1
|
Sebesta J, Xiong W, Guarnieri MT, Yu J. Biocontainment of Genetically Engineered Algae. FRONTIERS IN PLANT SCIENCE 2022; 13:839446. [PMID: 35310623 PMCID: PMC8924478 DOI: 10.3389/fpls.2022.839446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Algae (including eukaryotic microalgae and cyanobacteria) have been genetically engineered to convert light and carbon dioxide to many industrially and commercially relevant chemicals including biofuels, materials, and nutritional products. At industrial scale, genetically engineered algae may be cultivated outdoors in open ponds or in closed photobioreactors. In either case, industry would need to address a potential risk of the release of the engineered algae into the natural environment, resulting in potential negative impacts to the environment. Genetic biocontainment strategies are therefore under development to reduce the probability that these engineered bacteria can survive outside of the laboratory or industrial setting. These include active strategies that aim to kill the escaped cells by expression of toxic proteins, and passive strategies that use knockouts of native genes to reduce fitness outside of the controlled environment of labs and industrial cultivation systems. Several biocontainment strategies have demonstrated escape frequencies below detection limits. However, they have typically done so in carefully controlled experiments which may fail to capture mechanisms of escape that may arise in the more complex natural environment. The selection of biocontainment strategies that can effectively kill cells outside the lab, while maintaining maximum productivity inside the lab and without the need for relatively expensive chemicals will benefit from further attention.
Collapse
|
2
|
Sarasa-Buisan C, Guio J, Broset E, Peleato ML, Fillat MF, Sevilla E. FurC (PerR) from Anabaena sp. PCC7120: a versatile transcriptional regulator engaged in the regulatory network of heterocyst development and nitrogen fixation. Environ Microbiol 2021; 24:566-582. [PMID: 33938105 DOI: 10.1111/1462-2920.15552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/19/2021] [Accepted: 04/30/2021] [Indexed: 11/29/2022]
Abstract
FurC (PerR) from Anabaena sp. PCC7120 was previously described as a key transcriptional regulator involved in setting off the oxidative stress response. In the last years, the cross-talk between oxidative stress, iron homeostasis and nitrogen metabolism is becoming more and more evident. In this work, the transcriptome of a furC-overexpressing strain was compared with that of a wild-type strain under both standard and nitrogen-deficiency conditions. The results showed that the overexpression of furC deregulates genes involved in several categories standing out photosynthesis, iron transport and nitrogen metabolism. The novel FurC-direct targets included some regulatory elements that control heterocyst development (hetZ and asr1734), genes directly involved in the heterocyst envelope formation (devBCA and hepC) and genes which participate in the nitrogen fixation process (nifHDK and nifH2, rbrA rubrerythrin and xisHI excisionase). Likewise, furC overexpression notably impacts the mRNA levels of patA encoding a key protein in the heterocyst pattern formation. The relevance of FurC in these processes is bringing out by the fact that the overexpression of furC impairs heterocyst development and cell growth under nitrogen step-down conditions. In summary, this work reveals a new player in the complex regulatory network of heterocyst formation and nitrogen fixation.
Collapse
Affiliation(s)
- Cristina Sarasa-Buisan
- Departamento de Bioquímica y Biología Molecular y Celular and Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza, 50009, Spain
| | - Jorge Guio
- Departamento de Bioquímica y Biología Molecular y Celular and Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza, 50009, Spain
| | - Esther Broset
- Departamento de Bioquímica y Biología Molecular y Celular and Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza, 50009, Spain
| | - M Luisa Peleato
- Departamento de Bioquímica y Biología Molecular y Celular and Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza, 50009, Spain
| | - María F Fillat
- Departamento de Bioquímica y Biología Molecular y Celular and Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza, 50009, Spain
| | - Emma Sevilla
- Departamento de Bioquímica y Biología Molecular y Celular and Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Pedro Cerbuna 12, Zaragoza, 50009, Spain
| |
Collapse
|
3
|
Zhou Y, Sun T, Chen Z, Song X, Chen L, Zhang W. Development of a New Biocontainment Strategy in Model Cyanobacterium Synechococcus Strains. ACS Synth Biol 2019; 8:2576-2584. [PMID: 31577416 DOI: 10.1021/acssynbio.9b00282] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent synthetic biology efforts have raised biosafety concerns for possible release of engineered cyanobacteria into natural environments. To address the issues, we developed a controllable metal ion induced biocontainment system for two model cyanobacteria. First, six ion-inducible promoters were respectively evaluated in both Synechococcus elongatus PCC 7942 and the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973, leading to the identification of an iron ion-repressed promoter PisiAB with low leakage and a reduction-fold of 5.4 and 7.9, respectively. Second, holin-endolysin and nuclease NucA systems were introduced, the inhibition rate of which against two Synechococcus strains varied from 61% to 86.4%. Third, two toxin/antitoxin modules were identified capable of inducing programmed suicide in both Synechococcus strains after induction. Furthermore, an escape experiment was conducted and the results showed that the system was able to achieve an escape frequency below the detection limit of 10-9 after 3 days' duration, demonstrating the strategy integrating iron ion-inducible promoter PisiAB and that toxin/antitoxin modules could be a useful tool for cyanobacterium biocontainment.
Collapse
Affiliation(s)
- Yuqing Zhou
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
| | | | - Zixi Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
| | | | - Lei Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
| | - Weiwen Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
| |
Collapse
|
4
|
Oliva C, Sánchez-Murcia PA, Rico E, Bravo A, Menéndez M, Gago F, Jiménez-Ruiz A. Structure-based domain assignment in Leishmania infantum EndoG: characterization of a pH-dependent regulatory switch and a C-terminal extension that largely dictates DNA substrate preferences. Nucleic Acids Res 2017; 45:9030-9045. [PMID: 28911117 PMCID: PMC5587815 DOI: 10.1093/nar/gkx629] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/11/2017] [Indexed: 11/28/2022] Open
Abstract
Mitochondrial endonuclease G from Leishmania infantum (LiEndoG) participates in the degradation of double-stranded DNA (dsDNA) during parasite cell death and is catalytically inactive at a pH of 8.0 or above. The presence, in the primary sequence, of an acidic amino acid-rich insertion exclusive to trypanosomatids and its spatial position in a homology-built model of LiEndoG led us to postulate that this peptide stretch might act as a pH sensor for self-inhibition. We found that a LiEndoG variant lacking residues 145–180 is indeed far more active than its wild-type counterpart at pH values >7.0. In addition, we discovered that (i) LiEndoG exists as a homodimer, (ii) replacement of Ser211 in the active-site SRGH motif with the canonical aspartate from the DRGH motif of other nucleases leads to a catalytically deficient enzyme, (iii) the activity of the S211D variant can be restored upon the concomitant replacement of Ala247 with Arg and (iv) a C-terminal extension is responsible for the observed preferential cleavage of single-stranded DNA (ssDNA) and ssDNA–dsDNA junctions. Taken together, our results support the view that LiEndoG is a multidomain molecular machine whose nuclease activity can be subtly modulated or even abrogated through architectural changes brought about by environmental conditions and interaction with other binding partners.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Catalytic Domain
- Cloning, Molecular
- DNA Cleavage
- DNA, Protozoan/chemistry
- DNA, Protozoan/genetics
- DNA, Protozoan/metabolism
- DNA, Single-Stranded/chemistry
- DNA, Single-Stranded/genetics
- DNA, Single-Stranded/metabolism
- Endodeoxyribonucleases/chemistry
- Endodeoxyribonucleases/genetics
- Endodeoxyribonucleases/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression
- Hydrogen-Ion Concentration
- Kinetics
- Leishmania infantum/chemistry
- Leishmania infantum/enzymology
- Models, Molecular
- Nucleic Acid Conformation
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Protein Multimerization
- Protozoan Proteins/chemistry
- Protozoan Proteins/genetics
- Protozoan Proteins/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Alignment
- Sequence Deletion
- Sequence Homology, Amino Acid
- Structure-Activity Relationship
- Substrate Specificity
Collapse
Affiliation(s)
- Cristina Oliva
- Departamento de Biología de Sistemas, Universidad de Alcalá, E-28805 Alcalá de Henares, Madrid, Spain
| | - Pedro A. Sánchez-Murcia
- Departamento de Ciencias Biomédicas y “Unidad Asociada IQM-CSIC”, Universidad de Alcalá, E-28805 Alcalá de Henares, Madrid, Spain
| | - Eva Rico
- Departamento de Biología de Sistemas, Universidad de Alcalá, E-28805 Alcalá de Henares, Madrid, Spain
| | - Ana Bravo
- Departamento de Ciencias Biomédicas y “Unidad Asociada IQM-CSIC”, Universidad de Alcalá, E-28805 Alcalá de Henares, Madrid, Spain
| | - Margarita Menéndez
- Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas (CSIC), E-28006 Madrid, Spain
| | - Federico Gago
- Departamento de Ciencias Biomédicas y “Unidad Asociada IQM-CSIC”, Universidad de Alcalá, E-28805 Alcalá de Henares, Madrid, Spain
- To whom correspondence should be addressed. Tel: +34 918 855 109; Fax: +34 918 854 585; . Correspondence may also be addressed to Federico Gago. Tel: +34 918 854 514; Fax: +34 918 854 591;
| | - Antonio Jiménez-Ruiz
- Departamento de Biología de Sistemas, Universidad de Alcalá, E-28805 Alcalá de Henares, Madrid, Spain
- To whom correspondence should be addressed. Tel: +34 918 855 109; Fax: +34 918 854 585; . Correspondence may also be addressed to Federico Gago. Tel: +34 918 854 514; Fax: +34 918 854 591;
| |
Collapse
|
5
|
The Anabaena sp. PCC 7120 Exoproteome: Taking a Peek outside the Box. Life (Basel) 2015; 5:130-63. [PMID: 25782455 PMCID: PMC4390845 DOI: 10.3390/life5010130] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 12/31/2014] [Indexed: 01/13/2023] Open
Abstract
The interest in examining the subset of proteins present in the extracellular milieu, the exoproteome, has been growing due to novel insights highlighting their role on extracellular matrix organization and biofilm formation, but also on homeostasis and development. The cyanobacterial exoproteome is poorly studied, and the role of cyanobacterial exoproteins on cell wall biogenesis, morphology and even physiology is largely unknown. Here, we present a comprehensive examination of the Anabaena sp. PCC 7120 exoproteome under various growth conditions. Altogether, 139 proteins belonging to 16 different functional categories have been identified. A large fraction (48%) of the identified proteins is classified as "hypothetical", falls into the "other categories" set or presents no similarity to other proteins. The evidence presented here shows that Anabaena sp. PCC 7120 is capable of outer membrane vesicle formation and that these vesicles are likely to contribute to the exoproteome profile. Furthermore, the activity of selected exoproteins associated with oxidative stress has been assessed, suggesting their involvement in redox homeostasis mechanisms in the extracellular space. Finally, we discuss our results in light of other cyanobacterial exoproteome studies and focus on the potential of exploring cyanobacteria as cell factories to produce and secrete selected proteins.
Collapse
|
6
|
Das A, Chakrabarti J, Ghosh M. Thermodynamics of interfacial changes in a protein–protein complex. ACTA ACUST UNITED AC 2014; 10:437-45. [DOI: 10.1039/c3mb70249a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Derré-Bobillot A, Cortes-Perez NG, Yamamoto Y, Kharrat P, Couvé E, Da Cunha V, Decker P, Boissier MC, Escartin F, Cesselin B, Langella P, Bermúdez-Humarán LG, Gaudu P. Nuclease A (Gbs0661), an extracellular nuclease of Streptococcus agalactiae, attacks the neutrophil extracellular traps and is needed for full virulence. Mol Microbiol 2013; 89:518-31. [PMID: 23772975 DOI: 10.1111/mmi.12295] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2013] [Indexed: 12/30/2022]
Abstract
Most bacteria of the genus Streptococcus are opportunistic pathogens, and some of them produce extracellular DNases, which may be important for virulence. Genome analyses of Streptococcus agalactiae (GBS) neonate isolate NEM316 revealed the presence of seven genes putatively encoding secreted DNases, although their functions, if any, are unknown. In this study, we observed that respiration growth of GBS led to the extracellular accumulation of a putative nuclease, identified as being encoded by the gbs0661 gene. When overproduced in Lactococcus lactis, the protein was found to be a divalent cation-requiring, pH-stable and heat-stable nuclease that we named Nuclease A (NucA). Substitution of the histidine(148) by alanine reduced nuclease activity of the GBS wild-type strain, indicating that NucA is the major nuclease ex vivo. We determined that GBS is able to degrade the DNA matrix comprising the neutrophil extracellular trap (NET). The nucA(H148A) mutant was impaired for this function, implicating NucA in the virulence of GBS. In vivo infection studies confirmed that NucA is required for full infection, as the mutant strain allowed increased bacterial clearance from lung tissue and decreased mortality in infected mice. These results show that NucA is involved in NET escape and is needed for full virulence.
Collapse
|
8
|
Zhukhlistova NE, Balaev VV, Lyashenko AV, Lashkov AA. Structural aspects of catalytic mechanisms of endonucleases and their binding to nucleic acids. CRYSTALLOGR REP+ 2012. [DOI: 10.1134/s1063774512030236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Midon M, Gimadutdinow O, Meiss G, Friedhoff P, Pingoud A. Chemical Rescue of Active Site Mutants of S. pneumoniae Surface Endonuclease EndA and Other Nucleases of the HNH Family by Imidazole. Chembiochem 2012; 13:713-21. [DOI: 10.1002/cbic.201100775] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Indexed: 11/08/2022]
|
10
|
Abstract
Streptomyces nucleases are widely distributed and multifunctional enzymes acting on both DNA and RNA. They occur extra as well as intracellularly and can be classified under sugar specific and sugar non-specific nucleases. Nucleases play different roles like analytical, biological, and nutritional. They are also used in programmed cell death. Although more than 20 nucleases are reported to date, very little information is available regarding their structure-function relationship, active site based sequence homology, and the probable mechanism of action. This review describes the history, occurrence, localization, production, purification, properties, and applications of Streptomyces nucleases.
Collapse
Affiliation(s)
- Amruta Pramod Joshi
- National Chemical Laboratory, Division of Biochemical Sciences, Dr. Homi Bhabha Road, Pashan, Pune, India
| | | |
Collapse
|
11
|
Bueren-Calabuig JA, Coderch C, Rico E, Jiménez-Ruiz A, Gago F. Mechanistic insight into the catalytic activity of ββα-metallonucleases from computer simulations: Vibrio vulnificus periplasmic nuclease as a test case. Chembiochem 2011; 12:2615-22. [PMID: 22114054 DOI: 10.1002/cbic.201100485] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Indexed: 11/08/2022]
Abstract
Using information from wild-type and mutant Vibrio vulnificus nuclease (Vvn) and I-PpoI homing endonuclease co-crystallized with different oligodeoxynucleotides, we have built the complex of Vvn with a DNA octamer and carried out a series of simulations to dissect the catalytic mechanism of this metallonuclease in a stepwise fashion. The distinct roles played in the reaction by individual active site residues, the metal cation and water molecules have been clarified by using a combination of classical molecular dynamics simulations and quantum mechanical calculations. Our results strongly support the most parsimonious catalytic mechanism, namely one in which a single water molecule from bulk solvent is used to cleave the phosphodiester bond and protonate the 3'-hydroxylate leaving group.
Collapse
Affiliation(s)
- Juan A Bueren-Calabuig
- Department of Pharmacology, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
| | | | | | | | | |
Collapse
|
12
|
Padmaja N, Rajaram H, Apte SK. A novel hemerythrin DNase from the nitrogen-fixing cyanobacterium Anabaena sp. strain PCC7120. Arch Biochem Biophys 2010; 505:171-7. [PMID: 20946869 DOI: 10.1016/j.abb.2010.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 09/30/2010] [Accepted: 10/07/2010] [Indexed: 11/28/2022]
Abstract
The open reading frame alr3199 of the nitrogen-fixing cyanobacterium, Anabaena sp. strain PCC7120 was cloned and overexpressed in Escherichia coli. Purified recombinant Alr3199 protein was found to be a functionally active deoxyribonuclease with novel features, such as (1) no homology to typical DNases (2) a Ca²(+)-dependent Nickase activity (3) presence of a di-hemerythrin domain, and (4) requirement of Fe²(+) conjugated to hemerythrin domains for optimal activity. Both the DNase and Nickase activities were found to be associated with the N-terminal non-hemerythrin region, but were modulated by Fe²(+) conjugated to the C-terminal hemerythrin region. This is the first report of a hemerythrin protein with DNase activity, tentatively designated as 'HE-DNase', and with a possible role in stress-induced DNA damage/repair in Anabaena.
Collapse
Affiliation(s)
- N Padmaja
- Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | | | | |
Collapse
|
13
|
Midon M, Schäfer P, Pingoud A, Ghosh M, Moon AF, Cuneo MJ, London RE, Meiss G. Mutational and biochemical analysis of the DNA-entry nuclease EndA from Streptococcus pneumoniae. Nucleic Acids Res 2010; 39:623-34. [PMID: 20846957 PMCID: PMC3025545 DOI: 10.1093/nar/gkq802] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
EndA is a membrane-attached surface-exposed DNA-entry nuclease previously known to be required for genetic transformation of Streptococcus pneumoniae. More recent studies have shown that the enzyme also plays an important role during the establishment of invasive infections by degrading extracellular chromatin in the form of neutrophil extracellular traps (NETs), enabling streptococci to overcome the innate immune system in mammals. As a virulence factor, EndA has become an interesting target for future drug design. Here we present the first mutational and biochemical analysis of recombinant forms of EndA produced either in a cell-free expression system or in Escherichia coli. We identify His160 and Asn191 to be essential for catalysis and Asn182 to be required for stability of EndA. The role of His160 as the putative general base in the catalytic mechanism is supported by chemical rescue of the H160A variant of EndA with imidazole added in excess. Our study paves the way for the identification and development of protein or low-molecular-weight inhibitors for EndA in future high-throughput screening assays.
Collapse
Affiliation(s)
- Marika Midon
- Institute of Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Geel TM, Meiss G, van der Gun BT, Kroesen BJ, de Leij LF, Zaremba M, Silanskas A, Kokkinidis M, Pingoud A, Ruiters MH, McLaughlin PM, Rots MG. Endonucleases induced TRAIL-insensitive apoptosis in ovarian carcinoma cells. Exp Cell Res 2009; 315:2487-95. [PMID: 19540229 DOI: 10.1016/j.yexcr.2009.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 06/08/2009] [Accepted: 06/08/2009] [Indexed: 11/16/2022]
Abstract
TRAIL induced apoptosis of tumor cells is currently entering phase II clinical settings, despite the fact that not all tumor types are sensitive to TRAIL. TRAIL resistance in ovarian carcinomas can be caused by a blockade upstream of the caspase 3 signaling cascade. We explored the ability of restriction endonucleases to directly digest DNA in vivo, thereby circumventing the caspase cascade. For this purpose, we delivered enzymatically active endonucleases via the cationic amphiphilic lipid SAINT-18((R)):DOPE to both TRAIL-sensitive and insensitive ovarian carcinoma cells (OVCAR and SKOV-3, respectively). Functional nuclear localization after delivery of various endonucleases (BfiI, PvuII and NucA) was indicated by confocal microscopy and genomic cleavage analysis. For PvuII, analysis of mitochondrial damage demonstrated extensive apoptosis both in SKOV-3 and OVCAR. This study clearly demonstrates that cellular delivery of restriction endonucleases holds promise to serve as a novel therapeutic tool for the treatment of resistant ovarian carcinomas.
Collapse
Affiliation(s)
- Tessa M Geel
- Department of Pathology and Medical Biology, Groningen University Institute for Drug Exploration, University Medical Center Groningen, Hanzeplein 1, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Wu SL, Li CC, Chen JC, Chen YJ, Lin CT, Ho TY, Hsiang CY. Mutagenesis identifies the critical amino acid residues of human endonuclease G involved in catalysis, magnesium coordination, and substrate specificity. J Biomed Sci 2009; 16:6. [PMID: 19272175 PMCID: PMC2653514 DOI: 10.1186/1423-0127-16-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2008] [Accepted: 01/15/2009] [Indexed: 11/29/2022] Open
Abstract
Background Endonuclease G (EndoG), a member of DNA/RNA nonspecific ββα-Me-finger nucleases, is involved in apoptosis and normal cellular proliferation. In this study, we analyzed the critical amino acid residues of EndoG and proposed the catalytic mechanism of EndoG. Methods To identify the critical amino acid residues of human EndoG, we replaced the conserved histidine, asparagine, and arginine residues with alanine. The catalytic efficacies of Escherichia coli-expressed EndoG variants were further analyzed by kinetic studies. Results Diethyl pyrocarbonate modification assay revealed that histidine residues were involved in EndoG activity. His-141, Asn-163, and Asn-172 in the H-N-H motif of EndoG were critical for catalysis and substrate specificity. H141A mutant required a higher magnesium concentration to achieve its activity, suggesting the unique role of His-141 in both catalysis and magnesium coordination. Furthermore, an additional catalytic residue (Asn-251) and an additional metal ion binding site (Glu-271) of human EndoG were identified. Conclusion Based on the mutational analysis and homology modeling, we proposed that human EndoG shared a similar catalytic mechanism with nuclease A from Anabaena.
Collapse
Affiliation(s)
- Shih-Lu Wu
- Department of Biochemistry, China Medical University, Taichung 40402, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
16
|
Song Q, Zhang X. Characterization of a novel non-specific nuclease from thermophilic bacteriophage GBSV1. BMC Biotechnol 2008; 8:43. [PMID: 18439318 PMCID: PMC2390534 DOI: 10.1186/1472-6750-8-43] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 04/28/2008] [Indexed: 11/25/2022] Open
Abstract
Background Thermostable enzymes from thermophiles have attracted extensive studies. In this investigation, a nuclease-encoding gene (designated as GBSV1-NSN) was obtained from a thermophilic bacteriophage GBSV1 for the first time. Results After recombinant expression in Escherichia coli, the purified GBSV1-NSN exhibited non-specific nuclease activity, being able to degrade various nucleic acids, including RNA, single-stranded DNA and double-stranded DNA that was circular or linear. Based on sequence analysis, the nuclease shared no homology with any known nucleases, suggesting that it was a novel nuclease. The characterization of the recombinant GBSV1-NSN showed that its optimal temperature and pH were 60°C and 7.5, respectively. The results indicated that the enzymatic activity was inhibited by enzyme inhibitors or detergents, such as ethylene diamine tetraacetic acid, citrate, dithiothreitol, β-mercaptoethanol, guanidine hydrochloride, urea and SDS. In contrast, the nuclease activity was enhanced by TritonX-100, Tween-20 or chaps to approximately 124.5% – 141.6%. The Km of GBSV1-NSN nuclease was 231, 61 and 92 μM, while its kcat was 1278, 241 and 300 s-1 for the cleavage of dsDNA, ssDNA and RNA, respectively. Conclusion Our study, therefore, presented a novel thermostable non-specific nuclease from thermophilic bacteriophage and its overexpression and purification for scientific research and applications.
Collapse
Affiliation(s)
- Qing Song
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, The People's Republic of China.
| | | |
Collapse
|
17
|
Anisimova VE, Shcheglov AS, Bogdanova EA, Rebrikov DV, Nekrasov AN, Barsova EV, Shagin DA, Lukyanov SA. Is crab duplex-specific nuclease a member of the Serratia family of non-specific nucleases? Gene 2008; 418:41-8. [PMID: 18514436 DOI: 10.1016/j.gene.2008.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 03/03/2008] [Accepted: 04/06/2008] [Indexed: 11/24/2022]
Abstract
Kamchatka crab duplex-specific nuclease (Par_DSN) has been classified as a member of the family of DNA/RNA non-specific beta-beta-alpha metal finger (bba-Me-finger) nucleases, the archetype of which is the nuclease from Serratia marcescens. Although the enzyme under investigation seems to belong to the family of S. marcescens nucleases, Par_DSN exhibits a marked preference for double-stranded DNA as a substrate and this property is unusual for other members of this family. We have searched other Arthropod species and identified a number of novel Par_DSN homologs. A phylogenetic analysis demonstrates that the Par_DSN-like enzymes constitute a separate branch in the evolutionary tree of bba-Me-finger nucleases. Combining sequence analysis and site-directed mutagenesis, we found that Par_DSN and its homologs possess the nuclease domain that is slightly longer than that of classic Serratia relatives. The active site composition of Par_DSN is similar but not identical to that of classic Serratia nucleases. Based on these findings, we proposed a new classification of Par_DSN-like nucleases.
Collapse
Affiliation(s)
- Veronika E Anisimova
- Shemiakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117871 Moscow, Russia
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Cymerman IA, Chung I, Beckmann BM, Bujnicki JM, Meiss G. EXOG, a novel paralog of Endonuclease G in higher eukaryotes. Nucleic Acids Res 2008; 36:1369-79. [PMID: 18187503 PMCID: PMC2275078 DOI: 10.1093/nar/gkm1169] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Evolutionary conserved mitochondrial nucleases are involved in programmed cell death and normal cell proliferation in lower and higher eukaryotes. The endo/exonuclease Nuc1p, also termed ‘yeast Endonuclease G (EndoG)’, is a member of this class of enzymes that differs from mammalian homologs by the presence of a 5′–3′ exonuclease activity in addition to its broad spectrum endonuclease activity. However, this exonuclease activity is thought to be essential for a function of the yeast enzyme in DNA recombination and repair. Here we show that higher eukaryotes in addition to EndoG contain its paralog ‘EXOG’, a novel EndoG-like mitochondrial endo/exonuclease. We find that during metazoan evolution duplication of an ancestral nuclease gene obviously generated the paralogous EndoG- and EXOG-protein subfamilies in higher eukaryotes, thereby maintaining the full endo/exonuclease activity found in mitochondria of lower eukaryotes. We demonstrate that human EXOG is a dimeric mitochondrial enzyme that displays 5′–3′ exonuclease activity and further differs from EndoG in substrate specificity. We hypothesize that in higher eukaryotes the complementary enzymatic activities of EndoG and EXOG probably together account for both, the lethal and vital functions of conserved mitochondrial endo/exonucleases.
Collapse
Affiliation(s)
- Iwona A Cymerman
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | | | | | | | | |
Collapse
|
19
|
Ghosh M, Meiss G, Pingoud A, London RE, Pedersen LC. The nuclease a-inhibitor complex is characterized by a novel metal ion bridge. J Biol Chem 2007; 282:5682-90. [PMID: 17138564 PMCID: PMC2072808 DOI: 10.1074/jbc.m605986200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nonspecific, extracellular nucleases have received enhanced attention recently as a consequence of the critical role that these enzymes can play in infectivity by overcoming the host neutrophil defense system. The activity of the cyanobacterial nuclease NucA, a member of the betabetaalpha Me superfamily, is controlled by the specific nuclease inhibitor, NuiA. Here we report the 2.3-A resolution crystal structure of the NucA-NuiA complex, showing that NucA inhibition by NuiA involves an unusual divalent metal ion bridge that connects the nuclease with its inhibitor. The C-terminal Thr-135(NuiA) hydroxyl oxygen is directly coordinated with the catalytic Mg(2+) of the nuclease active site, and Glu-24(NuiA) also extends into the active site, mimicking the charge of a scissile phosphate. NuiA residues Asp-75 and Trp-76 form a second interaction site, contributing to the strength and specificity of the interaction. The crystallographically defined interface is shown to be consistent with results of studies using site-directed NuiA mutants. This mode of inhibition differs dramatically from the exosite mechanism of inhibition seen with the DNase colicins E7/E9 and from other nuclease-inhibitor complexes that have been studied. The structure of this complex provides valuable insights for the development of inhibitors for related nonspecific nucleases that share the DRGH active site motif such as the Streptococcus pneumoniae nuclease EndA, which mediates infectivity of this pathogen, and mitochondrial EndoG, which is involved in recombination and apoptosis.
Collapse
Affiliation(s)
- Mahua Ghosh
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Gregor Meiss
- Institut für Biochemie (FB 08), Justus-Liebig-Universität, Heinrich-Buff-Ring 58, D-35392, Giessen, Germany
| | - Alfred Pingoud
- Institut für Biochemie (FB 08), Justus-Liebig-Universität, Heinrich-Buff-Ring 58, D-35392, Giessen, Germany
| | - Robert E. London
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Lars C. Pedersen
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| |
Collapse
|
20
|
Kriukiene E. Domain organization and metal ion requirement of the Type IIS restriction endonuclease MnlI. FEBS Lett 2006; 580:6115-22. [PMID: 17055493 DOI: 10.1016/j.febslet.2006.09.075] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 09/22/2006] [Accepted: 09/28/2006] [Indexed: 11/26/2022]
Abstract
A two-domain structure of the Type IIS restriction endonuclease MnlI has been identified by limited proteolysis. An N-terminal domain of the enzyme mediates the sequence-specific interaction with DNA, whereas a monomeric C-terminal domain resembles bacterial colicin nucleases in its requirement for alkaline earth as well as transition metal ions for double- and single-stranded DNA cleavage activities. The results indicate that the fusion of the non-specific HNH-type nuclease to the DNA binding domain had transformed MnlI into a Mg(2+)-, Ni(2+)-, Co(2+)-, Mn(2+)-, Zn(2+)-, Ca(2+)-dependent sequence-specific enzyme. Nevertheless, MnlI retains a residual single-stranded DNA cleavage activity controlled by its C-terminal colicin-like nuclease domain.
Collapse
Affiliation(s)
- Edita Kriukiene
- Institute of Biotechnology, Graiciuno 8, Vilnius LT-02241, Lithuania.
| |
Collapse
|
21
|
Jeltsch A, Nellen W, Lyko F. Two substrates are better than one: dual specificities for Dnmt2 methyltransferases. Trends Biochem Sci 2006; 31:306-8. [PMID: 16679017 DOI: 10.1016/j.tibs.2006.04.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 03/13/2006] [Accepted: 04/24/2006] [Indexed: 12/31/2022]
Abstract
Dnmt2 enzymes have been widely conserved during evolution and contain all of the signature motifs of DNA (cytosine-5)-methyltransferases; however, the DNA methyltransferase activity of these proteins is comparatively weak and their biochemical and functional properties remain enigmatic. Recent evidence now shows that Dnmt2 has a novel tRNA methyltransferase activity, raising the possibility that the biological roles of these proteins might be broader than previously thought. This finding has important implications for understanding the evolutionary relationships among these enzymes.
Collapse
Affiliation(s)
- Albert Jeltsch
- School of Engineering and Science, International University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | | | | |
Collapse
|
22
|
Low RL. Mitochondrial Endonuclease G function in apoptosis and mtDNA metabolism: a historical perspective. Mitochondrion 2005; 2:225-36. [PMID: 16120323 DOI: 10.1016/s1567-7249(02)00104-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2002] [Revised: 10/23/2002] [Accepted: 10/25/2002] [Indexed: 11/24/2022]
Abstract
All mitochondria contain a single, major Mg2+-dependent nuclease capable of extensively degrading DNA and RNA in vitro. This nuclease activity and its gene now go by the name Endonuclease G. For many years, however, a number of different names for this mitochondrial nuclease have been used. This can lead to great deal of confusion for anyone searching the literature. The name Endonuclease G had originally been assigned to an endonuclease activity identified in nuclear extracts of chicken erythrocytes that was found to specifically nick within guanine (G) tracts in DNA in vitro. Subsequent studies however, established that this Endonuclease G activity was identical to the well known, major endonuclease activity isolated from mitochondria of several species. In addition, studies of the mammalian mitochondrial endonuclease showed that the endonuclease is not restricted to only attacking guanine tracts, although it does so avidly. The enzyme is also capable of avidly nicking within cytosine tracts, and at a large variety of sites, that fragments duplex DNA extensively. Despite this, the name Endonuclease G persists. One purpose of this review is to summarize the history of Endonuclease G that spans some 40 years, and review what we have learned about the enzyme's biochemical and biologic properties. Endonuclease G likely serves a role in repair and/or degradation of damaged mtDNA in vivo. Recently, genetic and biochemical evidence has emerged that Endonuclease G is released from the inter membrane space during early stages of programmed cell death, and translocates to the nucleus where it presumably facilitates degradation of chromatin. This exciting new potential role for the enzyme in apoptotic cell death will be discussed.
Collapse
Affiliation(s)
- Robert L Low
- Department of Pathology, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, B216, Denver, CO 80262, USA.
| |
Collapse
|
23
|
Ghosh M, Meiss G, Pingoud A, London RE, Pedersen LC. Structural insights into the mechanism of nuclease A, a betabeta alpha metal nuclease from Anabaena. J Biol Chem 2005; 280:27990-7. [PMID: 15897201 DOI: 10.1074/jbc.m501798200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclease A (NucA) is a nonspecific endonuclease from Anabaena sp. capable of degrading single- and double-stranded DNA and RNA in the presence of divalent metal ions. We have determined the structure of the delta(2-24),D121A mutant of NucA in the presence of Zn2+ and Mn2+ (PDB code 1ZM8). The mutations were introduced to remove the N-terminal signal peptide and to reduce the activity of the nonspecific nuclease, thereby reducing its toxicity to the Escherichia coli expression system. NucA contains a betabeta alpha metal finger motif and a hydrated Mn2+ ion at the active site. Unexpectedly, NucA was found to contain additional metal binding sites approximately 26 A apart from the catalytic metal binding site. A structural comparison between NucA and the closest analog for which structural data exist, the Serratia nuclease, indicates several interesting differences. First, NucA is a monomer rather than a dimer. Second, there is an unexpected structural homology between the N-terminal segments despite a poorly conserved sequence, which in Serratia includes a cysteine bridge thought to play a regulatory role. In addition, although a sequence alignment had suggested that NucA lacks a proposed catalytic residue corresponding to Arg57 in Serratia, the structure determined here indicates that Arg93 in NucA is positioned to fulfill this role. Based on comparison with DNA-bound nuclease structures of the betabeta alpha metal finger nuclease family and available mutational data on NucA, we propose that His124 acts as a catalytic base, and Arg93 participates in the catalysis possibly through stabilization of the transition state.
Collapse
Affiliation(s)
- Mahua Ghosh
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | |
Collapse
|
24
|
Abstract
Single-strand-specific nucleases are multifunctional enzymes and widespread in distribution. Their ability to act selectively on single-stranded nucleic acids and single-stranded regions in double-stranded nucleic acids has led to their extensive application as probes for the structural determination of nucleic acids. Intracellularly, they have been implicated in recombination, repair and replication, whereas extracellular enzymes have a role in nutrition. Although more than 30 single-strand-specific nucleases from various sources have been isolated till now, only a few enzymes (S1 nuclease from Aspergillus oryzae, P1 nuclease from Penicillium citrinum and nucleases from Alteromonas espejiana, Neurospora crassa, Ustilago maydis and mung bean) have been characterized to a significant extent. Recently, some of these enzymes have been cloned, their crystal structures solved and their interactions with different substrates have been established. The detection, purification, characteristics, structure-function correlations, biological role and applications of single-strand-specific nucleases are reviewed.
Collapse
Affiliation(s)
- Neelam A Desai
- Division of Biochemical Sciences, National Chemical Laboratory, 411008, Pune, India
| | | |
Collapse
|
25
|
Abstract
The catalytic mechanisms of type II restriction endonucleases and homing endonucleases are discussed and compared. Brief reviews of the chemistry of phosphoryl transfers and canonical one-metal and two-metal endonucleolytic mechanisms are provided along with possible future directions in the study of endonuclease active sites. The discussion of type II restriction endonucleases is comprised of a description of the general architecture of the canonical active site structural motif followed by more in-depth examples of one- and two-metal mechanisms. The homing endonuclease section is comprised of four sections describing what is known regarding the cleavage mechanisms of the four group I intron homing endonuclease families: LAGLIDADG, His-Cys box, H-N-H, and GIY-YIG.
Collapse
Affiliation(s)
- Eric A Galburt
- Fred Hutchinson Cancer Research Center and Graduate Program in Biomolecular Structure and Design, University of Washington, 1100 Fairview Avenue North, A3-023, Seattle, Washington 98109, USA
| | | |
Collapse
|
26
|
Kirby TW, Mueller GA, DeRose EF, Lebetkin MS, Meiss G, Pingoud A, London RE. The nuclease A inhibitor represents a new variation of the rare PR-1 fold. J Mol Biol 2002; 320:771-82. [PMID: 12095254 DOI: 10.1016/s0022-2836(02)00460-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Nuclease A (NucA) from Anabaena sp. is a non-specific endonuclease able to degrade single and double-stranded DNA and RNA. The endonucleolytic activity is inhibited by the nuclease A inhibitor (NuiA), which binds to NucA with 1:1 stoichiometry and picomolar affinity. In order to better understand the mechanism of inhibition, the solution structure of NuiA was determined by NMR methods. The fold of NuiA is an alpha-beta-alpha sandwich but standard database searches by DALI and TOP revealed no structural homologies. A visual inspection of alpha-beta-alpha folds in the CATH database revealed similarities to the PR-1-like fold (SCOP nomenclature). The similarities include the ordering of secondary structural elements, a single helix on one face of the alpha-beta-alpha sandwich, and three helices on the other face. However, a major difference is in the IV helix, which in the PR-1 fold is short and perpendicular to the I and III helices, but in NuiA is long and parallel to the I and III helices. Additionally, a strand insertion in the beta-sheet makes the NuiA beta-sheet completely antiparallel in organization. The fast time-scale motions of NuiA, characterized by enhanced flexibility of the extended loop between helices III and IV, also show similarities to P14a, which is a PR-1 fold. We propose that the purpose of the PR-1 fold is to form a stable scaffold to present this extended structure for biological interactions with other proteins. This hypothesis is supported by data that show that when NuiA is bound to NucA significant changes in chemical shift occur in the extended loop between helices III and IV.
Collapse
Affiliation(s)
- Thomas W Kirby
- National Institute of Environmental Health Sciences, P.O. Box 12233, MD MR-01, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Pieper U, Pingoud A. A mutational analysis of the PD...D/EXK motif suggests that McrC harbors the catalytic center for DNA cleavage by the GTP-dependent restriction enzyme McrBC from Escherichia coli. Biochemistry 2002; 41:5236-44. [PMID: 11955073 DOI: 10.1021/bi0156862] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
McrBC is a unique restriction enzyme which binds specifically to the bipartite recognition sequence R(m)CN( approximately )(30)(-)( approximately )(2000)R(m)C and in the presence of GTP translocates the DNA and cleaves both strands at multiple positions within the two R(m)C "half-sites". It is known that McrBC is composed of two subunits: McrB which binds and hydrolyzes GTP and specifically interacts with DNA and McrC whose function is not clear but which has been suspected to harbor the catalytic center for DNA cleavage. A multiple-sequence alignment of the amino acid sequence of Escherichia coli McrC and of six presumably homologous open reading frames from various bacterial species shows that a sequence motif found in many restriction enzymes, but also in other nucleases, the PD.D/EXK motif, is conserved among these sequences. A mutational analysis, in which the carboxylates (aspartic acid in McrC) of this motif were substituted with alanine or asparagine and lysine was substituted with alanine or arginine, strongly suggests that Asp244, Asp257, and Lys259 represent the catalytic center of E. coli McrC. Whereas the variants D244A (or -N), D257A (or -N), and K259A are inactive in DNA cleavage (K259R has residual DNA cleavage activity), they interact with McrB like wild-type McrC, as can be deduced from the finding that they stimulate the McrB-catalyzed GTP hydrolysis to the same extent as wild-type McrC. Thus, whereas McrC variants defective in DNA cleavage can stimulate the GTPase activity of McrB, the DNase activity of McrC is not supported by McrB variants defective in GTP hydrolysis.
Collapse
Affiliation(s)
- Uwe Pieper
- Institut für Biochemie (FB 08), Justus-Liebig-Universität, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| | | |
Collapse
|
28
|
Abstract
Sugar non-specific endonucleases are multifunctional enzymes and are widespread in distribution. Apart from nutrition, they have also been implicated in cellular functions like replication, recombination and repair. Their ability to recognize different DNA structures has also been exploited for the determination of nucleic acid structure. Although more than 30 non-specific endonucleases have been isolated to date, very little information is available regarding their structure-function correlations except that of staphylococcal and Serratia nucleases. However, during the past few years, the primary structure, nature of the active site based on sequence homology, and the probable mechanism of action have been postulated for some of the enzymes. This review describes the purification, characteristics, biological role and applications of sugar non-specific endonucleases.
Collapse
Affiliation(s)
- E S Rangarajan
- Division of Biochemical Sciences, National Chemical Laboratory, Pune 411 008, India
| | | |
Collapse
|