssDNA–ssDBP complexes stems from lower flexibility of ssRNA compared to ssDNA, which results in higher rate constants for the dissociation of the complex (koff) for complexes involving the former. Quantifying bimolecular self-assembly is pivotal to understanding cellular function. In recent years, a large progress has been made in understanding the structure and biophysics of protein-protein interactions. Particularly, various computational tools are available for predicting these structures and to estimate their stability and the driving forces of their formation. The understating of the interactions between proteins and nucleic acids, however, is still limited, presumably due to the involvement of non-specific interactions as well as the high conformational plasticity that may demand an induced-fit mechanism. In particular, the interactions between proteins and single-stranded nucleic acids (i.e., single-stranded DNA and RNA) is very challenging due to their high flexibility. Furthermore, the interface between proteins and single-stranded nucleic acids is often chemically more heterogeneous than the interface between proteins and double-stranded DNA. In this study, we developed a coarse-grained computational model to predict the structure of complexes between proteins and single-stranded nucleic acids. The model was applied to estimate binding affinities and the estimated binding energies agreed well with the corresponding experimental binding affinities. The kinetics of association as well as the specificity of the complexes between proteins and ssDNA are different than those with ssRNA, mostly due to differences in their conformational flexibility.
Collapse
Affiliation(s)
- Arumay Pal
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yaakov Levy
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
3
|
Okanishi H, Kim K, Fukui K, Yano T, Kuramitsu S, Masui R. Proteome-wide identification of lysine succinylation in thermophilic and mesophilic bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:232-242. [PMID: 27888076 DOI: 10.1016/j.bbapap.2016.11.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/13/2016] [Accepted: 11/19/2016] [Indexed: 02/07/2023]
Abstract
Lysine succinylation, one of post-translational acylations conserved from eukaryotes to bacteria, plays regulatory roles in various cellular processes. However, much remains unknown about the general and specific characteristics of lysine succinylation among bacteria, and about its functions different from those of other acylations. In this study, we characterized lysine succinylation, a newly discovered widespread type of lysine acylation in five bacterial species with different characteristics such as optimal growth temperature and cell wall structure. This study is the first to demonstrate that succinylation is general phenomenon occurring not only in mesophiles but also in thermophiles. Mapping of succinylation sites on protein structures revealed that succinylation occurs at many lysine residues important for protein function. Comparison of the succinylation sites in the five bacterial species provides insights regarding common protein regulation mechanisms utilizing lysine succinylation. Many succinylation sites were conserved among five bacteria, especially between Geobacillus kaustophilus and Bacillus subtilis, some of which are functionally important sites. Furthermore, systematic comparison of the succinyl-proteome results and our previous propionyl-proteome results showed that the abundance of these two types of acylations is considerably different among the five bacteria investigated. Many succinylation and propionylation events were detected in G. kaustophilus, whereas Escherichia coli and B. subtilis exhibited high succinylation and low propionylation; low succinylation and high propionylation were identified in Thermus thermophilus, and low succinylation and propionylation were observed in Rhodothermus marinus. Comparison of the characteristics of lysine succinylation and lysine propionylation suggested these two types of acylation play different roles in cellular processes.
Collapse
Affiliation(s)
- Hiroki Okanishi
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan; Division of Biology & Geosciences, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Kwang Kim
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| | - Kenji Fukui
- Department of Biochemistry, Faculty of Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan
| | - Takato Yano
- Department of Biochemistry, Faculty of Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan
| | - Seiki Kuramitsu
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Ryoji Masui
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan; Division of Biology & Geosciences, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
4
|
Varadi M, Zsolyomi F, Guharoy M, Tompa P. Functional Advantages of Conserved Intrinsic Disorder in RNA-Binding Proteins. PLoS One 2015; 10:e0139731. [PMID: 26439842 PMCID: PMC4595337 DOI: 10.1371/journal.pone.0139731] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/15/2015] [Indexed: 11/22/2022] Open
Abstract
Proteins form large macromolecular assemblies with RNA that govern essential molecular processes. RNA-binding proteins have often been associated with conformational flexibility, yet the extent and functional implications of their intrinsic disorder have never been fully assessed. Here, through large-scale analysis of comprehensive protein sequence and structure datasets we demonstrate the prevalence of intrinsic structural disorder in RNA-binding proteins and domains. We addressed their functionality through a quantitative description of the evolutionary conservation of disordered segments involved in binding, and investigated the structural implications of flexibility in terms of conformational stability and interface formation. We conclude that the functional role of intrinsically disordered protein segments in RNA-binding is two-fold: first, these regions establish extended, conserved electrostatic interfaces with RNAs via induced fit. Second, conformational flexibility enables them to target different RNA partners, providing multi-functionality, while also ensuring specificity. These findings emphasize the functional importance of intrinsically disordered regions in RNA-binding proteins.
Collapse
Affiliation(s)
- Mihaly Varadi
- Structural Biology Research Center (SBRC), Flemish Institute of Biotechnology (VIB), Brussels, Belgium; Structural Biology Brussel (SBB), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Fruzsina Zsolyomi
- Structural Biology Research Center (SBRC), Flemish Institute of Biotechnology (VIB), Brussels, Belgium; Structural Biology Brussel (SBB), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Mainak Guharoy
- Structural Biology Research Center (SBRC), Flemish Institute of Biotechnology (VIB), Brussels, Belgium; Structural Biology Brussel (SBB), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Peter Tompa
- Structural Biology Research Center (SBRC), Flemish Institute of Biotechnology (VIB), Brussels, Belgium; Structural Biology Brussel (SBB), Vrije Universiteit Brussel (VUB), Brussels, Belgium; Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
5
|
Harris RC, Boschitsch AH, Fenley MO. Sensitivities to parameterization in the size-modified Poisson-Boltzmann equation. J Chem Phys 2014; 140:075102. [PMID: 24559370 DOI: 10.1063/1.4864460] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Experimental results have demonstrated that the numbers of counterions surrounding nucleic acids differ from those predicted by the nonlinear Poisson-Boltzmann equation, NLPBE. Some studies have fit these data against the ion size in the size-modified Poisson-Boltzmann equation, SMPBE, but the present study demonstrates that other parameters, such as the Stern layer thickness and the molecular surface definition, can change the number of bound ions by amounts comparable to varying the ion size. These parameters will therefore have to be fit simultaneously against experimental data. In addition, the data presented here demonstrate that the derivative, SK, of the electrostatic binding free energy, ΔGel, with respect to the logarithm of the salt concentration is sensitive to these parameters, and experimental measurements of SK could be used to parameterize the model. However, although better values for the Stern layer thickness and ion size and better molecular surface definitions could improve the model's predictions of the numbers of ions around biomolecules and SK, ΔGel itself is more sensitive to parameters, such as the interior dielectric constant, which in turn do not significantly affect the distributions of ions around biomolecules. Therefore, improved estimates of the ion size and Stern layer thickness to use in the SMPBE will not necessarily improve the model's predictions of ΔGel.
Collapse
Affiliation(s)
- Robert C Harris
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306-3408, USA
| | | | - Marcia O Fenley
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306-3408, USA
| |
Collapse
|
6
|
On the segregation of protein ionic residues by charge type. Amino Acids 2012; 43:2231-47. [PMID: 23081700 DOI: 10.1007/s00726-012-1418-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 10/06/2012] [Indexed: 10/27/2022]
Abstract
Based on ubiquitous presence of large ionic motifs and clusters in proteins involved in gene transcription and protein synthesis, we analyzed the distribution of ionizable sidechains in a broad selection of proteins with regulatory, metabolic, structural and adhesive functions, in agonist, antagonist, toxin and antimicrobial peptides, and in self-excising inteins and intron-derived proteins and sequence constructs. All tested groups, regardless of taxa or sequence size, show considerable segregation of ionizable sidechains into same type charge (homoionic) tracts. These segments in most cases exceed half of the sequence length and comprise more than two-thirds of all ionizable sidechains. This distribution of ionic residues apparently reflects a fundamental advantage of sorted electrostatic contacts in association of sequence elements within and between polypeptides, as well as in interaction with polynucleotides. While large ionic densities are encountered in highly interactive proteins, the average ionic density in most sets does not change appreciably with size of the homoionic segments, which supports the segregation as a modular feature favoring association.
Collapse
|
7
|
Harris RC, Bredenberg JH, Silalahi ARJ, Boschitsch AH, Fenley MO. Understanding the physical basis of the salt dependence of the electrostatic binding free energy of mutated charged ligand-nucleic acid complexes. Biophys Chem 2011; 156:79-87. [PMID: 21458909 DOI: 10.1016/j.bpc.2011.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 02/08/2011] [Accepted: 02/21/2011] [Indexed: 12/01/2022]
Abstract
The predictions of the derivative of the electrostatic binding free energy of a biomolecular complex, ΔG(el), with respect to the logarithm of the 1:1 salt concentration, d(ΔG(el))/d(ln[NaCl]), SK, by the Poisson-Boltzmann equation, PBE, are very similar to those of the simpler Debye-Hückel equation, DHE, because the terms in the PBE's predictions of SK that depend on the details of the dielectric interface are small compared to the contributions from long-range electrostatic interactions. These facts allow one to obtain predictions of SK using a simplified charge model along with the DHE that are highly correlated with both the PBE and experimental binding data. The DHE-based model developed here, which was derived from the generalized Born model, explains the lack of correlation between SK and ΔG(el) in the presence of a dielectric discontinuity, which conflicts with the popular use of this supposed correlation to parse experimental binding free energies into electrostatic and nonelectrostatic components. Moreover, the DHE model also provides a clear justification for the correlations between SK and various empirical quantities, like the number of ion pairs, the ligand charge on the interface, the Coulomb binding free energy, and the product of the charges on the complex's components, but these correlations are weak, questioning their usefulness.
Collapse
Affiliation(s)
- Robert C Harris
- Department of Physics, Institute of Molecular Biophysics, Florida State University, Tallahasse, 32306, USA.
| | | | | | | | | |
Collapse
|
8
|
Plantinga MJ, Korennykh AV, Piccirilli JA, Correll CC. Electrostatic interactions guide the active site face of a structure-specific ribonuclease to its RNA substrate. Biochemistry 2008; 47:8912-8. [PMID: 18672906 PMCID: PMC2646754 DOI: 10.1021/bi800592g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
![]()
Restrictocin, a member of the α-sarcin family of site-specific endoribonucleases, uses electrostatic interactions to bind to the ribosome and to RNA oligonucleotides, including the minimal specific substrate, the sarcin/ricin loop (SRL) of 23S−28S rRNA. Restrictocin binds to the SRL by forming a ground-state E:S complex that is stabilized predominantly by Coulomb interactions and depends on neither the sequence nor structure of the RNA, suggesting a nonspecific complex. The 22 cationic residues of restrictocin are dispersed throughout this protein surface, complicating a priori identification of a Coulomb interacting surface. Structural studies have identified an enzyme−substrate interface, which is expected to overlap with the electrostatic E:S interface. Here, we identified restrictocin residues that contribute to binding in the E:S complex by determining the salt dependence [∂ log(k2/K1/2)/∂ log[KCl]] of cleavage of the minimal SRL substrate for eight point mutants within the protein designed to disrupt contacts in the crystallographically defined interface. Relative to the wild-type salt dependence of −4.1, a subset of the mutants clustering near the active site shows significant changes in salt dependence, with differences of magnitude being ≥0.4. This same subset was identified using calculated salt dependencies for each mutant derived from solutions to the nonlinear Poisson−Boltzmann equation. Our findings support a mechanism in which specific residues on the active site face of restrictocin (primarily K110, K111, and K113) contribute to formation of the E:S complex, thereby positioning the SRL substrate for site-specific cleavage. The same restrictocin residues are expected to facilitate targeting of the SRL on the surface of the ribosome.
Collapse
Affiliation(s)
- Matthew J Plantinga
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
9
|
Abstract
The negatively charged phosphates of nucleic acids are often paired with positively charged residues upon binding proteins. It was thus counter-intuitive when previous Poisson-Boltzmann (PB) calculations gave positive energies from electrostatic interactions, meaning that they destabilize protein-nucleic acid binding. Our own PB calculations on protein-protein binding have shown that the sign and the magnitude of the electrostatic component are sensitive to the specification of the dielectric boundary in PB calculations. A popular choice for the boundary between the solute low dielectric and the solvent high dielectric is the molecular surface; an alternative is the van der Waals (vdW) surface. In line with results for protein-protein binding, in this article, we found that PB calculations with the molecular surface gave positive electrostatic interaction energies for two protein-RNA complexes, but the signs are reversed when the vdW surface was used. Therefore, whether destabilizing or stabilizing effects are predicted depends on the choice of the dielectric boundary. The two calculation protocols, however, yielded similar salt effects on the binding affinity. Effects of charge mutations differentiated the two calculation protocols; PB calculations with the vdW surface had smaller deviations overall from experimental data.
Collapse
Affiliation(s)
- Sanbo Qin
- Institute of Molecular Biophysics, School of Computational Science, Florida State University, Tallahassee, FL 32306, USA
| | | |
Collapse
|
10
|
Bobeck MJ, Rueda D, Walter NG, Glick GD. Structural modeling of sequence specificity by an autoantibody against single-stranded DNA. Biochemistry 2007; 46:6753-65. [PMID: 17503778 DOI: 10.1021/bi700212s] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
11F8 is a sequence-specific pathogenic anti-single-stranded (ss)DNA autoantibody isolated from a lupus prone mouse. Site-directed mutagenesis of 11F8 has shown that six binding site residues (R31VH, W33VH, L97VH, R98VH, Y100VH, and Y32VL) contribute 80% of the free energy for complex formation. Mutagenesis results along with intermolecular distances obtained from fluorescence resonance energy transfer were implemented here as restraints to model docking between 11F8 and the sequence-specific ssDNA. The model of the complex suggests that aromatic stacking and two sets of bidentate hydrogen bonds between binding site arginine residues (R31VH and R96VH) and loop nucleotides provide the molecular basis for high affinity and specificity. In part, 11F8 utilizes the same ssDNA binding motif of Y32VL, H91VL, and an aromatic residue in the third complementarity-determining region to recognize thymine-rich sequences as do two anti-ssDNA autoantibodies crystallized in complex with thymine. R31SVH is a dominant somatic mutation found in the J558 germline sequence that is implicated in 11F8 sequence specificity. A model of the mutant R31S11F8.ssDNA complex suggests that different interface contacts occur when serine replaces arginine 31 at the binding site. The modeled contacts between the R31S11F8 mutant and thymine are closely related to those observed in other anti-ssDNA binding antibodies, while we find additional contacts between 11F8 and ssDNA that involve amino acids not utilized by the other antibodies. These data-driven 11F8.ssDNA models provide testable hypotheses concerning interactions that mediate sequence specificity in 11F8 and the effects of somatic mutation on ssDNA recognition.
Collapse
Affiliation(s)
- Melissa J Bobeck
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | | | | | |
Collapse
|
11
|
Shcherbakov D, Dontsova M, Tribus M, Garber M, Piendl W. Stability of the 'L12 stalk' in ribosomes from mesophilic and (hyper)thermophilic Archaea and Bacteria. Nucleic Acids Res 2006; 34:5800-14. [PMID: 17053098 PMCID: PMC1635324 DOI: 10.1093/nar/gkl751] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2006] [Revised: 09/23/2006] [Accepted: 09/23/2006] [Indexed: 11/12/2022] Open
Abstract
The ribosomal stalk complex, consisting of one molecule of L10 and four or six molecules of L12, is attached to 23S rRNA via protein L10. This complex forms the so-called 'L12 stalk' on the 50S ribosomal subunit. Ribosomal protein L11 binds to the same region of 23S rRNA and is located at the base of the 'L12 stalk'. The 'L12 stalk' plays a key role in the interaction of the ribosome with translation factors. In this study stalk complexes from mesophilic and (hyper)thermophilic species of the archaeal genus Methanococcus and from the Archaeon Sulfolobus solfataricus, as well as from the Bacteria Escherichia coli, Geobacillus stearothermophilus and Thermus thermophilus, were overproduced in E.coli and purified under non-denaturing conditions. Using filter-binding assays the affinities of the archaeal and bacterial complexes to their specific 23S rRNA target site were analyzed at different pH, ionic strength and temperature. Affinities of both archaeal and bacterial complexes for 23S rRNA vary by more than two orders of magnitude, correlating very well with the growth temperatures of the organisms. A cooperative effect of binding to 23S rRNA of protein L11 and the L10/L12(4) complex from mesophilic and thermophilic Archaea was shown to be temperature-dependent.
Collapse
Affiliation(s)
- D Shcherbakov
- Biocenter, Division of Medical Biochemistry, Innsbruck Medical University, Fritz-Pregl-Strasse 3, 6020, Innsbruck, Austria.
| | | | | | | | | |
Collapse
|
12
|
Auweter SD, Oberstrass FC, Allain FHT. Sequence-specific binding of single-stranded RNA: is there a code for recognition? Nucleic Acids Res 2006; 34:4943-59. [PMID: 16982642 PMCID: PMC1635273 DOI: 10.1093/nar/gkl620] [Citation(s) in RCA: 227] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A code predicting the RNA sequence that will be bound by a certain protein based on its amino acid sequence or its structure would provide a useful tool for the design of RNA binders with desired sequence-specificity. Such de novo designed RNA binders could be of extraordinary use in both medical and basic research applications. Furthermore, a code could help to predict the cellular functions of RNA-binding proteins that have not yet been extensively studied. A comparative analysis of Pumilio homology domains, zinc-containing RNA binders, hnRNP K homology domains and RNA recognition motifs is performed in this review. Based on this, a set of binding rules is proposed that hints towards a code for RNA recognition by these domains. Furthermore, we discuss the intermolecular interactions that are important for RNA binding and summarize their importance in providing affinity and specificity.
Collapse
Affiliation(s)
- Sigrid D. Auweter
- Department of Biology, Institute for Molecular Biology and BiophysicsETH Zürich, CH-8093 Zürich, Switzerland
- Molecular Life Science PhD ProgramZürich, Switzerland
| | - Florian C. Oberstrass
- Department of Biology, Institute for Molecular Biology and BiophysicsETH Zürich, CH-8093 Zürich, Switzerland
- Molecular Life Science PhD ProgramZürich, Switzerland
| | - Frédéric H.-T. Allain
- Department of Biology, Institute for Molecular Biology and BiophysicsETH Zürich, CH-8093 Zürich, Switzerland
- To whom correspondence should be addressed. Tel: +41 44 633 3940; Fax: +41 44 63 31294;
| |
Collapse
|
13
|
Law MJ, Linde ME, Chambers EJ, Oubridge C, Katsamba PS, Nilsson L, Haworth IS, Laird-Offringa IA. The role of positively charged amino acids and electrostatic interactions in the complex of U1A protein and U1 hairpin II RNA. Nucleic Acids Res 2006; 34:275-85. [PMID: 16407334 PMCID: PMC1326249 DOI: 10.1093/nar/gkj436] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Previous kinetic investigations of the N-terminal RNA recognition motif (RRM) domain of spliceosomal protein U1A, interacting with its RNA target U1 hairpin II, provided experimental evidence for a ‘lure and lock’ model of binding in which electrostatic interactions first guide the RNA to the protein, and close range interactions then lock the two molecules together. To further investigate the ‘lure’ step, here we examined the electrostatic roles of two sets of positively charged amino acids in U1A that do not make hydrogen bonds to the RNA: Lys20, Lys22 and Lys23 close to the RNA-binding site, and Arg7, Lys60 and Arg70, located on ‘top’ of the RRM domain, away from the RNA. Surface plasmon resonance-based kinetic studies, supplemented with salt dependence experiments and molecular dynamics simulation, indicate that Lys20 predominantly plays a role in association, while nearby residues Lys22 and Lys23 appear to be at least as important for complex stability. In contrast, kinetic analyses of residues away from the RNA indicate that they have a minimal effect on association and stability. Thus, well-positioned positively charged residues can be important for both initial complex formation and complex maintenance, illustrating the multiple roles of electrostatic interactions in protein–RNA complexes.
Collapse
Affiliation(s)
- Michael J. Law
- Department of Biochemistry and Molecular Biology, University of Southern CaliforniaLos Angeles, CA 90089-9176, USA
- Department of Surgery, Keck School of Medicine, University of Southern CaliforniaLos Angeles, CA 90089-9176, USA
| | - Michael E. Linde
- Department of Biochemistry and Molecular Biology, University of Southern CaliforniaLos Angeles, CA 90089-9176, USA
- Department of Surgery, Keck School of Medicine, University of Southern CaliforniaLos Angeles, CA 90089-9176, USA
| | - Eric J. Chambers
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern CaliforniaLos Angeles, CA 90089-9176, USA
| | - Chris Oubridge
- MRC Laboratory of Molecular BiologyHills Road, Cambridge CB2 2QH, UK
| | - Phinikoula S. Katsamba
- Department of Biochemistry and Molecular Biology, University of Southern CaliforniaLos Angeles, CA 90089-9176, USA
- Department of Surgery, Keck School of Medicine, University of Southern CaliforniaLos Angeles, CA 90089-9176, USA
| | - Lennart Nilsson
- Karolinska Institutet, Department of Biosciences at NovumSE-141 57 Huddinge, Sweden
| | - Ian S. Haworth
- Department of Biochemistry and Molecular Biology, University of Southern CaliforniaLos Angeles, CA 90089-9176, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern CaliforniaLos Angeles, CA 90089-9176, USA
| | - Ite A. Laird-Offringa
- Department of Biochemistry and Molecular Biology, University of Southern CaliforniaLos Angeles, CA 90089-9176, USA
- Department of Surgery, Keck School of Medicine, University of Southern CaliforniaLos Angeles, CA 90089-9176, USA
- To whom correspondence should be addressed. Tel: +1 323 865 0655; Fax: +1 323 865 0158;
| |
Collapse
|
14
|
Hobson D, Uhlenbeck OC. Alanine scanning of MS2 coat protein reveals protein-phosphate contacts involved in thermodynamic hot spots. J Mol Biol 2005; 356:613-24. [PMID: 16380130 DOI: 10.1016/j.jmb.2005.11.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 11/10/2005] [Accepted: 11/14/2005] [Indexed: 10/25/2022]
Abstract
The co-crystal structure of the MS2 coat protein dimer with its RNA operator reveals eight amino acid side-chains contacting seven of the RNA phosphates. These eight amino acids and five nearby control positions were individually changed to an alanine residue and the binding affinities of the mutant proteins to the RNA were determined. In general, the data agreed well with the crystal structure and previous RNA modification data. Interestingly, amino acid residues that are energetically most important for complex formation cluster in the middle of the RNA binding interface, forming thermodynamic hot spots, and are surrounded by energetically less relevant amino acids. In order to evaluate whether or not a given alanine mutation causes a global change in the RNA-protein interface, the affinities of the mutant proteins to RNAs containing one of 14 backbone modifications spanning the entire interface were determined. In three of six protein mutations tested, thermodynamic coupling between the site of the mutation and RNA groups that can be even more than 16 A away was detected. This suggests that, in some cases, the mutation may subtly alter the entire protein-RNA interface.
Collapse
Affiliation(s)
- Dagmar Hobson
- Department of Biochemistry, Molecular Biology, Cell Biology, Northwestern University 2205 Tech Drive, Hogan 2-100, Evanston, IL 60208, USA
| | | |
Collapse
|
15
|
Bausch SL, Poliakova E, Draper DE. Interactions of the N-terminal domain of ribosomal protein L11 with thiostrepton and rRNA. J Biol Chem 2005; 280:29956-63. [PMID: 15972821 DOI: 10.1074/jbc.m504182200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ribosomal protein L11 has two domains: the C-terminal domain (L11-C76) binds rRNA, whereas the N-terminal domain (L11-NTD) may variously interact with elongation factor G, the antibiotic thiostrepton, and rRNA. To begin to quantitate these interactions, L11 from Bacillus stearothermophilus has been overexpressed and its properties compared with those of L11-C76 alone in a fluorescence assay for protein-rRNA binding. The assay relies on 2'-amino-butyryl-pyrene-uridine incorporated in a 58-nucleotide rRNA fragment, which gives approximately 15-fold enhancement when L11 or L11-C76 is bound. Although the pyrene tag weakens protein binding, unbiased protein-RNA association constants were obtained in competition experiments with untagged RNA. It was found that (i) intact B. stearothermophilus L11 binds rRNA with K approximately 1.2 x 10(9) m(-1) in buffers with 0.2 m KCl, about 100-fold tighter than Escherichia coli L11; (ii) the N-terminal domain makes a small, salt-dependent contribution to the overall L11-RNA binding affinity (approximately 8-fold enhancement at 0.2 m KCl), (iii) L11 stimulates thiostrepton binding by 2.3 +/- 0.6 x 10(3)-fold, predicting an overall thiostrepton affinity for the ribosome of approximately 10(9) m(-1), and (iv) the yeast homolog of L11 shows no stimulation of thiostrepton binding. The latter observation resolves the question of why eukaryotes are insensitive to the antibiotic. These measurements also show that it is plausible for thiostrepton to compete directly with EF-G.GDP for binding to the L11-RNA complex, and provide a quantitative basis for further studies of L11 function and thiostrepton mechanism.
Collapse
Affiliation(s)
- Sarae L Bausch
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21210, USA
| | | | | |
Collapse
|
16
|
Austin RJ, Xia T, Ren J, Takahashi TT, Roberts RW. Differential Modes of Recognition in N Peptide−BoxB Complexes. Biochemistry 2003; 42:14957-67. [PMID: 14674772 DOI: 10.1021/bi0351312] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
N proteins from bacteriophages lambda, P22, and phi21 modulate transcription elongation by binding nascent "boxB" mRNA hairpins. This RNA recognition is mediated by N-terminal arginine-rich peptide sequences capable of interacting with their cognate boxB RNA targets. Here, we have analyzed the affinity and specificity of the peptide-RNA interactions that modulate this transcriptional switch. To do this, we constructed a series of peptides based on the wild-type lambda, P22, and phi21 N protein binding domains ranging from 11 to 22 residues and analyzed their interactions with the leftward and rightward boxB RNA hairpin targets for all three phage. Binding constant (K(d)) values were determined using RNA hairpins labeled with 2-aminopurine (2AP) and monitoring the fluorescence change as peptide was added. K(d)'s demonstrate that lambda and P22 N peptides bind to their cognate boxB targets with high specificity and show equal affinities for their leftward and rightward hairpins. Surprisingly, phi21 shows very little specificity for its cognate targets. Lambda and P22 N peptides exhibit differential modes of recognition with specificity conferred by their amino- and carboxy-terminal modules, respectively. We have generated a reciprocal matrix of substituted peptides to examine the contributions of individual residues to specificity. Amino acid coupling analysis supports a binding model where the Arg8 residue of lambda peptide acts as a conformational hot spot, anchoring the induced loop fold of its boxB hairpin target.
Collapse
Affiliation(s)
- Ryan J Austin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | |
Collapse
|
17
|
Barrick JE, Roberts RW. Achieving Specificity in Selected and Wild-Type N Peptide−RNA Complexes: The Importance of Discrimination against Noncognate RNA Targets. Biochemistry 2003; 42:12998-3007. [PMID: 14596615 DOI: 10.1021/bi035163p] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The boxB RNA pentaloops from the P22 and lambda phages each adopt a GNRA tetraloop fold upon binding their cognate arginine-rich N peptides. The third loop base in P22 boxB (3-out) and the fourth in lambda boxB (4-out) are excluded to accommodate this structure. Previously, we selected a pool of lambda N sequences with random amino acids at loop contacting positions 13-22 for binding to either of these two GNRA-folded pentaloops or a canonical GNRA tetraloop and isolated a class of peptides with a new conserved arginine (R15). Here, we characterize the binding of lambda N and these R15 peptides using fluorescent titrations with 2-aminopurine labeled versions of the three GNRA-folded loops and circular dichroism spectrometry. All peptides preferentially bind the lambda boxB RNA loop. lambda N and R15 peptide specificity against the P22 loop arises from the cost of rearranging its loop into the 4-out GNRA structure. Modeling indicates that the interaction of R8 with an additional loop phosphate in the 4-out GNRA pentaloop selectively stabilizes this complex relative to the tetraloop. R15 peptides gain additional discrimination against the tetraloop because their arginine also preferentially interacts with the 4-out GNRA pentaloop phosphate backbone, whereas K14 and W18 of lambda N contribute equal affinity when binding the tetraloop. Nonspecific electrostatic interactions by basic residues near the C-termini of these peptides create significantly steeper salt dependencies in association constants for noncognate loops, aiding discrimination at high salt concentrations. Our results emphasize the importance of considering specificity against noncognate as well as nonspecific targets in the combinatorial and rational design of biopolymers capable of macromolecular recognition.
Collapse
Affiliation(s)
- Jeffrey E Barrick
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | |
Collapse
|
18
|
Abstract
Parallel experimental measurements and theoretical calculations have been used to investigate the energetics of electrostatic interactions in the complex formed between a 22 residue, alpha-helical peptide from the N protein of phage lambda and its cognate 19 nucleotide box B RNA hairpin. Salt-dependent free energies were measured for both peptide folding from coil to helix and peptide binding to RNA, and from these the salt-dependence of binding pre-folded, helical peptide to RNA was determined ( partial differential (DeltaG degrees (dock))/ partial differential log[KCl]=5.98(+/-0.21)kcal/mol). (A folding transition taking place in the RNA hairpin loop was shown to have a negligible dependence on salt concentration.) The non-linear Poisson-Boltzmann equation was used to calculate the same salt dependence of the binding free energy as 5.87(+/-0.22)kcal/mol, in excellent agreement with the measured value. Close agreement between experimental measurements and calculations was also obtained for two variant peptides in which either a basic or acidic residue was replaced with an uncharged residue, and for an RNA variant with a deletion of a single loop nucleotide. The calculations suggest that the strength of electrostatic interactions between a peptide residue and RNA varies considerably with environment, but that all 12 positive and negative N peptide charges contribute significantly to the electrostatic free energy of RNA binding, even at distances up to 11A from backbone phosphate groups. Calculations also show that the net release of ions that accompanies complex formation originates from rearrangements of both peptide and RNA ion atmospheres, and includes accumulation of ions in some regions of the complex as well as displacement of cations and anions from the ion atmospheres of the RNA and peptide, respectively.
Collapse
|
19
|
Cleary J, Glick GD. Mutational analysis of a sequence-specific ssDNA binding lupus autoantibody. Biochemistry 2003; 42:30-41. [PMID: 12515537 DOI: 10.1021/bi0203942] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
11F8 is a murine anti-ssDNA monoclonal autoantibody isolated from a lupus prone autoimmune mouse. This mAb binds sequence specifically, and prior studies have defined the thermodynamic and kinetic basis for sequence-specific recognition of ssDNA (Ackroyd, P. C., et al. (2001) Biochemistry 40, 2911-2922; Beckingham, J. A. and Glick, G. D. (2001) Bioorg. Med. Chem. 9, 2243-2252). Here we present experiments designed to identify the residues on 11F8 that mediate sequence-specific, noncognate, and nonspecific recognition of ssDNA and their contribution to the overall binding thermodynamics. Site-directed mutagenesis of an 11F8 single-chain construct reveals that six residues within the complementarity determining regions of 11F8 account for ca. 80% of the binding free energy and that there is little cooperativity between these residues. Germline-encoded aromatic and hydrophobic side chains provides the basis for nonspecific recognition of single-stranded thymine nucleobases. Sequence-specific recognition is controlled by a tyrosine in the heavy chain along with a somatically mutated arginine residue. Our data show that the manner in which 11F8 achieves sequence-specific recognition more closely resembles RNA-binding proteins such as U1A than other types of nucleic acid binding proteins. In addition, comparing the primary sequence of 11F8 with clonally related antibodies that differ by less than five amino acids suggests that somatic mutations which confer sequence specificity may be a feature that distinguishes glomerulotrophic pathogenic anti-DNA from those that are benign.
Collapse
Affiliation(s)
- Joanne Cleary
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | |
Collapse
|
20
|
Austin RJ, Xia T, Ren J, Takahashi TT, Roberts RW. Designed arginine-rich RNA-binding peptides with picomolar affinity. J Am Chem Soc 2002; 124:10966-7. [PMID: 12224929 DOI: 10.1021/ja026610b] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Arginine-rich peptide motifs (ARMs) capable of binding unique RNA structures play critical roles in transcription, translation, RNA trafficking, and RNA packaging. Bacteriophage ARMs necessary for transcription antitermination bind to distinct boxB RNA hairpin sequences with a characteristic induced alpha-helical structure. Characterization of ARMs from lambdoid phages reveals that the dissociation constant of the P22 bacteriophage model-antitermination complex (P22(N21)-P22boxB) is 200 +/- 56 pM in free solution at physiologic concentrations of monovalent cation, significantly stronger than previously determined by gel mobility shift and polyacrylamide gel coelectophoresis, and 2 orders of magnitude stronger than the tightest known native ARM-RNA interaction at physiological salt. Here, we use a reciprocal design approach to enhance the binding affinity of two separate alpha-helical ARM-RNA interactions; one derived from the native lambda phage antitermination complex and a second isolated using mRNA display selection experiments targeting boxB RNA.
Collapse
Affiliation(s)
- Ryan J Austin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | |
Collapse
|
21
|
Harms J, Schluenzen F, Zarivach R, Bashan A, Gat S, Agmon I, Bartels H, Franceschi F, Yonath A. High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell 2001; 107:679-88. [PMID: 11733066 DOI: 10.1016/s0092-8674(01)00546-3] [Citation(s) in RCA: 667] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe the high resolution structure of the large ribosomal subunit from Deinococcus radiodurans (D50S), a gram-positive mesophile suitable for binding of antibiotics and functionally relevant ligands. The over-all structure of D50S is similar to that from the archae bacterium Haloarcula marismortui (H50S); however, a detailed comparison revealed significant differences, for example, in the orientation of nucleotides in peptidyl transferase center and in the structures of many ribosomal proteins. Analysis of ribosomal features involved in dynamic aspects of protein biosynthesis that are partially or fully disordered in H50S revealed the conformations of intersubunit bridges in unbound subunits, suggesting how they may change upon subunit association and how movements of the L1-stalk may facilitate the exit of tRNA.
Collapse
Affiliation(s)
- J Harms
- Max-Planck-Research Unit for Ribosomal Structure, Notkestrasse 85, 22603, Hamburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Gerstner RB, Pak Y, Draper DE. Recognition of 16S rRNA by ribosomal protein S4 from Bacillus stearothermophilus. Biochemistry 2001; 40:7165-73. [PMID: 11401563 DOI: 10.1021/bi010026i] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein S4 is essential for bacterial small ribosomal subunit assembly and recognizes the 5' domain (approximately 500 nt) of small subunit rRNA. This study characterizes the thermodynamics of forming the S4-5' domain rRNA complex from a thermophile, Bacillus stearothermophilus, and points out unexpected differences from the homologous Escherichia coli complex. Upon incubation of the protein and RNA at temperatures between 35 and 50 degrees C under ribosome reconstitution conditions [350 mM KCl, 8 mM MgCl2, and 30 mM Tris (pH 7.5)], a complex with an association constant of > or = 10(9) M(-1) was observed, more than an order of magnitude tighter than previously found for the homologous E. coli complex under similar conditions. This high-affinity complex was shown to be stoichiometric, in equilibrium, and formed at rates on the order of magnitude expected for diffusion-controlled reactions ( approximately 10(7) M(-1) x s(-1)), though at low temperatures the complex became kinetically trapped. Heterologous binding experiments with E. coli S4 and 5' domain RNA suggest that it is the B. stearothermophilus S4, not the rRNA, that is activated by higher temperatures; the E. coli S4 is able to bind 5' domain rRNA equally well at 0 and 37 degrees C. Tight complex formation requires a low Mg ion concentration (1-2 mM) and is very sensitive to KCl concentration [- partial differential[log(K)]/partial differential(log[KCl]) = 9.3]. The protein has an unusually strong nonspecific binding affinity of 3-5 x 10(6) M(-1), detected as a binding of one or two additional proteins to the target 5' domain RNA or two to three proteins binding a noncognate 23S rRNA fragment of the approximately same size. This binding is not as sensitive to monovalent ion concentration [- partial differential[log(K)]/partial differential(log[KCl]) = 6.3] as specific binding and does not require Mg ion. These findings are consistent with S4 stabilizing a compact form of the rRNA 5' domain.
Collapse
Affiliation(s)
- R B Gerstner
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| | | | | |
Collapse
|
23
|
Caprara MG, Myers CA, Lambowitz AM. Interaction of the Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (CYT-18 protein) with the group I intron P4-P6 domain. Thermodynamic analysis and the role of metal ions. J Mol Biol 2001; 308:165-90. [PMID: 11327760 DOI: 10.1006/jmbi.2001.4581] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (CYT-18 protein) functions in splicing group I introns by promoting the formation of the catalytically active structure of the intron's catalytic core. Previous studies suggested a model in which the protein binds first to the intron's P4-P6 domain, and then makes additional contacts with the P3-P9 domain to stabilize the two domains in the correct relative orientation to form the intron's active site. Here, we analyzed the interaction of CYT-18 with a small RNA (P4-P6 RNA) corresponding to the isolated P4-P6 domain of the N. crassa mitochondrial large subunit ribosomal RNA intron. RNA footprinting and modification-interference experiments showed that CYT-18 binds to this small RNA around the junction of the P4-P6 stacked helices on the side opposite the active-site cleft, as it does to the P4-P6 domain in the intact intron. The binding is inhibited by chemical modifications that disrupt base-pairing in P4, P6, and P6a, indicating that a partially folded structure of the P4-P6 domain is required. The temperature-dependence of binding indicates that the interaction is driven by a favorable enthalpy change, but is accompanied by an unfavorable entropy change. The latter may reflect entropically unfavorable conformational changes or decreased conformational flexibility in the complex. CYT-18 binding is inhibited at > or =125 mM KCl, indicating a strong dependence on phosphodiester-backbone interactions. On the other hand, Mg(2+) is absolutely required for CYT-18 binding, with titration experiments showing approximately 1.5 magnesium ions bound per complex. Metal ion-cleavage experiments identified a divalent cation-binding site near the boundary of P6 and J6/6a, and chemical modification showed that Mg(2+) binding induces RNA conformational changes in this region, as well as elsewhere, particularly in J4/5. Together, these findings suggest a model in which the binding of Mg(2+) near J6/6a and possibly at one additional location in the P4-P6 RNA induces formation of a specific phosphodiester-backbone geometry that is required for CYT-18 binding. The binding of CYT-18 may then establish the correct structure at the junction of the P4/P6 stacked helices for assembly of the P3-P9 domain. The interaction of CYT-18 with the P4-P6 domain appears similar to the TyrRS interaction with the D-/anticodon arm stacked helices of tRNA(Tyr).
Collapse
Affiliation(s)
- M G Caprara
- Institute for Cellular and Molecular Biology, Department of Chemistry and Biochemistry, Section of Molecular Genetics and Microbiology, School of Biological Sciences, University of Texas at Austin, Austin, TX 78712, USA
| | | | | |
Collapse
|
24
|
Sitohy M, Chobert JM, Haertlé T. Study of the formation of complexes between DNA and esterified dairy proteins. Int Dairy J 2001. [DOI: 10.1016/s0958-6946(01)00124-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|