1
|
Tipo J, Gottipati K, Slaton M, Gonzalez-Gutierrez G, Choi KH. Structure of HIV-1 RRE stem-loop II identifies two conformational states of the high-affinity Rev binding site. Nat Commun 2024; 15:4198. [PMID: 38760344 PMCID: PMC11101469 DOI: 10.1038/s41467-024-48162-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/22/2024] [Indexed: 05/19/2024] Open
Abstract
During HIV infection, specific RNA-protein interaction between the Rev response element (RRE) and viral Rev protein is required for nuclear export of intron-containing viral mRNA transcripts. Rev initially binds the high-affinity site in stem-loop II, which promotes oligomerization of additional Rev proteins on RRE. Here, we present the crystal structure of RRE stem-loop II in distinct closed and open conformations. The high-affinity Rev-binding site is located within the three-way junction rather than the predicted stem IIB. The closed and open conformers differ in their non-canonical interactions within the three-way junction, and only the open conformation has the widened major groove conducive to initial Rev interaction. Rev binding assays show that RRE stem-loop II has high- and low-affinity binding sites, each of which binds a Rev dimer. We propose a binding model, wherein Rev-binding sites on RRE are sequentially created through structural rearrangements induced by Rev-RRE interactions.
Collapse
Affiliation(s)
- Jerricho Tipo
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX, 77555, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Keerthi Gottipati
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Michael Slaton
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA
| | | | - Kyung H Choi
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA.
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology, The University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
2
|
Levintov L, Vashisth H. Structural and computational studies of HIV-1 RNA. RNA Biol 2024; 21:1-32. [PMID: 38100535 PMCID: PMC10730233 DOI: 10.1080/15476286.2023.2289709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
Viruses remain a global threat to animals, plants, and humans. The type 1 human immunodeficiency virus (HIV-1) is a member of the retrovirus family and carries an RNA genome, which is reverse transcribed into viral DNA and further integrated into the host-cell DNA for viral replication and proliferation. The RNA structures from the HIV-1 genome provide valuable insights into the mechanisms underlying the viral replication cycle. Moreover, these structures serve as models for designing novel therapeutic approaches. Here, we review structural data on RNA from the HIV-1 genome as well as computational studies based on these structural data. The review is organized according to the type of structured RNA element which contributes to different steps in the viral replication cycle. This is followed by an overview of the HIV-1 transactivation response element (TAR) RNA as a model system for understanding dynamics and interactions in the viral RNA systems. The review concludes with a description of computational studies, highlighting the impact of biomolecular simulations in elucidating the mechanistic details of various steps in the HIV-1's replication cycle.
Collapse
Affiliation(s)
- Lev Levintov
- Department of Chemical Engineering & Bioengineering, University of New Hampshire, Durham, USA
| | - Harish Vashisth
- Department of Chemical Engineering & Bioengineering, University of New Hampshire, Durham, USA
| |
Collapse
|
3
|
Doherty EE, Karki A, Wilcox XE, Mendoza HG, Manjunath A, Matos VJ, Fisher AJ, Beal PA. ADAR activation by inducing a syn conformation at guanosine adjacent to an editing site. Nucleic Acids Res 2022; 50:10857-10868. [PMID: 36243986 PMCID: PMC9638939 DOI: 10.1093/nar/gkac897] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/27/2022] Open
Abstract
ADARs (adenosine deaminases acting on RNA) can be directed to sites in the transcriptome by complementary guide strands allowing for the correction of disease-causing mutations at the RNA level. However, ADARs show bias against editing adenosines with a guanosine 5′ nearest neighbor (5′-GA sites), limiting the scope of this approach. Earlier studies suggested this effect arises from a clash in the RNA minor groove involving the 2-amino group of the guanosine adjacent to an editing site. Here we show that nucleosides capable of pairing with guanosine in a syn conformation enhance editing for 5′-GA sites. We describe the crystal structure of a fragment of human ADAR2 bound to RNA bearing a G:G pair adjacent to an editing site. The two guanosines form a Gsyn:Ganti pair solving the steric problem by flipping the 2-amino group of the guanosine adjacent to the editing site into the major groove. Also, duplexes with 2′-deoxyadenosine and 3-deaza-2′-deoxyadenosine displayed increased editing efficiency, suggesting the formation of a Gsyn:AH+anti pair. This was supported by X-ray crystallography of an ADAR complex with RNA bearing a G:3-deaza dA pair. This study shows how non-Watson–Crick pairing in duplex RNA can facilitate ADAR editing enabling the design of next generation guide strands for therapeutic RNA editing.
Collapse
Affiliation(s)
- Erin E Doherty
- Department of Chemistry, University of California, Davis, CA, USA
| | - Agya Karki
- Department of Chemistry, University of California, Davis, CA, USA
| | - Xander E Wilcox
- Department of Chemistry, University of California, Davis, CA, USA
| | - Herra G Mendoza
- Department of Chemistry, University of California, Davis, CA, USA
| | | | | | - Andrew J Fisher
- Department of Chemistry, University of California, Davis, CA, USA.,Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | - Peter A Beal
- Department of Chemistry, University of California, Davis, CA, USA
| |
Collapse
|
4
|
Native mass spectrometry reveals the initial binding events of HIV-1 rev to RRE stem II RNA. Nat Commun 2020; 11:5750. [PMID: 33188169 PMCID: PMC7666190 DOI: 10.1038/s41467-020-19144-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 09/29/2020] [Indexed: 11/24/2022] Open
Abstract
Nuclear export complexes composed of rev response element (RRE) ribonucleic acid (RNA) and multiple molecules of rev protein are promising targets for the development of therapeutic strategies against human immunodeficiency virus type 1 (HIV-1), but their assembly remains poorly understood. Using native mass spectrometry, we show here that rev initially binds to the upper stem of RRE IIB, from where it is relayed to binding sites that allow for rev dimerization. The newly discovered binding region implies initial rev recognition by nucleotides that are not part of the internal loop of RRE stem IIB RNA, which was previously identified as the preferred binding region. Our study highlights the unique capability of native mass spectrometry to separately study the binding interfaces of RNA/protein complexes of different stoichiometry, and provides a detailed understanding of the mechanism of RRE/rev association with implications for the rational design of potential drugs against HIV-1 infection. The HIV-1 RNA-binding protein rev facilitates nuclear export of viral RNA. Here, the authors use native mass spectrometry to study the interactions between rev-derived peptides and rev response elements of HIV-1 RNA, providing mechanistic insights into rev recognition and recruitment.
Collapse
|
5
|
Watkins AM, Rangan R, Das R. FARFAR2: Improved De Novo Rosetta Prediction of Complex Global RNA Folds. Structure 2020; 28:963-976.e6. [PMID: 32531203 PMCID: PMC7415647 DOI: 10.1016/j.str.2020.05.011] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 04/27/2020] [Accepted: 05/20/2020] [Indexed: 01/01/2023]
Abstract
Predicting RNA three-dimensional structures from sequence could accelerate understanding of the growing number of RNA molecules being discovered across biology. Rosetta's Fragment Assembly of RNA with Full-Atom Refinement (FARFAR) has shown promise in community-wide blind RNA-Puzzle trials, but lack of a systematic and automated benchmark has left unclear what limits FARFAR performance. Here, we benchmark FARFAR2, an algorithm integrating RNA-Puzzle-inspired innovations with updated fragment libraries and helix modeling. In 16 of 21 RNA-Puzzles revisited without experimental data or expert intervention, FARFAR2 recovers native-like structures more accurate than models submitted during the RNA-Puzzles trials. Remaining bottlenecks include conformational sampling for >80-nucleotide problems and scoring function limitations more generally. Supporting these conclusions, preregistered blind models for adenovirus VA-I RNA and five riboswitch complexes predicted native-like folds with 3- to 14 Å root-mean-square deviation accuracies. We present a FARFAR2 webserver and three large model archives (FARFAR2-Classics, FARFAR2-Motifs, and FARFAR2-Puzzles) to guide future applications and advances.
Collapse
Affiliation(s)
- Andrew Martin Watkins
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ramya Rangan
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Rhiju Das
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA; Biophysics Program, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
6
|
Chu CC, Liu B, Plangger R, Kreutz C, Al-Hashimi HM. m6A minimally impacts the structure, dynamics, and Rev ARM binding properties of HIV-1 RRE stem IIB. PLoS One 2019; 14:e0224850. [PMID: 31825959 PMCID: PMC6905585 DOI: 10.1371/journal.pone.0224850] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 11/26/2019] [Indexed: 02/02/2023] Open
Abstract
N6-methyladenosine (m6A) is a ubiquitous RNA post-transcriptional modification found in coding as well as non-coding RNAs. m6A has also been found in viral RNAs where it is proposed to modulate host-pathogen interactions. Two m6A sites have been reported in the HIV-1 Rev response element (RRE) stem IIB, one of which was shown to enhance binding to the viral protein Rev and viral RNA export. However, because these m6A sites have not been observed in other studies mapping m6A in HIV-1 RNA, their significance remains to be firmly established. Here, using optical melting experiments, NMR spectroscopy, and in vitro binding assays, we show that m6A minimally impacts the stability, structure, and dynamics of RRE stem IIB as well as its binding affinity to the Rev arginine-rich-motif (ARM) in vitro. Our results indicate that if present in stem IIB, m6A is unlikely to substantially alter the conformational properties of the RNA. Our results add to a growing view that the impact of m6A on RNA depends on sequence context and Mg2+.
Collapse
Affiliation(s)
- Chia-Chieh Chu
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States of America
| | - Bei Liu
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States of America
| | - Raphael Plangger
- Institute of Organic Chemistry and Center for Molecular Biosciences CMBI, Universität Innsbruck, Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences CMBI, Universität Innsbruck, Innsbruck, Austria
| | - Hashim M. Al-Hashimi
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States of America
- Department of Chemistry, Duke University, Durham, NC, United States of America
| |
Collapse
|
7
|
Chu CC, Plangger R, Kreutz C, Al-Hashimi HM. Dynamic ensemble of HIV-1 RRE stem IIB reveals non-native conformations that disrupt the Rev-binding site. Nucleic Acids Res 2019; 47:7105-7117. [PMID: 31199872 PMCID: PMC6649712 DOI: 10.1093/nar/gkz498] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/21/2019] [Accepted: 06/07/2019] [Indexed: 01/01/2023] Open
Abstract
The HIV-1 Rev response element (RRE) RNA element mediates the nuclear export of intron containing viral RNAs by forming an oligomeric complex with the viral protein Rev. Stem IIB and nearby stem II three-way junction nucleate oligomerization through cooperative binding of two Rev molecules. Conformational flexibility at this RRE region has been shown to be important for Rev binding. However, the nature of the flexibility has remained elusive. Here, using NMR relaxation dispersion, including a new strategy for directly observing transient conformational states in large RNAs, we find that stem IIB alone or when part of the larger RREII three-way junction robustly exists in dynamic equilibrium with non-native excited state (ES) conformations that have a combined population of ∼20%. The ESs disrupt the Rev-binding site by changing local secondary structure, and their stabilization via point substitution mutations decreases the binding affinity to the Rev arginine-rich motif (ARM) by 15- to 80-fold. The ensemble clarifies the conformational flexibility observed in stem IIB, reveals long-range conformational coupling between stem IIB and the three-way junction that may play roles in cooperative Rev binding, and also identifies non-native RRE conformational states as new targets for the development of anti-HIV therapeutics.
Collapse
Affiliation(s)
- Chia-Chieh Chu
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Raphael Plangger
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), Universität Innsbruck, 6020 Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), Universität Innsbruck, 6020 Innsbruck, Austria
| | - Hashim M Al-Hashimi
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| |
Collapse
|
8
|
Dai Y, Wynn JE, Peralta AN, Sherpa C, Jayaraman B, Li H, Verma A, Frankel AD, Le Grice SF, Santos WL. Discovery of a Branched Peptide That Recognizes the Rev Response Element (RRE) RNA and Blocks HIV-1 Replication. J Med Chem 2018; 61:9611-9620. [PMID: 30289719 PMCID: PMC6557124 DOI: 10.1021/acs.jmedchem.8b01076] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We synthesized and screened a unique 46 656-member library composed of unnatural amino acids that revealed several hits against RRE IIB RNA. Among the hit peptides identified, peptide 4A5 was found to be selective against competitor RNAs and inhibited HIV-1 Rev-RRE RNA interaction in cell culture in a p24 ELISA assay. Biophysical characterization in a ribonuclease protection assay suggested that 4A5 bound to the stem-loop region in RRE IIB while SHAPE MaP probing with 234 nt RRE RNA indicated additional interaction with secondary Rev binding sites. Taken together, our investigation suggests that HIV replication is inhibited by 4A5 blocking binding of Rev and subsequent multimerization.
Collapse
Affiliation(s)
- Yumin Dai
- Department of Chemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia, 24060, United States
| | - Jessica E. Wynn
- Department of Chemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia, 24060, United States
| | - Ashley N. Peralta
- Department of Chemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia, 24060, United States
| | - Chringma Sherpa
- Basic Research Laboratory, National Cancer Institute, Frederick, Maryland, 21702, United States
| | - Bhargavi Jayaraman
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, 94158, United States
| | - Hao Li
- Department of Chemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia, 24060, United States
| | - Astha Verma
- Department of Chemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia, 24060, United States
| | - Alan D. Frankel
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, 94158, United States
| | - Stuart F. Le Grice
- Basic Research Laboratory, National Cancer Institute, Frederick, Maryland, 21702, United States
| | - Webster L. Santos
- Department of Chemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia, 24060, United States
| |
Collapse
|
9
|
Watkins AM, Geniesse C, Kladwang W, Zakrevsky P, Jaeger L, Das R. Blind prediction of noncanonical RNA structure at atomic accuracy. SCIENCE ADVANCES 2018; 4:eaar5316. [PMID: 29806027 PMCID: PMC5969821 DOI: 10.1126/sciadv.aar5316] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 04/17/2018] [Indexed: 05/26/2023]
Abstract
Prediction of RNA structure from nucleotide sequence remains an unsolved grand challenge of biochemistry and requires distinct concepts from protein structure prediction. Despite extensive algorithmic development in recent years, modeling of noncanonical base pairs of new RNA structural motifs has not been achieved in blind challenges. We report a stepwise Monte Carlo (SWM) method with a unique add-and-delete move set that enables predictions of noncanonical base pairs of complex RNA structures. A benchmark of 82 diverse motifs establishes the method's general ability to recover noncanonical pairs ab initio, including multistrand motifs that have been refractory to prior approaches. In a blind challenge, SWM models predicted nucleotide-resolution chemical mapping and compensatory mutagenesis experiments for three in vitro selected tetraloop/receptors with previously unsolved structures (C7.2, C7.10, and R1). As a final test, SWM blindly and correctly predicted all noncanonical pairs of a Zika virus double pseudoknot during a recent community-wide RNA-Puzzle. Stepwise structure formation, as encoded in the SWM method, enables modeling of noncanonical RNA structure in a variety of previously intractable problems.
Collapse
Affiliation(s)
- Andrew M. Watkins
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Caleb Geniesse
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Wipapat Kladwang
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Paul Zakrevsky
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | - Luc Jaeger
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | - Rhiju Das
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
- Department of Physics, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
10
|
Weinreb C, Riesselman AJ, Ingraham JB, Gross T, Sander C, Marks DS. 3D RNA and Functional Interactions from Evolutionary Couplings. Cell 2016; 165:963-75. [PMID: 27087444 DOI: 10.1016/j.cell.2016.03.030] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/15/2016] [Accepted: 03/18/2016] [Indexed: 11/18/2022]
Abstract
Non-coding RNAs are ubiquitous, but the discovery of new RNA gene sequences far outpaces the research on the structure and functional interactions of these RNA gene sequences. We mine the evolutionary sequence record to derive precise information about the function and structure of RNAs and RNA-protein complexes. As in protein structure prediction, we use maximum entropy global probability models of sequence co-variation to infer evolutionarily constrained nucleotide-nucleotide interactions within RNA molecules and nucleotide-amino acid interactions in RNA-protein complexes. The predicted contacts allow all-atom blinded 3D structure prediction at good accuracy for several known RNA structures and RNA-protein complexes. For unknown structures, we predict contacts in 160 non-coding RNA families. Beyond 3D structure prediction, evolutionary couplings help identify important functional interactions-e.g., at switch points in riboswitches and at a complex nucleation site in HIV. Aided by increasing sequence accumulation, evolutionary coupling analysis can accelerate the discovery of functional interactions and 3D structures involving RNA.
Collapse
Affiliation(s)
- Caleb Weinreb
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Adam J Riesselman
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Program in Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - John B Ingraham
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Torsten Gross
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Institute of Pathology, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Chris Sander
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Debora S Marks
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Wynn JE, Zhang W, Tebit DM, Gray LR, Hammarskjold ML, Rekosh D, Santos WL. Characterization and in vitro activity of a branched peptide boronic acid that interacts with HIV-1 RRE RNA. Bioorg Med Chem 2016; 24:3947-3952. [PMID: 27091070 DOI: 10.1016/j.bmc.2016.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 01/10/2023]
Abstract
A branched peptide containing multiple boronic acids was found to bind RRE IIB selectively and inhibit HIV-1 p24 capsid production in a dose-dependent manner. Structure-activity relationship studies revealed that branching in the peptide is crucial for the low micromolar binding towards RRE IIB, and the peptide demonstrates selectivity towards RRE IIB in the presence of tRNA. Footprinting studies suggest a binding site on the upper stem and internal loop regions of the RNA, which induces enzymatic cleavage of the internal loops of RRE IIB upon binding.
Collapse
Affiliation(s)
- Jessica E Wynn
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, United States
| | - Wenyu Zhang
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, United States
| | - Denis M Tebit
- Department of Microbiology, Immunology and Cancer Biology, and The Myles H. Thaler Center for Human Retrovirus Research, University of Virginia, Charlottesville, VA 22908, United States
| | - Laurie R Gray
- Department of Microbiology, Immunology and Cancer Biology, and The Myles H. Thaler Center for Human Retrovirus Research, University of Virginia, Charlottesville, VA 22908, United States
| | - Marie-Louise Hammarskjold
- Department of Microbiology, Immunology and Cancer Biology, and The Myles H. Thaler Center for Human Retrovirus Research, University of Virginia, Charlottesville, VA 22908, United States
| | - David Rekosh
- Department of Microbiology, Immunology and Cancer Biology, and The Myles H. Thaler Center for Human Retrovirus Research, University of Virginia, Charlottesville, VA 22908, United States
| | - Webster L Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, United States.
| |
Collapse
|
12
|
Sükösd Z, Andersen ES, Seemann SE, Jensen MK, Hansen M, Gorodkin J, Kjems J. Full-length RNA structure prediction of the HIV-1 genome reveals a conserved core domain. Nucleic Acids Res 2015; 43:10168-79. [PMID: 26476446 PMCID: PMC4666355 DOI: 10.1093/nar/gkv1039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 09/30/2015] [Indexed: 11/30/2022] Open
Abstract
A distance constrained secondary structural model of the ≈10 kb RNA genome of the HIV-1 has been predicted but higher-order structures, involving long distance interactions, are currently unknown. We present the first global RNA secondary structure model for the HIV-1 genome, which integrates both comparative structure analysis and information from experimental data in a full-length prediction without distance constraints. Besides recovering known structural elements, we predict several novel structural elements that are conserved in HIV-1 evolution. Our results also indicate that the structure of the HIV-1 genome is highly variable in most regions, with a limited number of stable and conserved RNA secondary structures. Most interesting, a set of long distance interactions form a core organizing structure (COS) that organize the genome into three major structural domains. Despite overlapping protein-coding regions the COS is supported by a particular high frequency of compensatory base changes, suggesting functional importance for this element. This new structural element potentially organizes the whole genome into three major domains protruding from a conserved core structure with potential roles in replication and evolution for the virus.
Collapse
Affiliation(s)
- Zsuzsanna Sükösd
- BiRC, Bioinformatics Research Centre, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Ebbe S Andersen
- iNANO, Interdisciplinary Nanoscience Center, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Stefan E Seemann
- RTH, Center for non-coding RNA in Technology and Health, Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg C, Denmark
| | - Mads Krogh Jensen
- BiRC, Bioinformatics Research Centre, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Mathias Hansen
- BiRC, Bioinformatics Research Centre, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Jan Gorodkin
- RTH, Center for non-coding RNA in Technology and Health, Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg C, Denmark
| | - Jørgen Kjems
- iNANO, Interdisciplinary Nanoscience Center, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
13
|
HIV Rev Assembly on the Rev Response Element (RRE): A Structural Perspective. Viruses 2015; 7:3053-75. [PMID: 26075509 PMCID: PMC4488727 DOI: 10.3390/v7062760] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 06/05/2015] [Indexed: 01/18/2023] Open
Abstract
HIV-1 Rev is an ~13 kD accessory protein expressed during the early stage of virus replication. After translation, Rev enters the nucleus and binds the Rev response element (RRE), a ~350 nucleotide, highly structured element embedded in the env gene in unspliced and singly spliced viral RNA transcripts. Rev-RNA assemblies subsequently recruit Crm1 and other cellular proteins to form larger complexes that are exported from the nucleus. Once in the cytoplasm, the complexes dissociate and unspliced and singly-spliced viral RNAs are packaged into nascent virions or translated into viral structural proteins and enzymes, respectively. Rev binding to the RRE is a complex process, as multiple copies of the protein assemble on the RNA in a coordinated fashion via a series of Rev-Rev and Rev-RNA interactions. Our understanding of the nature of these interactions has been greatly advanced by recent studies using X-ray crystallography, small angle X-ray scattering (SAXS) and single particle electron microscopy as well as biochemical and genetic methodologies. These advances are discussed in detail in this review, along with perspectives on development of antiviral therapies targeting the HIV-1 RRE.
Collapse
|
14
|
Brovarets' OO, Hovorun DM. How does the long G·G* Watson-Crick DNA base mispair comprising keto and enol tautomers of the guanine tautomerise? The results of a QM/QTAIM investigation. Phys Chem Chem Phys 2015; 16:15886-99. [PMID: 24964351 DOI: 10.1039/c4cp01241k] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The double proton transfer (DPT) in the long G·G* Watson-Crick base mispair (|C6N1(G*)N1C6(G)| = 36.4°; C1 symmetry), involving keto and enol tautomers of the guanine (G) nucleobase, along two intermolecular neighboring O6H···O6 (8.39) and N1···HN1 (6.14 kcal mol(-1)) H-bonds that were established to be slightly anti-cooperative, leads to its transformation into the G*·G base mispair through a single transition state (|C6N1N1C6| = 37.1°; C1), namely to the interconversion into itself. It was shown that the G·G* ↔ G*·G tautomerisation via the DPT is assisted by the third specific contact, that sequentially switches along the intrinsic reaction coordinate (IRC) in an original way: (G)N2H···N2(G*) H-bond (-25.13 to -10.37) → N2···N2 van der Waals contact (-10.37 to -9.23) → (G)N2···HN2(G*) H-bond (-9.23 to 0.79) → (G*)N2···HN2(G) H-bond (0.79 to 7.35 Bohr). The DPT tautomerisation was found to proceed through the asynchronous concerted mechanism by employing the QM/QTAIM approach and the methodology of the scans of the geometric, electron-topological, energetic, polar and NBO properties along the IRC. Nine key points, that can be considered as part of the tautomerisation repertoire, have been established and analyzed in detail. Furthermore, it was shown that the G·G* or G*·G base mispair is a thermodynamically and dynamically stable structure with a lifetime of 8.22 × 10(-10) s and all 6 low-frequency intermolecular vibrations are able to develop during this time span. Lastly, our results highlight the importance of the G·G* ↔ G*·G DPT tautomerisation, which can have implications for biological and chemical sensing applications.
Collapse
Affiliation(s)
- Ol'ha O Brovarets'
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akademika Zabolotnoho Str., 03680 Kyiv, Ukraine.
| | | |
Collapse
|
15
|
Cantara WA, Olson ED, Musier-Forsyth K. Progress and outlook in structural biology of large viral RNAs. Virus Res 2014; 193:24-38. [PMID: 24956407 PMCID: PMC4252365 DOI: 10.1016/j.virusres.2014.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/11/2014] [Accepted: 06/12/2014] [Indexed: 02/05/2023]
Abstract
The field of viral molecular biology has reached a precipice for which pioneering studies on the structure of viral RNAs are beginning to bridge the gap. It has become clear that viral genomic RNAs are not simply carriers of hereditary information, but rather are active players in many critical stages during replication. Indeed, functions such as cap-independent translation initiation mechanisms are, in some cases, primarily driven by RNA structural determinants. Other stages including reverse transcription initiation in retroviruses, nuclear export and viral packaging are specifically dependent on the proper 3-dimensional folding of multiple RNA domains to recruit necessary viral and host factors required for activity. Furthermore, a large-scale conformational change within the 5'-untranslated region of HIV-1 has been proposed to regulate the temporal switch between viral protein synthesis and packaging. These RNA-dependent functions are necessary for replication of many human disease-causing viruses such as severe acute respiratory syndrome (SARS)-associated coronavirus, West Nile virus, and HIV-1. The potential for antiviral development is currently hindered by a poor understanding of RNA-driven molecular mechanisms, resulting from a lack of structural information on large RNAs and ribonucleoprotein complexes. Herein, we describe the recent progress that has been made on characterizing these large RNAs and provide brief descriptions of the techniques that will be at the forefront of future advances. Ongoing and future work will contribute to a more complete understanding of the lifecycles of retroviruses and RNA viruses and potentially lead to novel antiviral strategies.
Collapse
Affiliation(s)
| | | | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
16
|
Brovarets’ OO, Hovorun DM. Does the G·G*synDNA mismatch containing canonical and rare tautomers of the guanine tautomerise through the DPT? A QM/QTAIM microstructural study. Mol Phys 2014. [DOI: 10.1080/00268976.2014.927079] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Hausmann NZ, Znosko BM. Thermodynamic characterization of RNA 2 × 3 nucleotide internal loops. Biochemistry 2012; 51:5359-68. [PMID: 22720720 DOI: 10.1021/bi3001227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To better elucidate RNA structure-function relationships and to improve the design of pharmaceutical agents that target specific RNA motifs, an understanding of RNA primary, secondary, and tertiary structure is necessary. The prediction of RNA secondary structure from sequence is an intermediate step in predicting RNA three-dimensional structure. RNA secondary structure is typically predicted using a nearest neighbor model based on free energy parameters. The current free energy parameters for 2 × 3 nucleotide loops are based on a 23-member data set of 2 × 3 loops and internal loops of other sizes. A database of representative RNA secondary structures was searched to identify 2 × 3 nucleotide loops that occur in nature. Seventeen of the most frequent 2 × 3 nucleotide loops in this database were studied by optical melting experiments. Fifteen of these loops melted in a two-state manner, and the associated experimental ΔG°(37,2×3) values are, on average, 0.6 and 0.7 kcal/mol different from the values predicted for these internal loops using the predictive models proposed by Lu, Turner, and Mathews [Lu, Z. J., Turner, D. H., and Mathews, D. H. (2006) Nucleic Acids Res. 34, 4912-4924] and Chen and Turner [Chen, G., and Turner, D. H. (2006) Biochemistry 45, 4025-4043], respectively. These new ΔG°(37,2×3) values can be used to update the current algorithms that predict secondary structure from sequence. To improve free energy calculations for duplexes containing 2 × 3 nucleotide loops that still do not have experimentally determined free energy contributions, an updated predictive model was derived. This new model resulted from a linear regression analysis of the data reported here combined with 31 previously studied 2 × 3 nucleotide internal loops. Most of the values for the parameters in this new predictive model are within experimental error of those of the previous models, suggesting that approximations and assumptions associated with the derivation of the previous nearest neighbor parameters were valid. The updated predictive model predicts free energies of 2 × 3 nucleotide internal loops within 0.4 kcal/mol, on average, of the experimental free energy values. Both the experimental values and the updated predictive model can be used to improve secondary structure prediction from sequence.
Collapse
Affiliation(s)
- Nina Z Hausmann
- Department of Chemistry, Saint Louis University, Saint Louis, MO 63103, USA
| | | |
Collapse
|
18
|
Mart RJ, Wysoczański P, Kneissl S, Ricci A, Brancale A, Allemann RK. Design of Photocontrolled RNA-Binding Peptidomimetics. Chembiochem 2012; 13:515-9. [DOI: 10.1002/cbic.201100800] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Indexed: 01/01/2023]
|
19
|
Michael LA, Chenault JA, Miller BR, Knolhoff AM, Nagan MC. Water, Shape Recognition, Salt Bridges, and Cation–Pi Interactions Differentiate Peptide Recognition of the HIV Rev-Responsive Element. J Mol Biol 2009; 392:774-86. [DOI: 10.1016/j.jmb.2009.07.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 07/06/2009] [Accepted: 07/16/2009] [Indexed: 10/20/2022]
|
20
|
Pallesen J, Dong M, Besenbacher F, Kjems J. Structure of the HIV-1 Rev response element alone and in complex with regulator of virion (Rev) studied by atomic force microscopy. FEBS J 2009; 276:4223-32. [PMID: 19583776 DOI: 10.1111/j.1742-4658.2009.07130.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interaction of multiple HIV-1 regulator of virion (Rev) proteins with the viral RNA target, the Rev response element (RRE), is critical for nuclear export of incompletely spliced and unspliced viral RNA, and for the onset of the late phase in the viral replication cycle. The heterogeneity of the Rev-RRE complex has made it difficult to study using conventional structural methods. In the present study, atomic force microscopy is applied to directly visualize the tertiary structure of the RRE RNA alone and in complex with Rev proteins. The appearance of the RRE is compatible with the earlier proposed RRE secondary structure in dimensions and overall shape, including a stalk and a head interpreted as stem I, and stem-loops II-V in the secondary structure model, respectively. Atomic force microscopy imaging of the Rev-RRE complex revealed an increased height of the structure both in the stalk and head regions, which is in accordance with a binding model in which Rev binding to a high affinity site in stem IIB triggers oligomerization of Rev proteins through cooperative binding along stem I in RRE. The present study demonstrates that atomic force microscopy comprises a useful technique to study complex biological structures of nucleic acids at high resolution.
Collapse
Affiliation(s)
- Jesper Pallesen
- Interdisciplinary Nanoscience Center (iNANO), University of Aarhus, Denmark
| | | | | | | |
Collapse
|
21
|
Rypniewski W, Adamiak DA, Milecki J, Adamiak RW. Noncanonical G(syn)-G(anti) base pairs stabilized by sulphate anions in two X-ray structures of the (GUGGUCUGAUGAGGCC) RNA duplex. RNA (NEW YORK, N.Y.) 2008; 14:1845-51. [PMID: 18658118 PMCID: PMC2525959 DOI: 10.1261/rna.1164308] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The structures of two crystal forms of the RNA 16-mer with the sequence GUGGUCUGAUGAGGCC, grown in the presence of a high concentration of sulphate ions, have been determined using synchrotron radiation at 1.4- and 2.0-A resolution. RNA with this sequence is known as one of the two strands of the noncleavable form of the hammerhead ribozyme. In both crystal structures, two G(syn)-G(anti) noncanonical base pairs are observed in the middle of a 14 base-pair (bp) duplex having 5'-dangling GU residues. Both structures contain sulphate anions interacting with the G-G bp stabilizing G in its syn conformation and bridging the two RNA strands. In both cases the interactions take place in the major groove, although the anions are accommodated within different helix geometries, most pronounced in the changing width of the major groove. In one structure, where a single sulphate spans both G-G pairs, the major groove is closed around the anion, while in the other structure, where each of the two G-G pairs is associated with a separate sulphate, the groove is open. This work provides the first examples of a G-G pair in syn-anti conformation, which minimizes the purine-purine clash in the center of the duplex, while utilizing its residual hydrogen bonding potential in specific interactions with sulphate anions.
Collapse
Affiliation(s)
- Wojciech Rypniewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań , Poland
| | | | | | | |
Collapse
|
22
|
Affiliation(s)
- Jason R Thomas
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, Illinois 61822, USA
| | | |
Collapse
|
23
|
Richardson JS, Schneider B, Murray LW, Kapral GJ, Immormino RM, Headd JJ, Richardson DC, Ham D, Hershkovits E, Williams LD, Keating KS, Pyle AM, Micallef D, Westbrook J, Berman HM. RNA backbone: consensus all-angle conformers and modular string nomenclature (an RNA Ontology Consortium contribution). RNA (NEW YORK, N.Y.) 2008; 14:465-81. [PMID: 18192612 PMCID: PMC2248255 DOI: 10.1261/rna.657708] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 10/29/2007] [Indexed: 05/03/2023]
Abstract
A consensus classification and nomenclature are defined for RNA backbone structure using all of the backbone torsion angles. By a consensus of several independent analysis methods, 46 discrete conformers are identified as suitably clustered in a quality-filtered, multidimensional dihedral angle distribution. Most of these conformers represent identifiable features or roles within RNA structures. The conformers are given two-character names that reflect the seven-angle delta epsilon zeta alpha beta gamma delta combinations empirically found favorable for the sugar-to-sugar "suite" unit within which the angle correlations are strongest (e.g., 1a for A-form, 5z for the start of S-motifs). Since the half-nucleotides are specified by a number for delta epsilon zeta and a lowercase letter for alpha beta gamma delta, this modular system can also be parsed to describe traditional nucleotide units (e.g., a1) or the dinucleotides (e.g., a1a1) that are especially useful at the level of crystallographic map fitting. This nomenclature can also be written as a string with two-character suite names between the uppercase letters of the base sequence (N1aG1gN1aR1aA1cN1a for a GNRA tetraloop), facilitating bioinformatic comparisons. Cluster means, standard deviations, coordinates, and examples are made available, as well as the Suitename software that assigns suite conformer names and conformer match quality (suiteness) from atomic coordinates. The RNA Ontology Consortium will combine this new backbone system with others that define base pairs, base-stacking, and hydrogen-bond relationships to provide a full description of RNA structural motifs.
Collapse
Affiliation(s)
- Jane S Richardson
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, 27710-3711, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Moehle K, Athanassiou Z, Patora K, Davidson A, Varani G, Robinson J. Design von β-Haarnadel-Peptidmimetika zur Hemmung der Bindung des α-helicalen HIV-1-Rev-Proteins an das Rev-RNA-Erkennungselement. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200702801] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Timsit Y, Bombard S. The 1.3 A resolution structure of the RNA tridecamer r(GCGUUUGAAACGC): metal ion binding correlates with base unstacking and groove contraction. RNA (NEW YORK, N.Y.) 2007; 13:2098-107. [PMID: 17940138 PMCID: PMC2080593 DOI: 10.1261/rna.730207] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Metal ions play a key role in RNA folding and activity. Elucidating the rules that govern the binding of metal ions is therefore an essential step for better understanding the RNA functions. High-resolution data are a prerequisite for a detailed structural analysis of ion binding on RNA and, in particular, the observation of monovalent cations. Here, the high-resolution crystal structures of the tridecamer duplex r(GCGUUUGAAACGC) crystallized under different conditions provides new structural insights on ion binding on GAAA/UUU sequences that exhibit both unusual structural and functional properties in RNA. The present study extends the repertory of RNA ion binding sites in showing that the two first bases of UUU triplets constitute a specific site for sodium ions. A striking asymmetric pattern of metal ion binding in the two equivalent halves of the palindromic sequence demonstrates that sequence and its environment act together to bind metal ions. A highly ionophilic half that binds six metal ions allows, for the first time, the observation of a disodium cluster in RNA. The comparison of the equivalent halves of the duplex provides experimental evidences that ion binding correlates with structural alterations and groove contraction.
Collapse
Affiliation(s)
- Youri Timsit
- Laboratoire de Cristallographie et de Biochimie Théorique, Institut de Biologie Physico-Chimique, UPR 9080, CNRS, 75005 Paris, France.
| | | |
Collapse
|
26
|
Das R, Baker D. Automated de novo prediction of native-like RNA tertiary structures. Proc Natl Acad Sci U S A 2007; 104:14664-9. [PMID: 17726102 PMCID: PMC1955458 DOI: 10.1073/pnas.0703836104] [Citation(s) in RCA: 332] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Indexed: 11/18/2022] Open
Abstract
RNA tertiary structure prediction has been based almost entirely on base-pairing constraints derived from phylogenetic covariation analysis. We describe here a complementary approach, inspired by the Rosetta low-resolution protein structure prediction method, that seeks the lowest energy tertiary structure for a given RNA sequence without using evolutionary information. In a benchmark test of 20 RNA sequences with known structure and lengths of approximately 30 nt, the new method reproduces better than 90% of Watson-Crick base pairs, comparable with the accuracy of secondary structure prediction methods. In more than half the cases, at least one of the top five models agrees with the native structure to better than 4 A rmsd over the backbone. Most importantly, the method recapitulates more than one-third of non-Watson-Crick base pairs seen in the native structures. Tandem stacks of "sheared" base pairs, base triplets, and pseudoknots are among the noncanonical features reproduced in the models. In the cases in which none of the top five models were native-like, higher energy conformations similar to the native structures are still sampled frequently but not assigned low energies. These results suggest that modest improvements in the energy function, together with the incorporation of information from phylogenetic covariance, may allow confident and accurate structure prediction for larger and more complex RNA chains.
Collapse
Affiliation(s)
- Rhiju Das
- Department of Biochemistry and Howard Hughes Medical Institute, University of Washington, Box 357350, Seattle, WA 98195
| | - David Baker
- Department of Biochemistry and Howard Hughes Medical Institute, University of Washington, Box 357350, Seattle, WA 98195
| |
Collapse
|
27
|
Högbom M, Collins R, van den Berg S, Jenvert RM, Karlberg T, Kotenyova T, Flores A, Karlsson Hedestam GB, Schiavone LH. Crystal structure of conserved domains 1 and 2 of the human DEAD-box helicase DDX3X in complex with the mononucleotide AMP. J Mol Biol 2007; 372:150-9. [PMID: 17631897 DOI: 10.1016/j.jmb.2007.06.050] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 06/12/2007] [Accepted: 06/14/2007] [Indexed: 11/24/2022]
Abstract
DExD-box helicases are involved in all aspects of cellular RNA metabolism. Conserved domains 1 and 2 contain nine signature motifs that are responsible for nucleotide binding, RNA binding and ATP hydrolysis. The human DEAD-box helicase DDX3X has been associated with several different cellular processes, such as cell-growth control, mRNA transport and translation, and is suggested to be essential for the export of unspliced/partially spliced HIV mRNAs from the nucleus to the cytoplasm. Here, the crystal structure of conserved domains 1 and 2 of DDX3X, including a DDX3-specific insertion that is not generally found in human DExD-box helicases, is presented. The N-terminal domain 1 and the C-terminal domain 2 both display RecA-like folds comprising a central beta-sheet flanked by alpha-helices. Interestingly, the DDX3X-specific insertion forms a helical element that extends a highly positively charged sequence in a loop, thus increasing the RNA-binding surface of the protein. Surprisingly, although DDX3X was crystallized in the presence of a large excess of ADP or the slowly hydrolyzable ATP analogue ATPgammaS the contaminant AMP was seen in the structure. A fluorescent-based stability assay showed that the thermal stability of DDX3X was increased by the mononucleotide AMP but not by ADP or ATPgammaS, suggesting that DDX3X is stabilized by AMP and elucidating why AMP was found in the nucleotide-binding pocket.
Collapse
Affiliation(s)
- Martin Högbom
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hyun S, Kim HJ, Lee NJ, Lee KH, Lee Y, Ahn DR, Kim K, Jeong S, Yu J. Alpha-helical peptide containing N,N-dimethyl lysine residues displays low-nanomolar and highly specific binding to RRE RNA. J Am Chem Soc 2007; 129:4514-5. [PMID: 17378563 DOI: 10.1021/ja068265m] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Soonsil Hyun
- Department of Chemistry and Education, Seoul National University, Seoul 151-742, Korea, Life Science Division, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Havlin RH, Blanco FJ, Tycko R. Constraints on protein structure in HIV-1 Rev and Rev-RNA supramolecular assemblies from two-dimensional solid state nuclear magnetic resonance. Biochemistry 2007; 46:3586-93. [PMID: 17311419 DOI: 10.1021/bi0622928] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The HIV-1 Rev protein is required for export of partially spliced and unspliced viral mRNA from nuclei of infected cells, and ultimately for viral replication. Rev is highly prone to aggregation, both in the absence and in the presence of the Rev responsive element (RRE) RNA to which it binds. As a result, the full molecular structures of Rev and Rev-RRE complexes are not known. We describe the results of transmission electron microscopy, atomic force microscopy, and solid state nuclear magnetic resonance (NMR) experiments on pure Rev filaments and coassemblies of Rev with a 45-base RNA sequence representing the high-affinity stem-loop IIB segment of the RRE. The morphologies of Rev filaments and Rev-RNA coassemblies are qualitatively different. Nonetheless, two-dimensional (2D) solid state 13C-13C NMR spectra of Rev filament and Rev-RNA coassembly samples, in which all Ile, Val, and Ala residues are uniformly labeled with 13C, are nearly indistinguishable, indicating that the protein conformation is essentially the same in the two types of supramolecular assemblies. Analysis of cross-peak patterns in the 2D spectra supports a previously developed helix-loop-helix structural model for the N-terminal half of Rev and shows that this model applies to both Rev filaments and Rev-RNA coassemblies. In addition, the 2D spectra suggest the presence of additional helix content at Ile and Val sites in the C-terminal half of Rev.
Collapse
MESH Headings
- Amino Acid Sequence
- Electrophoresis, Polyacrylamide Gel
- Gene Products, rev/chemistry
- Genes, env/genetics
- Microscopy, Atomic Force
- Microscopy, Electron, Transmission
- Molecular Sequence Data
- Nuclear Magnetic Resonance, Biomolecular
- Protein Structure, Secondary
- RNA, Viral/chemistry
- rev Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Robert H Havlin
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | | | | |
Collapse
|
30
|
Moehle K, Athanassiou Z, Patora K, Davidson A, Varani G, Robinson JA. Design of beta-hairpin peptidomimetics that inhibit binding of alpha-helical HIV-1 Rev protein to the rev response element RNA. Angew Chem Int Ed Engl 2007; 46:9101-4. [PMID: 17893894 PMCID: PMC3809837 DOI: 10.1002/anie.200702801] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Kerstin Moehle
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich (Switzerland), Fax: (+41) 44-1635-6833
| | | | - Krystyna Patora
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich; (Switzerland), Fax: (+41) 44-1635-6833
| | - Amy Davidson
- Department of Chemistry, University of Washington, Seattle, WA 98195 (USA)
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, WA 98195 (USA)
- Department of Biochemistry, University of Washington, Seattle, WA 98195 (USA)
| | - John A. Robinson
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich (Switzerland), Fax: (+41) 44-1635-6833
| |
Collapse
|
31
|
Pan B, Shi K, Sundaralingam M. Base-tetrad swapping results in dimerization of RNA quadruplexes: implications for formation of the i-motif RNA octaplex. Proc Natl Acad Sci U S A 2006; 103:3130-4. [PMID: 16492787 PMCID: PMC1413875 DOI: 10.1073/pnas.0507730103] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2005] [Indexed: 11/18/2022] Open
Abstract
Nucleic acids adopt different multistranded helical architectures to perform various biological functions. Here, we report a crystal structure of an RNA quadruplex containing "base-tetrad swapping" and bulged nucleotide at 2.1-Angstroms resolution. The base-tetrad swapping results in a dimer of quadruplexes with an intercalated octaplex fragment at the 5' end junction. The intercalated base tetrads provide the basic repeat unit for constructing a model of intercalated RNA octaplex. The model we obtained shows fundamentally different characteristics from duplex, triplex, and quadruplex. We also observed two different orientations of bulged uridine residues that are related to the interaction with surroundings. This structural evidence reflects the conformational flexibility of bulged nucleotides in RNA quadruplexes and implies the potential roles of bulged nucleotides as recognition and interaction sites in RNA-protein and RNA-RNA interactions.
Collapse
Affiliation(s)
- Baocheng Pan
- Departments of Chemistry and Biochemistry, Ohio State University, 200 Johnston Laboratory, 176 West 19th Avenue, Columbus, OH 43210-1002; and
| | - Ke Shi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street Southeast, Minneapolis, MN 55455
| | - Muttaiya Sundaralingam
- Departments of Chemistry and Biochemistry, Ohio State University, 200 Johnston Laboratory, 176 West 19th Avenue, Columbus, OH 43210-1002; and
| |
Collapse
|
32
|
St-Louis MC, Cojocariu M, Archambault D. The molecular biology of bovine immunodeficiency virus: a comparison with other lentiviruses. Anim Health Res Rev 2005; 5:125-43. [PMID: 15984320 DOI: 10.1079/ahr200496] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bovine immunodeficiency virus (BIV) was first isolated in 1969 from a cow, R-29, with a wasting syndrome. The virus isolated induced the formation of syncytia in cell cultures and was structurally similar to maedi-visna virus. Twenty years later, it was demonstrated that the bovine R-29 isolate was indeed a lentivirus with striking similarity to the human immunodeficiency virus. Like other lentiviruses, BIV has a complex genomic structure characterized by the presence of several regulatory/accessory genes that encode proteins, some of which are involved in the regulation of virus gene expression. This manuscript aims to review biological and, more particularly, molecular aspects of BIV, with emphasis on regulatory/accessory viral genes/proteins, in comparison with those of other lentiviruses.
Collapse
Affiliation(s)
- Marie-Claude St-Louis
- University of Québec at Montréal, Department of Biological Sciences, Montréal, Québec, Canada
| | | | | |
Collapse
|
33
|
Kuznetsova IL, Zenkova MA, Gross HJ, Vlassov VV. Enhanced RNA cleavage within bulge-loops by an artificial ribonuclease. Nucleic Acids Res 2005; 33:1201-12. [PMID: 15731340 PMCID: PMC549568 DOI: 10.1093/nar/gki264] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cleavage of phosphodiester bonds by small ribonuclease mimics within different bulge-loops of RNA was investigated. Bulge-loops of different size (1–7 nt) and sequence composition were formed in a 3′ terminal fragment of influenza virus M2 RNA (96 nt) by hybridization of complementary oligodeoxynucleotides. Small bulges (up to 4 nt) were readily formed upon oligonucleotide hybridization, whereas hybridization of the RNA to the oligonucleotides designed to produce larger bulges resulted in formation of several alternative structures. A synthetic ribonuclease mimic displaying Pyr–Pu cleavage specificity cleaved CpA motifs located within bulges faster than similar motifs within the rest of the RNA. In the presence of 10 mM MgCl2, 75% of the cleavage products resulted from the attack of this motif. Thus, selective RNA cleavage at a single target phosphodiester bond was achieved by using bulge forming oligonucleotides and a small ribonuclease A mimic.
Collapse
Affiliation(s)
| | - Marina A. Zenkova
- To whom correspondence should be addressed. Tel: +7 3832 333761; Fax: +7 3832 333761;
| | - Hans J. Gross
- Institute of Biochemistry, BiocenterAm Hubland, D-97074 Würzburg, Germany
| | | |
Collapse
|
34
|
Boer J, Blount KF, Luedtke NW, Elson-Schwab L, Tor Y. RNA-Selective Modification by a Platinum(II) Complex Conjugated to Amino- and Guanidinoglycosides. Angew Chem Int Ed Engl 2005; 44:927-32. [PMID: 15630712 DOI: 10.1002/anie.200461182] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Jürgen Boer
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0358, USA
| | | | | | | | | |
Collapse
|
35
|
Boer J, Blount KF, Luedtke NW, Elson-Schwab L, Tor Y. RNA-Selective Modification by a Platinum(II) Complex Conjugated to Amino- and Guanidinoglycosides. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200461182] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Pan B, Xiong Y, Shi K, Sundaralingam M. Crystal structure of a bulged RNA tetraplex at 1.1 a resolution: implications for a novel binding site in RNA tetraplex. Structure 2004; 11:1423-30. [PMID: 14604532 DOI: 10.1016/j.str.2003.09.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Bulges are an important structural motif in RNA and can be used as recognition and interaction sites in RNA-protein interaction and RNA-RNA interaction. Here we report the first crystal structure of a bulged RNA tetraplex at 1.1 A resolution. The hexamer r(U)(BrdG)r(UGGU) forms a parallel tetraplex with the uridine sandwiched by guanines bulging out. The bulged uridine adopts the syn glycosidic conformation and its O2 and N3 atoms face outwards, serving as an effective recognition and interaction site. The bulge formation both widens the groove width and changes the groove hydrogen-bonding pattern on its 5' side. However, the bulge does not make any bends or kinks in the tetraplex structure. The present study demonstrates the dramatic difference between uridine and guanine in forming tetraplex structure. In addition, both G(syn) tetrad and G(anti) tetrad have been observed. They display the same base-pairing pattern and similar C1'-C1' distance but different hydrogen-bonding patterns in the groove.
Collapse
Affiliation(s)
- Baocheng Pan
- Department of Chemistry and Biochemistry, The Ohio State University, 200 Johnston Lab, 176 West 19th Avenue, Columbus, OH, USA
| | | | | | | |
Collapse
|
37
|
Madder A, Ehrl R, Strömberg R. Stabilisation of RNA bulges by oligonucleotide complements containing an adenosine analogue. Chembiochem 2004; 4:1194-200. [PMID: 14613111 DOI: 10.1002/cbic.200300531] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Incorporation of 2'-deoxy-2'-beta-(1-naphthylmethyl)tubercidin into an oligodeoxyribonucleotide mostly has little or a slightly negative effect on the T(m) values of complexes with DNA complements. With the same naphthylmethyl-substituted nucleoside at the 3'-end of a 2'-O-methyloligoribonucleotide, however, a stabilisation of 1-2 degrees C in the corresponding complexes with both DNA and RNA is observed. When the target sequence is an RNA fragment forming a two- or three-nucleotide bulge, complexes with (naphthylmethyl)tubercidin-modified oligodeoxyribonucleotides, as well as with the corresponding 2'-O-methyloligoribonucleotides, give stabilisations of 1-2 degrees C for the three-nucleotide bulge and of almost 4 degrees C for the two-nucleotide bulge. This stabilisation is specific to RNA, since the corresponding complexes with the DNA fragments do not display this effect. Thus, the (naphthylmethyl)tubercidin-containing oligonucleotides are the first reported oligonucleotide modifications that specifically stabilise bulged RNA.
Collapse
Affiliation(s)
- Annemieke Madder
- Division of Organic and Bioorganic Chemistry, MBB, Scheele Laboratory, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | | |
Collapse
|
38
|
Abstract
The base of knowledge concerning RNA structure and function has been expanding rapidly in recent years. Simultaneously, an increasing awareness of the pivotal role RNA plays in viral diseases has prompted many researchers to apply new technologies in high-throughput screening and molecular modelling to the design of antiviral drugs that target RNA. While the two RNA viruses with the greatest unmet medical need, HIV and HCV, have been most actively pursued, the approaches discussed in this review are relevant to all virus infections. Both traditional small-molecule and large-molecule therapeutics, such as antisense, ribozymes and interfering dsRNAs have been described, and several molecules are under development for commercialization. The purpose of this review is to summarize the current state of the art in this field and to postulate new directions in the future.
Collapse
MESH Headings
- Antiviral Agents/therapeutic use
- Base Sequence
- Drug Design
- Humans
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/therapeutic use
- RNA, Antisense/genetics
- RNA, Antisense/therapeutic use
- RNA, Catalytic/genetics
- RNA, Catalytic/therapeutic use
- RNA, Viral/chemistry
- RNA, Viral/drug effects
- RNA, Viral/genetics
Collapse
Affiliation(s)
- Kevin L McKnight
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Ind., USA.
| | | |
Collapse
|
39
|
Hartig JS, Najafi-Shoushtari SH, Grüne I, Yan A, Ellington AD, Famulok M. Protein-dependent ribozymes report molecular interactions in real time. Nat Biotechnol 2002; 20:717-22. [PMID: 12089558 DOI: 10.1038/nbt0702-717] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Most approaches to monitoring interactions between biological macromolecules require large amounts of material, rely upon the covalent modification of an interaction partner, or are not amenable to real-time detection. We have developed a generalizable assay system based on interactions between proteins and reporter ribozymes. The assay can be configured in a modular fashion to monitor the presence and concentration of a protein or of molecules that modulate protein function. We report two applications of the assay: screening for a small molecule that disrupts protein binding to its nucleic acid target and screening for protein protein interactions. We screened a structurally diverse library of antibiotics for small molecules that modulate the activity of HIV-1 Rev-responsive ribozymes by binding to Rev. We identified an inhibitor that subsequently inhibited HIV-1 replication in cells. A simple format switch allowed reliable monitoring of domain-specific interactions between the blood-clotting factor thrombin and its protein partners. The rapid identification of interactions between proteins or of compounds that disrupt such interactions should have substantial utility for the drug-discovery process.
Collapse
Affiliation(s)
- Jörg S Hartig
- Kekulé Institut für Organische Chemie und Biochemie, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Blanco FJ, Hess S, Pannell LK, Rizzo NW, Tycko R. Solid-state NMR data support a helix-loop-helix structural model for the N-terminal half of HIV-1 Rev in fibrillar form. J Mol Biol 2001; 313:845-59. [PMID: 11697908 DOI: 10.1006/jmbi.2001.5067] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Rev is a 116 residue basic protein encoded by the genome of human immunodeficiency virus type 1 (HIV-1) that binds to multiple sites in the Rev response element (RRE) of viral mRNA transcripts in nuclei of host cells, leading to transport of incompletely spliced and unspliced viral mRNA to the cytoplasm of host cells in the latter phases of the HIV-1 life cycle. Rev is absolutely required for viral replication. Because Rev aggregates and fibrillizes in solution at concentrations required for crystal growth or liquid state NMR measurements, high-resolution structural characterization of full-length Rev has not been possible. Previously, circular dichroism studies have shown that approximately 50 % of the Rev sequence adopts helical secondary structure, predicted to correspond to a helix-loop-helix structural motif in the N-terminal half of the protein. We describe the application of solid-state NMR techniques to Rev fibrils as a means of obtaining site-specific, atomic-level structural constraints without requiring a high degree of solubility or crystallinity. Solid-state NMR measurements, using the double-quantum chemical shift anisotropy and constant-time double-quantum-filtered dipolar recoupling techniques, provide constraints on the phi and psi backbone dihedral angles at sites in which consecutive backbone carbonyl groups are labeled with (13)C. Quantitative analysis of the solid-state NMR data, by comparison with numerical simulations, indicates helical phi and psi angles at residues Leu13 and Val16 in the predicted helix 1 segment, and at residues Arg39, Arg 42, Arg43, and Arg44 in the predicted helix 2 segment. These data represent the first site-specific structural constraints from NMR spectroscopy on full-length Rev, and support the helix-loop-helix structural model for its N-terminal half.
Collapse
Affiliation(s)
- F J Blanco
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | | | | | | | | |
Collapse
|
41
|
Xiong Y, Deng J, Sudarsanakumar C, Sundaralingam M. Crystal structure of an RNA duplex r(gugucgcac)(2) with uridine bulges. J Mol Biol 2001; 313:573-82. [PMID: 11676540 DOI: 10.1006/jmbi.2001.5045] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The crystal structure of a nonamer RNA duplex with a uridine bulge in each strand, r(gugucgcac)(2), was determined at 1.4 A resolution. The structure was solved by multiple anomalous diffraction phasing method using a three-wavelength data set collected at the Advanced Protein Source and refined to a final R(work)/R(free) of 21.2 %/23.4 % with 33,271 independent reflections (Friedel pairs unmerged). The RNA duplex crystallized in the tetragonal space group P4(1)22 with two independent molecules in the asymmetric unit. The unit cell dimensions are a=b=47.18 A and c=80.04 A. The helical region of the nonamer adopts the A-form conformation. The uridine bulges assume similar conformations, with uracils flipping out and protruding into the minor groove. The presence of the bulge induces very large twist angles (approximately +50 degrees) between the base-pairs flanking the bulges while causing profound kinks in the helix axis at the bulges. This severe twist and the large kink in turn produces a very narrow major groove at the middle of the molecule. The ribose sugars of the guanosines before the bulges adopt the C2'-endo conformation while the rest, including the bulges, are in the C3'-endo conformation. The intrastrand phosphate-phosphate (P-P) distance of the phosphate groups flanking the bulges (approximately 4.4 A) are significantly shorter than the average P-P distance in the duplex (6.0 A). This short distance between the two phosphate groups brings the non-bridging oxygen atoms close to each other where a calcium ion is bound to each strand. The calcium ions in molecule 1 are well defined while the calcium ions in molecule 2 are disordered.
Collapse
Affiliation(s)
- Y Xiong
- Department of Chemistry, The Ohio State University Biological Macromolecular Structure Center, 012 Rightmire Hall, 1060 Carmack Rd., Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
42
|
Leulliot N, Varani G. Current topics in RNA-protein recognition: control of specificity and biological function through induced fit and conformational capture. Biochemistry 2001; 40:7947-56. [PMID: 11434763 DOI: 10.1021/bi010680y] [Citation(s) in RCA: 276] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- N Leulliot
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, England, UK
| | | |
Collapse
|
43
|
Burkard ME, Xia T, Turner DH. Thermodynamics of RNA internal loops with a guanosine-guanosine pair adjacent to another noncanonical pair. Biochemistry 2001; 40:2478-83. [PMID: 11327869 DOI: 10.1021/bi0012181] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thermodynamic parameters measured by optical melting are reported for formation of RNA duplexes containing tandem noncanonical pairs with at least one guanosine-guanosine (GG) pair. For selected sequences, imino proton NMR provides evidence that the desired duplex forms and that the structure of a GG pair adjacent to a noncanonical pair depends on context. A GG pair next to a different noncanonical pair is more stable than expected from measurements of adjacent GG pairs. This is likely due to an unfavorable stacking interaction between adjacent GG pairs, where areas of high negative charge probably overlap. The results suggest a model where tandem noncanonical pairs closed by two GC pairs are assigned the following free energy increments at 37 degrees C: 0.8 kcal/mol for adjacent GG pairs, 1.0 kcal/mol for GG next to UU, and -0.3 kcal/mol for all others. These values are adjusted by 0.65 kcal/mol for each closing AU pair.
Collapse
Affiliation(s)
- M E Burkard
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, USA
| | | | | |
Collapse
|
44
|
Burkard ME, Turner DH. NMR structures of r(GCAGGCGUGC)2 and determinants of stability for single guanosine-guanosine base pairs. Biochemistry 2000; 39:11748-62. [PMID: 10995243 DOI: 10.1021/bi000720i] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nucleotides in RNA that are not Watson-Crick-paired form unique structures for recognition or catalysis, but determinants of these structures and their stabilities are poorly understood. A single noncanonical pair of two guanosines (G) is more stable than other noncanonical pairs and can potentially form pairing structures with two hydrogen bonds in four different ways. Here, the energetics and structure of single GG pairs are investigated in several sequence contexts by optical melting and NMR. The data for r(5'GCAGGCGUGC3')(2), in which G4 and G7 are paired, are consistent with a model in which G4 and G7 alternate syn glycosidic conformations in a two-hydrogen-bond pair. The two distinct structures are derived from nuclear Overhauser effect spectroscopic distance restraints coupled with simulated annealing using the AMBER 95 force field. In each structure, the imino and amino protons of the anti G are hydrogen bonded to the O6 and N7 acceptors of the syn G, respectively. An additional hydrogen-bond connects the syn G amino group to the 5' nonbridging pro-R(p) phosphate oxygen. The GG pair fits well into a Watson-Crick helix. In r(5'GCAGGCGUGC3')(2), the G4(anti), G7(syn) structure is preferred over G4(syn), G7(anti). For single GG pairs in other contexts, exchange processes make interpretation of spectra more difficult but the pairs are also G(syn), G(anti). Thermodynamic data for a variety of duplexes containing pairs of G, inosine, and 7-deazaguanosine flanked by GC pairs are consistent with the structural and energetic interpretations for r(5'GCAGGCGUGC3')(2), suggesting similar GG conformations.
Collapse
Affiliation(s)
- M E Burkard
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, USA
| | | |
Collapse
|
45
|
Hung LW, Holbrook EL, Holbrook SR. The crystal structure of the Rev binding element of HIV-1 reveals novel base pairing and conformational variability. Proc Natl Acad Sci U S A 2000; 97:5107-12. [PMID: 10792052 PMCID: PMC25789 DOI: 10.1073/pnas.090588197] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The crystal and molecular structure of an RNA duplex corresponding to the high affinity Rev protein binding element (RBE) has been determined at 2.1-A resolution. Four unique duplexes are present in the crystal, comprising two structural variants. In each duplex, the RNA double helix consists of an annealed 12-mer and 14-mer that form an asymmetric internal loop consisting of G-G and G-A noncanonical base pairs and a flipped-out uridine. The 12-mer strand has an A-form conformation, whereas the 14-mer strand is distorted to accommodate the bulges and noncanonical base pairing. In contrast to the NMR model of the unbound RBE, an asymmetric G-G pair with N2-N7 and N1-O6 hydrogen bonding, is formed in each helix. The G-A base pairing agrees with the NMR structure in one structural variant, but forms a novel water-mediated pair in the other. A backbone flip and reorientation of the G-G base pair is required to assume the RBE conformation present in the NMR model of the complex between the RBE and the Rev peptide.
Collapse
Affiliation(s)
- L W Hung
- Macromolecular Crystallography Facility and Structural Biology Department, Melvin Calvin Building, Physical Biosciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|