1
|
Neumann SA, Gaspin C, Sáez-Vásquez J. Plant ribosomes as a score to fathom the melody of 2'- O-methylation across evolution. RNA Biol 2024; 21:70-81. [PMID: 39508203 PMCID: PMC11542601 DOI: 10.1080/15476286.2024.2417152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
2'-O-ribose methylation (2'-O-Me) is one of the most common RNA modifications detected in ribosomal RNAs (rRNA) from bacteria to eukaryotic cells. 2'-O-Me favours a specific RNA conformation and protects RNA from hydrolysis. Moreover, rRNA 2'-O-Me might stabilize its interactions with messenger RNA (mRNA), transfer RNA (tRNA) or proteins. The extent of rRNA 2'-O-Me fluctuates between species from 3-4 sites in bacteria to tens of sites in archaea, yeast, algae, plants and human. Depending on the organism as well as the rRNA targeting site and position, the 2'-O-Me reaction can be carried out by several site-specific RNA methyltransferases (RMTase) or by a single RMTase associated to specific RNA guides. Here, we review current progresses in rRNA 2'-O-Me (sites/Nm and RMTases) in plants and compare the results with molecular clues from unicellular (bacteria, archaea, algae and yeast) as well as multicellular (human and plants) organisms.
Collapse
MESH Headings
- Methylation
- Ribosomes/metabolism
- RNA, Ribosomal/metabolism
- RNA, Ribosomal/genetics
- RNA, Ribosomal/chemistry
- Plants/metabolism
- Plants/genetics
- Humans
- Evolution, Molecular
- Methyltransferases/metabolism
- Methyltransferases/genetics
- Methyltransferases/chemistry
- RNA, Plant/metabolism
- RNA, Plant/genetics
- RNA, Plant/chemistry
- Archaea/genetics
- Archaea/metabolism
- RNA, Transfer/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/chemistry
Collapse
Affiliation(s)
- Sara Alina Neumann
- CNRS, Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, Perpignan, France
- University Perpignan Via Domitia, LGDP, UMR 5096, Perpignan, France
| | - Christine Gaspin
- Université Fédérale de Toulouse, INRAE, MIAT, Castanet-Tolosan, France
- Université Fédérale de Toulouse, INRAE, BioinfOmics, Genotoul Bioinformatics Facility, Castanet-Tolosan, France
| | - Julio Sáez-Vásquez
- CNRS, Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, Perpignan, France
- University Perpignan Via Domitia, LGDP, UMR 5096, Perpignan, France
| |
Collapse
|
2
|
Baldini L, Charpentier B, Labialle S. Emerging Data on the Diversity of Molecular Mechanisms Involving C/D snoRNAs. Noncoding RNA 2021; 7:ncrna7020030. [PMID: 34066559 PMCID: PMC8162545 DOI: 10.3390/ncrna7020030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022] Open
Abstract
Box C/D small nucleolar RNAs (C/D snoRNAs) represent an ancient family of small non-coding RNAs that are classically viewed as housekeeping guides for the 2′-O-methylation of ribosomal RNA in Archaea and Eukaryotes. However, an extensive set of studies now argues that they are involved in mechanisms that go well beyond this function. Here, we present these pieces of evidence in light of the current comprehension of the molecular mechanisms that control C/D snoRNA expression and function. From this inventory emerges that an accurate description of these activities at a molecular level is required to let the snoRNA field enter in a second age of maturity.
Collapse
Affiliation(s)
| | - Bruno Charpentier
- Correspondence: (B.C.); (S.L.); Tel.: +33-3-72-74-66-27 (B.C.); +33-3-72-74-66-51 (S.L.)
| | - Stéphane Labialle
- Correspondence: (B.C.); (S.L.); Tel.: +33-3-72-74-66-27 (B.C.); +33-3-72-74-66-51 (S.L.)
| |
Collapse
|
3
|
Breuer R, Gomes-Filho JV, Randau L. Conservation of Archaeal C/D Box sRNA-Guided RNA Modifications. Front Microbiol 2021; 12:654029. [PMID: 33776983 PMCID: PMC7994747 DOI: 10.3389/fmicb.2021.654029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/19/2021] [Indexed: 12/18/2022] Open
Abstract
Post-transcriptional modifications fulfill many important roles during ribosomal RNA maturation in all three domains of life. Ribose 2'-O-methylations constitute the most abundant chemical rRNA modification and are, for example, involved in RNA folding and stabilization. In archaea, these modification sites are determined by variable sets of C/D box sRNAs that guide the activity of the rRNA 2'-O-methyltransferase fibrillarin. Each C/D box sRNA contains two guide sequences that can act in coordination to bridge rRNA sequences. Here, we will review the landscape of archaeal C/D box sRNA genes and their target sites. One focus is placed on the apparent accelerated evolution of guide sequences and the varied pairing of the two individual guides, which results in different rRNA modification patterns and RNA chaperone activities.
Collapse
Affiliation(s)
| | | | - Lennart Randau
- Prokaryotic RNA Biology, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
4
|
Wolff P, Villette C, Zumsteg J, Heintz D, Antoine L, Chane-Woon-Ming B, Droogmans L, Grosjean H, Westhof E. Comparative patterns of modified nucleotides in individual tRNA species from a mesophilic and two thermophilic archaea. RNA (NEW YORK, N.Y.) 2020; 26:1957-1975. [PMID: 32994183 PMCID: PMC7668247 DOI: 10.1261/rna.077537.120] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 09/09/2020] [Indexed: 05/22/2023]
Abstract
To improve and complete our knowledge of archaeal tRNA modification patterns, we have identified and compared the modification pattern (type and location) in tRNAs of three very different archaeal species, Methanococcus maripaludis (a mesophilic methanogen), Pyrococcus furiosus (a hyperthermophile thermococcale), and Sulfolobus acidocaldarius (an acidophilic thermophilic sulfolobale). Most abundant isoacceptor tRNAs (79 in total) for each of the 20 amino acids were isolated by two-dimensional gel electrophoresis followed by in-gel RNase digestions. The resulting oligonucleotide fragments were separated by nanoLC and their nucleotide content analyzed by mass spectrometry (MS/MS). Analysis of total modified nucleosides obtained from complete digestion of bulk tRNAs was also performed. Distinct base- and/or ribose-methylations, cytidine acetylations, and thiolated pyrimidines were identified, some at new positions in tRNAs. Novel, some tentatively identified, modifications were also found. The least diversified modification landscape is observed in the mesophilic Methanococcus maripaludis and the most complex one in Sulfolobus acidocaldarius Notable observations are the frequent occurrence of ac4C nucleotides in thermophilic archaeal tRNAs, the presence of m7G at positions 1 and 10 in Pyrococcus furiosus tRNAs, and the use of wyosine derivatives at position 37 of tRNAs, especially those decoding U1- and C1-starting codons. These results complete those already obtained by others with sets of archaeal tRNAs from Methanocaldococcus jannaschii and Haloferax volcanii.
Collapse
Affiliation(s)
- Philippe Wolff
- Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, F-67084, Strasbourg, France
| | - Claire Villette
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, F-67084, Strasbourg, France
| | - Julie Zumsteg
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, F-67084, Strasbourg, France
| | - Dimitri Heintz
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, F-67084, Strasbourg, France
| | - Laura Antoine
- Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, F-67084, Strasbourg, France
| | - Béatrice Chane-Woon-Ming
- Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, F-67084, Strasbourg, France
| | - Louis Droogmans
- Laboratoire de Chimie Biologique, Université Libre de Bruxelles, Institut Labiris, B-1070, Belgium
| | - Henri Grosjean
- Laboratoire de Chimie Biologique, Université Libre de Bruxelles, Institut Labiris, B-1070, Belgium
| | - Eric Westhof
- Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, F-67084, Strasbourg, France
| |
Collapse
|
5
|
Lui LM, Uzilov AV, Bernick DL, Corredor A, Lowe TM, Dennis PP. Methylation guide RNA evolution in archaea: structure, function and genomic organization of 110 C/D box sRNA families across six Pyrobaculum species. Nucleic Acids Res 2019; 46:5678-5691. [PMID: 29771354 PMCID: PMC6009581 DOI: 10.1093/nar/gky284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/23/2018] [Indexed: 12/21/2022] Open
Abstract
Archaeal homologs of eukaryotic C/D box small nucleolar RNAs (C/D box sRNAs) guide precise 2′-O-methyl modification of ribosomal and transfer RNAs. Although C/D box sRNA genes constitute one of the largest RNA gene families in archaeal thermophiles, most genomes have incomplete sRNA gene annotation because reliable, fully automated detection methods are not available. We expanded and curated a comprehensive gene set across six species of the crenarchaeal genus Pyrobaculum, particularly rich in C/D box sRNA genes. Using high-throughput small RNA sequencing, specialized computational searches and comparative genomics, we analyzed 526 Pyrobaculum C/D box sRNAs, organizing them into 110 families based on synteny and conservation of guide sequences which determine methylation targets. We examined gene duplications and rearrangements, including one family that has expanded in a pattern similar to retrotransposed repetitive elements in eukaryotes. New training data and inclusion of kink-turn secondary structural features enabled creation of an improved search model. Our analyses provide the most comprehensive, dynamic view of C/D box sRNA evolutionary history within a genus, in terms of modification function, feature plasticity, and gene mobility.
Collapse
Affiliation(s)
- Lauren M Lui
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Andrew V Uzilov
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - David L Bernick
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Andrea Corredor
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Todd M Lowe
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Patrick P Dennis
- Department of Biology, Whitman College, Walla Walla, WA 99362, USA
| |
Collapse
|
6
|
Clouet-d'Orval B, Batista M, Bouvier M, Quentin Y, Fichant G, Marchfelder A, Maier LK. Insights into RNA-processing pathways and associated RNA-degrading enzymes in Archaea. FEMS Microbiol Rev 2018; 42:579-613. [PMID: 29684129 DOI: 10.1093/femsre/fuy016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/17/2018] [Indexed: 12/20/2022] Open
Abstract
RNA-processing pathways are at the centre of regulation of gene expression. All RNA transcripts undergo multiple maturation steps in addition to covalent chemical modifications to become functional in the cell. This includes destroying unnecessary or defective cellular RNAs. In Archaea, information on mechanisms by which RNA species reach their mature forms and associated RNA-modifying enzymes are still fragmentary. To date, most archaeal actors and pathways have been proposed in light of information gathered from Bacteria and Eukarya. In this context, this review provides a state of the art overview of archaeal endoribonucleases and exoribonucleases that cleave and trim RNA species and also of the key small archaeal proteins that bind RNAs. Furthermore, synthetic up-to-date views of processing and biogenesis pathways of archaeal transfer and ribosomal RNAs as well as of maturation of stable small non-coding RNAs such as CRISPR RNAs, small C/D and H/ACA box guide RNAs, and other emerging classes of small RNAs are described. Finally, prospective post-transcriptional mechanisms to control archaeal messenger RNA quality and quantity are discussed.
Collapse
Affiliation(s)
- Béatrice Clouet-d'Orval
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Manon Batista
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Marie Bouvier
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Yves Quentin
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Gwennaele Fichant
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 31062 Toulouse, France
| | | | | |
Collapse
|
7
|
Abstract
Advances in genome-wide sequence technologies allow for detailed insights into the complexity of RNA landscapes of organisms from all three domains of life. Recent analyses of archaeal transcriptomes identified interaction and regulation networks of noncoding RNAs in this understudied domain. Here, we review current knowledge of small, noncoding RNAs with important functions for the archaeal lifestyle, which often requires adaptation to extreme environments. One focus is RNA metabolism at elevated temperatures in hyperthermophilic archaea, which reveals elevated amounts of RNA-guided RNA modification and virus defense strategies. Genome rearrangement events result in unique fragmentation patterns of noncoding RNA genes that require elaborate maturation pathways to yield functional transcripts. RNA-binding proteins, e.g., L7Ae and LSm, are important for many posttranscriptional control functions of RNA molecules in archaeal cells. We also discuss recent insights into the regulatory potential of their noncoding RNA partners.
Collapse
Affiliation(s)
- José Vicente Gomes-Filho
- Prokaryotic Small RNA Biology Group, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany;, ,
| | - Michael Daume
- Prokaryotic Small RNA Biology Group, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany;, ,
| | - Lennart Randau
- Prokaryotic Small RNA Biology Group, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany;, ,
- LOEWE Center for Synthetic Microbiology (Synmikro), 35032 Marburg, Germany
| |
Collapse
|
8
|
Noncoding RNAs in Archaea: Genome-Wide Identification and Functional Classification. Methods Enzymol 2018; 612:413-442. [DOI: 10.1016/bs.mie.2018.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Tomkuvienė M, Ličytė J, Olendraitė I, Liutkevičiūtė Z, Clouet-d'Orval B, Klimašauskas S. Archaeal fibrillarin-Nop5 heterodimer 2'- O-methylates RNA independently of the C/D guide RNP particle. RNA (NEW YORK, N.Y.) 2017; 23:1329-1337. [PMID: 28576826 PMCID: PMC5558902 DOI: 10.1261/rna.059832.116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 05/19/2017] [Indexed: 06/01/2023]
Abstract
Archaeal fibrillarin (aFib) is a well-characterized S-adenosyl methionine (SAM)-dependent RNA 2'-O-methyltransferase that is known to act in a large C/D ribonucleoprotein (RNP) complex together with Nop5 and L7Ae proteins and a box C/D guide RNA. In the reaction, the guide RNA serves to direct the methylation reaction to a specific site in tRNA or rRNA by sequence complementarity. Here we show that a Pyrococcus abyssi aFib-Nop5 heterodimer can alone perform SAM-dependent 2'-O-methylation of 16S and 23S ribosomal RNAs in vitro independently of L7Ae and C/D guide RNAs. Using tritium-labeling, mass spectrometry, and reverse transcription analysis, we identified three in vitro 2'-O-methylated positions in the 16S rRNA of P. abyssi, positions lying outside of previously reported pyrococcal C/D RNP methylation sites. This newly discovered stand-alone activity of aFib-Nop5 may provide an example of an ancestral activity retained in enzymes that were recruited to larger complexes during evolution.
Collapse
MESH Headings
- Archaea/genetics
- Archaea/metabolism
- Chromosomal Proteins, Non-Histone/chemistry
- Chromosomal Proteins, Non-Histone/metabolism
- Methylation
- Nucleic Acid Conformation
- Protein Binding
- Protein Multimerization
- RNA, Archaeal/genetics
- RNA, Archaeal/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- Ribonucleoproteins/chemistry
- Ribonucleoproteins/metabolism
- Ribonucleoproteins, Small Nucleolar/chemistry
- Ribonucleoproteins, Small Nucleolar/metabolism
- Substrate Specificity
Collapse
Affiliation(s)
- Miglė Tomkuvienė
- Department of Biological DNA Modification, Institute of Biotechnology, Vilnius University, Vilnius LT-10257, Lithuania
| | - Janina Ličytė
- Department of Biological DNA Modification, Institute of Biotechnology, Vilnius University, Vilnius LT-10257, Lithuania
| | - Ingrida Olendraitė
- Department of Biological DNA Modification, Institute of Biotechnology, Vilnius University, Vilnius LT-10257, Lithuania
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Zita Liutkevičiūtė
- Department of Biological DNA Modification, Institute of Biotechnology, Vilnius University, Vilnius LT-10257, Lithuania
| | - Béatrice Clouet-d'Orval
- Laboratoire de Microbiologie et Génétique Moléculaires UMR 5100, CNRS, Université de Toulouse, F-31062 Toulouse, France
| | - Saulius Klimašauskas
- Department of Biological DNA Modification, Institute of Biotechnology, Vilnius University, Vilnius LT-10257, Lithuania
| |
Collapse
|
10
|
Henras AK, Plisson-Chastang C, Humbert O, Romeo Y, Henry Y. Synthesis, Function, and Heterogeneity of snoRNA-Guided Posttranscriptional Nucleoside Modifications in Eukaryotic Ribosomal RNAs. Enzymes 2017; 41:169-213. [PMID: 28601222 DOI: 10.1016/bs.enz.2017.03.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ribosomal RNAs contain numerous 2'-O-methylated nucleosides and pseudouridines. Methylation of the 2' oxygen of ribose moieties and isomerization of uridines into pseudouridines are catalyzed by C/D and H/ACA small nucleolar ribonucleoprotein particles, respectively. We review the composition, structure, and mode of action of archaeal and eukaryotic C/D and H/ACA particles. Most rRNA modifications cluster in functionally crucial regions of the rRNAs, suggesting they play important roles in translation. Some of these modifications promote global translation efficiency or modulate translation fidelity. Strikingly, recent quantitative nucleoside modification profiling methods have revealed that a subset of modification sites is not always fully modified. The finding of such ribosome heterogeneity is in line with the concept of specialized ribosomes that could preferentially translate specific mRNAs. This emerging concept is supported by findings that some human diseases are caused by defects in the rRNA modification machinery correlated with a significant alteration of IRES-dependent translation.
Collapse
Affiliation(s)
- Anthony K Henras
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Célia Plisson-Chastang
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Odile Humbert
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yves Romeo
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yves Henry
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
11
|
Patra Bhattacharya D, Canzler S, Kehr S, Hertel J, Grosse I, Stadler PF. Phylogenetic distribution of plant snoRNA families. BMC Genomics 2016; 17:969. [PMID: 27881081 PMCID: PMC5122169 DOI: 10.1186/s12864-016-3301-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/15/2016] [Indexed: 12/11/2022] Open
Abstract
Background Small nucleolar RNAs (snoRNAs) are one of the most ancient families amongst non-protein-coding RNAs. They are ubiquitous in Archaea and Eukarya but absent in bacteria. Their main function is to target chemical modifications of ribosomal RNAs. They fall into two classes, box C/D snoRNAs and box H/ACA snoRNAs, which are clearly distinguished by conserved sequence motifs and the type of chemical modification that they govern. Similarly to microRNAs, snoRNAs appear in distinct families of homologs that affect homologous targets. In animals, snoRNAs and their evolution have been studied in much detail. In plants, however, their evolution has attracted comparably little attention. Results In order to chart the phylogenetic distribution of individual snoRNA families in plants, we applied a sophisticated approach for identifying homologs of known plant snoRNAs across the plant kingdom. In response to the relatively fast evolution of snoRNAs, information on conserved sequence boxes, target sequences, and secondary structure is combined to identify additional snoRNAs. We identified 296 families of snoRNAs in 24 species and traced their evolution throughout the plant kingdom. Many of the plant snoRNA families comprise paralogs. We also found that targets are well-conserved for most snoRNA families. Conclusions The sequence conservation of snoRNAs is sufficient to establish homologies between phyla. The degree of this conservation tapers off, however, between land plants and algae. Plant snoRNAs are frequently organized in highly conserved spatial clusters. As a resource for further investigations we provide carefully curated and annotated alignments for each snoRNA family under investigation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3301-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Deblina Patra Bhattacharya
- Bioinformatics Group, Dept. Computer Science, and artin-Luther-Universität Halle-Wittenberg, Leipzig, D-04107, Germany.,Institut für Informatik, Halle (Saale), D-06120, Germany
| | - Sebastian Canzler
- Bioinformatics Group, Dept. Computer Science, and artin-Luther-Universität Halle-Wittenberg, Leipzig, D-04107, Germany
| | - Stephanie Kehr
- Bioinformatics Group, Dept. Computer Science, and artin-Luther-Universität Halle-Wittenberg, Leipzig, D-04107, Germany
| | - Jana Hertel
- Young Investigators Group Bioinformatics & Transcriptomics, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, Leipzig, D-04318, Germany
| | - Ivo Grosse
- Institut für Informatik, Halle (Saale), D-06120, Germany.,German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany
| | - Peter F Stadler
- Bioinformatics Group, Dept. Computer Science, and artin-Luther-Universität Halle-Wittenberg, Leipzig, D-04107, Germany. .,Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, Leipzig, D-04103, Germany. .,Fraunhofer Institute for Cell Therapy and Immunology, Perlickstrasse 1, Leipzig, D-04103, Germany. .,Department of Theoretical Chemistry of the University of Vienna, Währingerstrasse 17, Leipzig, A-1090, Germany. .,Center for RNA in Technology and Health, Univ. Copenhagen, Grønnegårdsvej 3, Frederiksberg C, Copenhagen, Denmark. .,Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA. .,German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany.
| |
Collapse
|
12
|
Tripp V, Martin R, Orell A, Alkhnbashi OS, Backofen R, Randau L. Plasticity of archaeal C/D box sRNA biogenesis. Mol Microbiol 2016; 103:151-164. [PMID: 27743417 DOI: 10.1111/mmi.13549] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2016] [Indexed: 01/11/2023]
Abstract
Archaeal and eukaryotic organisms contain sets of C/D box s(no)RNAs with guide sequences that determine ribose 2'-O-methylation sites of target RNAs. The composition of these C/D box sRNA sets is highly variable between organisms and results in varying RNA modification patterns which are important for ribosomal RNA folding and stability. Little is known about the genomic organization of C/D box sRNA genes in archaea. Here, we aimed to obtain first insights into the biogenesis of these archaeal C/D box sRNAs and analyzed the genetic context of more than 300 archaeal sRNA genes. We found that the majority of these genes do not possess independent promoters but are rather located at positions that allow for co-transcription with neighboring genes and their start or stop codons were frequently incorporated into the conserved boxC and D motifs. The biogenesis of plasmid-encoded C/D box sRNA variants was analyzed in vivo in Sulfolobus acidocaldarius. It was found that C/D box sRNA maturation occurs independent of their genetic context and relies solely on the presence of intact RNA kink-turn structures. The observed plasticity of C/D box sRNA biogenesis is suggested to enable their accelerated evolution and, consequently, allow for adjustments of the RNA modification landscape.
Collapse
Affiliation(s)
- Vanessa Tripp
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse 10, Marburg, 35043, Germany.,LOEWE Center for Synthetic Microbiology, SYNMIKRO, Karl-von-Frisch-Strasse 16, Marburg, 35043, Germany
| | - Roman Martin
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse 10, Marburg, 35043, Germany
| | - Alvaro Orell
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse 10, Marburg, 35043, Germany
| | - Omer S Alkhnbashi
- Bioinformatics group, Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 106, Freiburg, 79110, Germany
| | - Rolf Backofen
- Bioinformatics group, Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 106, Freiburg, 79110, Germany.,BIOSS Centre for Biological Signalling Studies, Cluster of Excellence, University of Freiburg, Germany
| | - Lennart Randau
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse 10, Marburg, 35043, Germany.,LOEWE Center for Synthetic Microbiology, SYNMIKRO, Karl-von-Frisch-Strasse 16, Marburg, 35043, Germany
| |
Collapse
|
13
|
Yip WSV, Shigematsu H, Taylor DW, Baserga SJ. Box C/D sRNA stem ends act as stabilizing anchors for box C/D di-sRNPs. Nucleic Acids Res 2016; 44:8976-8989. [PMID: 27342279 PMCID: PMC5062973 DOI: 10.1093/nar/gkw576] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 06/15/2016] [Indexed: 01/01/2023] Open
Abstract
Ribosomal RNA (rRNA) modifications are essential for ribosome function in all cellular organisms. Box C/D small (nucleolar) ribonucleoproteins [s(no)RNPs] catalyze 2′-O-methylation, one rRNA modification type in Eukarya and Archaea. Negatively stained electron microscopy (EM) models of archaeal box C/D sRNPs have demonstrated the dimeric sRNP (di-sRNP) architecture, which has been corroborated by nuclear magnetic resonance (NMR) studies. Due to limitations of the structural techniques, the orientation of the box C/D sRNAs has remained unclear. Here, we have used cryo-EM to elucidate the sRNA orientation in a M. jannaschii box C/D di-sRNP. The cryo-EM reconstruction suggests a parallel orientation of the two sRNAs. Biochemical and structural analyses of sRNPs assembled with mutant sRNAs indicate a potential interaction between the sRNA stem ends. Our results suggest that the parallel arrangement of the sRNAs juxtaposes their stem ends into close proximity to allow for a stabilizing interaction that helps maintain the di-sRNP architecture.
Collapse
Affiliation(s)
- W S Vincent Yip
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Hideki Shigematsu
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520, USA RIKEN Center for Life Science Technology, Yokohama, Kanagawa 230-0045, Japan
| | - David W Taylor
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
| | - Susan J Baserga
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA Department of Genetics, Yale University, New Haven, CT 06520, USA Department of Therapeutic Radiology, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
14
|
How Likely Are We? Evolution of Organismal Complexity. Evol Biol 2016. [DOI: 10.1007/978-3-319-41324-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Mechanisms of Evolutionary Innovation Point to Genetic Control Logic as the Key Difference Between Prokaryotes and Eukaryotes. J Mol Evol 2015. [PMID: 26208881 DOI: 10.1007/s00239-015-9688-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The evolution of life from the simplest, original form to complex, intelligent animal life occurred through a number of key innovations. Here we present a new tool to analyze these key innovations by proposing that the process of evolutionary innovation may follow one of three underlying processes, namely a Random Walk, a Critical Path, or a Many Paths process, and in some instances may also constitute a "Pull-up the Ladder" event. Our analysis is based on the occurrence of function in modern biology, rather than specific structure or mechanism. A function in modern biology may be classified in this way either on the basis of its evolution or the basis of its modern mechanism. Characterizing key innovations in this way helps identify the likelihood that an innovation could arise. In this paper, we describe the classification, and methods to classify functional features of modern organisms into these three classes based on the analysis of how a function is implemented in modern biology. We present the application of our categorization to the evolution of eukaryotic gene control. We use this approach to support the argument that there are few, and possibly no basic chemical differences between the functional constituents of the machinery of gene control between eukaryotes, bacteria and archaea. This suggests that the difference between eukaryotes and prokaryotes that allows the former to develop the complex genetic architecture seen in animals and plants is something other than their chemistry. We tentatively identify the difference as a difference in control logic, that prokaryotic genes are by default 'on' and eukaryotic genes are by default 'off.' The Many Paths evolutionary process suggests that, from a 'default off' starting point, the evolution of the genetic complexity of higher eukaryotes is a high probability event.
Collapse
|
16
|
Lindgreen S, Umu SU, Lai ASW, Eldai H, Liu W, McGimpsey S, Wheeler NE, Biggs PJ, Thomson NR, Barquist L, Poole AM, Gardner PP. Robust identification of noncoding RNA from transcriptomes requires phylogenetically-informed sampling. PLoS Comput Biol 2014; 10:e1003907. [PMID: 25357249 PMCID: PMC4214555 DOI: 10.1371/journal.pcbi.1003907] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/11/2014] [Indexed: 02/03/2023] Open
Abstract
Noncoding RNAs are integral to a wide range of biological processes, including translation, gene regulation, host-pathogen interactions and environmental sensing. While genomics is now a mature field, our capacity to identify noncoding RNA elements in bacterial and archaeal genomes is hampered by the difficulty of de novo identification. The emergence of new technologies for characterizing transcriptome outputs, notably RNA-seq, are improving noncoding RNA identification and expression quantification. However, a major challenge is to robustly distinguish functional outputs from transcriptional noise. To establish whether annotation of existing transcriptome data has effectively captured all functional outputs, we analysed over 400 publicly available RNA-seq datasets spanning 37 different Archaea and Bacteria. Using comparative tools, we identify close to a thousand highly-expressed candidate noncoding RNAs. However, our analyses reveal that capacity to identify noncoding RNA outputs is strongly dependent on phylogenetic sampling. Surprisingly, and in stark contrast to protein-coding genes, the phylogenetic window for effective use of comparative methods is perversely narrow: aggregating public datasets only produced one phylogenetic cluster where these tools could be used to robustly separate unannotated noncoding RNAs from a null hypothesis of transcriptional noise. Our results show that for the full potential of transcriptomics data to be realized, a change in experimental design is paramount: effective transcriptomics requires phylogeny-aware sampling. We have analysed more than 400 public transcriptomes, generated using RNA-seq, from almost 40 strains of Bacteria and Archaea. We discovered that the capacity to identify noncoding RNA outputs from this data is strongly dependent on phylogenetic sampling. Our results show that, for the full potential of transcriptomics data as a discovery tool to be realized, a change in experimental design is critical: effective comparative transcriptomics requires phylogeny-aware sampling. We also examined how comparative transcriptomics experiments can be used to effectively identify RNA elements. We find that, for RNA element discovery, a phylogeny-informed sampling approach is more effective than analyses of individual species. Phylogeny-informed sampling reveals a narrow ‘Goldilocks Zone’ (where species are not too similar and not too divergent) for RNA identification using clusters of related species. In stark contrast to protein-coding genes, not only is the phylogenetic window for the effective use of comparative methods for noncoding RNA identification perversely narrow, but few existing datasets sit within this Goldilocks Zone: by aggregating public datasets, we were only able to create one phylogenetic cluster where comparative tools could be used to confidently separate unannotated noncoding RNAs from transcriptional noise.
Collapse
MESH Headings
- Archaea/genetics
- Bacteria/genetics
- Cluster Analysis
- Computational Biology
- Databases, Genetic
- Gene Expression Profiling/methods
- Phylogeny
- RNA, Archaeal/chemistry
- RNA, Archaeal/classification
- RNA, Archaeal/genetics
- RNA, Bacterial/chemistry
- RNA, Bacterial/classification
- RNA, Bacterial/genetics
- RNA, Untranslated/chemistry
- RNA, Untranslated/classification
- RNA, Untranslated/genetics
- Transcriptome/genetics
Collapse
Affiliation(s)
- Stinus Lindgreen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Sinan Uğur Umu
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
| | - Alicia Sook-Wei Lai
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Hisham Eldai
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Wenting Liu
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Stephanie McGimpsey
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Nicole E. Wheeler
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Patrick J. Biggs
- Institute of Veterinary, Animal & Biomedical Sciences, Massey University, Palmerston North, New Zealand
- Allan Wilson Centre for Molecular Ecology & Evolution, Massey University, Palmerston North, New Zealand
| | - Nick R. Thomson
- Pathogen Genetics, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Lars Barquist
- Pathogen Genetics, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
- Institute for Molecular Infection Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Anthony M. Poole
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
- Allan Wilson Centre for Molecular Ecology & Evolution, Massey University, Palmerston North, New Zealand
- * E-mail: (AMP); (PPG)
| | - Paul P. Gardner
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
- * E-mail: (AMP); (PPG)
| |
Collapse
|
17
|
Abstract
snoRNAs (small nucleolar RNAs) constitute one of the largest and best-studied classes of non-coding RNAs that confer enzymatic specificity. With associated proteins, these snoRNAs form ribonucleoprotein complexes that can direct 2'-O-methylation or pseudouridylation of target non-coding RNAs. Aided by computational methods and high-throughput sequencing, new studies have expanded the diversity of known snoRNA functions. Complexes incorporating snoRNAs have dynamic specificity, and include diverse roles in RNA silencing, telomerase maintenance and regulation of alternative splicing. Evidence that dysregulation of snoRNAs can cause human disease, including cancer, indicates that the full scope of snoRNA roles remains an unfinished story. The diversity in structure, genomic origin and function between snoRNAs found in different complexes and among different phyla illustrates the surprising plasticity of snoRNAs in evolution. The ability of snoRNAs to direct highly specific interactions with other RNAs is a consistent thread in their newly discovered functions. Because they are ubiquitous throughout Eukarya and Archaea, it is likely they were a feature of the last common ancestor of these two domains, placing their origin over two billion years ago. In the present chapter, we focus on recent advances in our understanding of these ancient, but functionally dynamic RNA-processing machines.
Collapse
|
18
|
Generation and phenotyping of a collection of sRNA gene deletion mutants of the haloarchaeon Haloferax volcanii. PLoS One 2014; 9:e90763. [PMID: 24637842 PMCID: PMC3956466 DOI: 10.1371/journal.pone.0090763] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 02/04/2014] [Indexed: 11/19/2022] Open
Abstract
The haloarchaeon Haloferax volcanii was shown to contain 145 intergenic and 45 antisense sRNAs. In a comprehensive approach to unravel various biological roles of haloarchaeal sRNAs in vivo, 27 sRNA genes were selected and deletion mutants were generated. The phenotypes of these mutants were compared to that of the parent strain under ten different conditions, i.e. growth on four different carbon sources, growth at three different salt concentrations, and application of four different stress conditions. In addition, cell morphologies in exponential and stationary phase were observed. Furthermore, swarming of 17 mutants was analyzed. 24 of the 27 mutants exhibited a difference from the parent strain under at least one condition, revealing that haloarchaeal sRNAs are involved in metabolic regulation, growth under extreme conditions, regulation of morphology and behavior, and stress adaptation. Notably, 7 deletion mutants showed a gain of function phenotype, which has not yet been described for any other prokaryotic sRNA gene deletion mutant. Comparison of the transcriptomes of one sRNA gene deletion mutant and the parent strain led to the identification of differentially expressed genes. Genes for flagellins and chemotaxis were up-regulated in the mutant, in accordance with its gain of function swarming phenotype. While the deletion mutant analysis underscored that haloarchaeal sRNAs are involved in many biological functions, the degree of conservation is extremely low. Only 3 of the 27 genes are conserved in more than 10 haloarchaeal species. 22 of the 27 genes are confined to H. volcanii, indicating a fast evolution of haloarchaeal sRNA genes.
Collapse
|
19
|
Baldridge KC, Contreras LM. Functional implications of ribosomal RNA methylation in response to environmental stress. Crit Rev Biochem Mol Biol 2013; 49:69-89. [PMID: 24261569 DOI: 10.3109/10409238.2013.859229] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The study of post-transcriptional RNA modifications has long been focused on the roles these chemical modifications play in maintaining ribosomal function. The field of ribosomal RNA modification has reached a milestone in recent years with the confirmation of the final unknown ribosomal RNA methyltransferase in Escherichia coli in 2012. Furthermore, the last 10 years have brought numerous discoveries in non-coding RNAs and the roles that post-transcriptional modification play in their functions. These observations indicate the need for a revitalization of this field of research to understand the role modifications play in maintaining cellular health in a dynamic environment. With the advent of high-throughput sequencing technologies, the time is ripe for leaps and bounds forward. This review discusses ribosomal RNA methyltransferases and their role in responding to external stress in Escherichia coli, with a specific focus on knockout studies and on analysis of transcriptome data with respect to rRNA methyltransferases.
Collapse
Affiliation(s)
- Kevin C Baldridge
- McKetta Department of Chemical Engineering, The University of Texas at Austin , Austin, TX , USA
| | | |
Collapse
|
20
|
Bhuiya MW, Suryadi J, Zhou Z, Brown BA. Structure of the Aeropyrum pernix L7Ae multifunctional protein and insight into its extreme thermostability. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:979-88. [PMID: 23989144 PMCID: PMC3758144 DOI: 10.1107/s1744309113021799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 08/05/2013] [Indexed: 11/11/2022]
Abstract
Archaeal ribosomal protein L7Ae is a multifunctional RNA-binding protein that directs post-transcriptional modification of archaeal RNAs. The L7Ae protein from Aeropyrum pernix (Ap L7Ae), a member of the Crenarchaea, was found to have an extremely high melting temperature (>383 K). The crystal structure of Ap L7Ae has been determined to a resolution of 1.56 Å. The structure of Ap L7Ae was compared with the structures of two homologs: hyperthermophilic Methanocaldococcus jannaschii L7Ae and the mesophilic counterpart mammalian 15.5 kD protein. The primary stabilizing feature in the Ap L7Ae protein appears to be the large number of ion pairs and extensive ion-pair network that connects secondary-structural elements. To our knowledge, Ap L7Ae is among the most thermostable single-domain monomeric proteins presently observed.
Collapse
Affiliation(s)
| | - Jimmy Suryadi
- Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Zholi Zhou
- Bristol-Myers Squibb, Syracuse, NY 13221, USA
| | - Bernard Andrew Brown
- Womble Carlyle Sandridge and Rice LLP, One West Fourth Street, Winston-Salem, NC 27101, USA
| |
Collapse
|
21
|
Toffano-Nioche C, Ott A, Crozat E, Nguyen AN, Zytnicki M, Leclerc F, Forterre P, Bouloc P, Gautheret D. RNA at 92 °C: the non-coding transcriptome of the hyperthermophilic archaeon Pyrococcus abyssi. RNA Biol 2013; 10:1211-20. [PMID: 23884177 PMCID: PMC3849170 DOI: 10.4161/rna.25567] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The non-coding transcriptome of the hyperthermophilic archaeon Pyrococcus abyssi is investigated using the RNA-seq technology. A dedicated computational pipeline analyzes RNA-seq reads and prior genome annotation to identify small RNAs, untranslated regions of mRNAs, and cis-encoded antisense transcripts. Unlike other archaea, such as Sulfolobus and Halobacteriales, P. abyssi produces few leaderless mRNA transcripts. Antisense transcription is widespread (215 transcripts) and targets protein-coding genes that appear to evolve more rapidly than average genes. We identify at least three novel H/ACA-like guide RNAs among the newly characterized non-coding RNAs. Long 5′ UTRs in mRNAs of ribosomal proteins and amino-acid biosynthesis genes strongly suggest the presence of cis-regulatory leaders in these mRNAs. We selected a high-interest subset of non-coding RNAs based on their strong promoters, high GC-content, phylogenetic conservation, or abundance. Some of the novel small RNAs and long 5′ UTRs display high GC contents, suggesting unknown structural RNA functions. However, we were surprised to observe that most of the high-interest RNAs are AU-rich, which suggests an absence of stable secondary structure in the high-temperature environment of P. abyssi. Yet, these transcripts display other hallmarks of functionality, such as high expression or high conservation, which leads us to consider possible RNA functions that do not require extensive secondary structure.
Collapse
Affiliation(s)
- Claire Toffano-Nioche
- Univ. Paris-Sud 11; CNRS; UMR8621; Institut de Génétique et Microbiologie; Bâtiment 400; F-91405 Orsay Cedex; France
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ribonucleoproteins in archaeal pre-rRNA processing and modification. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2013; 2013:614735. [PMID: 23554567 PMCID: PMC3608112 DOI: 10.1155/2013/614735] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 01/09/2013] [Accepted: 01/15/2013] [Indexed: 12/27/2022]
Abstract
Given that ribosomes are one of the most important cellular macromolecular machines, it is not surprising that there is intensive research in ribosome biogenesis. Ribosome biogenesis is a complex process. The maturation of ribosomal RNAs (rRNAs) requires not only the precise cleaving and folding of the pre-rRNA but also extensive nucleotide modifications. At the heart of the processing and modifications of pre-rRNAs in Archaea and Eukarya are ribonucleoprotein (RNP) machines. They are called small RNPs (sRNPs), in Archaea, and small nucleolar RNPs (snoRNPs), in Eukarya. Studies on ribosome biogenesis originally focused on eukaryotic systems. However, recent studies on archaeal sRNPs have provided important insights into the functions of these RNPs. This paper will introduce archaeal rRNA gene organization and pre-rRNA processing, with a particular focus on the discovery of the archaeal sRNP components, their functions in nucleotide modification, and their structures.
Collapse
|
23
|
Hoeppner MP, Gardner PP, Poole AM. Comparative analysis of RNA families reveals distinct repertoires for each domain of life. PLoS Comput Biol 2012; 8:e1002752. [PMID: 23133357 PMCID: PMC3486863 DOI: 10.1371/journal.pcbi.1002752] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 09/07/2012] [Indexed: 02/02/2023] Open
Abstract
The RNA world hypothesis, that RNA genomes and catalysts preceded DNA genomes and genetically-encoded protein catalysts, has been central to models for the early evolution of life on Earth. A key part of such models is continuity between the earliest stages in the evolution of life and the RNA repertoires of extant lineages. Some assessments seem consistent with a diverse RNA world, yet direct continuity between modern RNAs and an RNA world has not been demonstrated for the majority of RNA families, and, anecdotally, many RNA functions appear restricted in their distribution. Despite much discussion of the possible antiquity of RNA families, no systematic analyses of RNA family distribution have been performed. To chart the broad evolutionary history of known RNA families, we performed comparative genomic analysis of over 3 million RNA annotations spanning 1446 families from the Rfam 10 database. We report that 99% of known RNA families are restricted to a single domain of life, revealing discrete repertoires for each domain. For the 1% of RNA families/clans present in more than one domain, over half show evidence of horizontal gene transfer (HGT), and the rest show a vertical trace, indicating the presence of a complex protein synthesis machinery in the Last Universal Common Ancestor (LUCA) and consistent with the evolutionary history of the most ancient protein-coding genes. However, with limited interdomain transfer and few RNA families exhibiting demonstrable antiquity as predicted under RNA world continuity, our results indicate that the majority of modern cellular RNA repertoires have primarily evolved in a domain-specific manner. In cells, DNA carries recipes for making proteins, and proteins perform chemical reactions, including replication of DNA. This interdependency raises questions for early evolution, since one molecule seemingly cannot exist without the other. A resolution to this problem is the RNA world, where RNA is postulated to have been both genetic material and primary catalyst. While artificially selected catalytic RNAs strengthen the chemical plausibility of an RNA world, a biological prediction is that some RNAs should date back to this period. In this study, we ask to what degree RNAs in extant organisms trace back to the common ancestor of cellular life. Using the Rfam RNA families database, we systematically screened genomes spanning the three domains of life (Archaea, Bacteria, Eukarya) for RNA genes, and examined how far back in evolution known RNA families can be traced. We find that 99% of RNA families are restricted to a single domain. Limited conservation within domains implies ongoing emergence of RNA functions during evolution. Of the remaining 1%, half show evidence of horizontal transfer (movement of genes between organisms), and half show an evolutionary history consistent with an RNA world. The oldest RNAs are primarily associated with protein synthesis and export.
Collapse
Affiliation(s)
- Marc P. Hoeppner
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- * E-mail: (MPH); (PPG); (AMP)
| | - Paul P. Gardner
- Biomolecular Interaction Centre & School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- * E-mail: (MPH); (PPG); (AMP)
| | - Anthony M. Poole
- Biomolecular Interaction Centre & School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- * E-mail: (MPH); (PPG); (AMP)
| |
Collapse
|
24
|
Comparative genomics of eukaryotic small nucleolar RNAs reveals deep evolutionary ancestry amidst ongoing intragenomic mobility. BMC Evol Biol 2012; 12:183. [PMID: 22978381 PMCID: PMC3511168 DOI: 10.1186/1471-2148-12-183] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 09/04/2012] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Small nucleolar (sno)RNAs are required for posttranscriptional processing and modification of ribosomal, spliceosomal and messenger RNAs. Their presence in both eukaryotes and archaea indicates that snoRNAs are evolutionarily ancient. The location of some snoRNAs within the introns of ribosomal protein genes has been suggested to belie an RNA world origin, with the exons of the earliest protein-coding genes having evolved around snoRNAs after the advent of templated protein synthesis. Alternatively, this intronic location may reflect more recent selection for coexpression of snoRNAs and ribosomal components, ensuring rRNA modification by snoRNAs during ribosome synthesis. To gain insight into the evolutionary origins of this genetic organization, we examined the antiquity of snoRNA families and the stability of their genomic location across 44 eukaryote genomes. RESULTS We report that dozens of snoRNA families are traceable to the Last Eukaryotic Common Ancestor (LECA), but find only weak similarities between the oldest eukaryotic snoRNAs and archaeal snoRNA-like genes. Moreover, many of these LECA snoRNAs are located within the introns of host genes independently traceable to the LECA. Comparative genomic analyses reveal the intronic location of LECA snoRNAs is not ancestral however, suggesting the pattern we observe is the result of ongoing intragenomic mobility. Analysis of human transcriptome data indicates that the primary requirement for hosting intronic snoRNAs is a broad expression profile. Consistent with ongoing mobility across broadly-expressed genes, we report a case of recent migration of a non-LECA snoRNA from the intron of a ubiquitously expressed non-LECA host gene into the introns of two LECA genes during the evolution of primates. CONCLUSIONS Our analyses show that snoRNAs were a well-established family of RNAs at the time when eukaryotes began to diversify. While many are intronic, this association is not evolutionarily stable across the eukaryote tree; ongoing intragenomic mobility has erased signal of their ancestral gene organization, and neither introns-first nor evolved co-expression adequately explain our results. We therefore present a third model - constrained drift - whereby individual snoRNAs are intragenomically mobile and may occupy any genomic location from which expression satisfies phenotype.
Collapse
|
25
|
Jäger D, Pernitzsch SR, Richter AS, Backofen R, Sharma CM, Schmitz RA. An archaeal sRNA targeting cis- and trans-encoded mRNAs via two distinct domains. Nucleic Acids Res 2012; 40:10964-79. [PMID: 22965121 PMCID: PMC3510493 DOI: 10.1093/nar/gks847] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We report on the characterization and target analysis of the small (s)RNA162 in the methanoarchaeon Methanosarcina mazei. Using a combination of genetic approaches, transcriptome analysis and computational predictions, the bicistronic MM2441-MM2440 mRNA encoding the transcription factor MM2441 and a protein of unknown function was identified as a potential target of this sRNA, which due to processing accumulates as three stabile 5′ fragments in late exponential growth. Mobility shift assays using various mutants verified that the non-structured single-stranded linker region of sRNA162 (SLR) base-pairs with the MM2440-MM2441 mRNA internally, thereby masking the predicted ribosome binding site of MM2441. This most likely leads to translational repression of the second cistron resulting in dis-coordinated operon expression. Analysis of mutant RNAs in vivo confirmed that the SLR of sRNA162 is crucial for target interactions. Furthermore, our results indicate that sRNA162-controlled MM2441 is involved in regulating the metabolic switch between the carbon sources methanol and methylamine. Moreover, biochemical studies demonstrated that the 5′ end of sRNA162 targets the 5′-untranslated region of the cis-encoded MM2442 mRNA. Overall, this first study of archaeal sRNA/mRNA-target interactions unraveled that sRNA162 acts as an antisense (as)RNA on cis- and trans-encoded mRNAs via two distinct domains, indicating that cis-encoded asRNAs can have larger target regulons than previously anticipated.
Collapse
Affiliation(s)
- Dominik Jäger
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Liu N, Xiao B, Ren HY, Tang ZL, Li K. Systematic identification and characterization of porcine snoRNAs: structural, functional and developmental insights. Anim Genet 2012; 44:24-33. [DOI: 10.1111/j.1365-2052.2012.02363.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2012] [Indexed: 11/28/2022]
Affiliation(s)
- Nan Liu
- State Key Laboratory for Animal Nutrition; Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing; 100193; China
| | - Bang Xiao
- State Key Laboratory for Animal Nutrition; Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing; 100193; China
| | - Hong-Yan Ren
- State Key Laboratory for Animal Nutrition; Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing; 100193; China
| | - Zhong-Lin Tang
- State Key Laboratory for Animal Nutrition; Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing; 100193; China
| | - Kui Li
- State Key Laboratory for Animal Nutrition; Institute of Animal Science; Chinese Academy of Agricultural Sciences; Beijing; 100193; China
| |
Collapse
|
27
|
Bower-Phipps KR, Taylor DW, Wang HW, Baserga SJ. The box C/D sRNP dimeric architecture is conserved across domain Archaea. RNA (NEW YORK, N.Y.) 2012; 18:1527-1540. [PMID: 22753779 PMCID: PMC3404373 DOI: 10.1261/rna.033134.112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 05/26/2012] [Indexed: 06/01/2023]
Abstract
Box C/D small (nucleolar) ribonucleoproteins [s(no)RNPs] catalyze RNA-guided 2'-O-ribose methylation in two of the three domains of life. Recent structural studies have led to a controversy over whether box C/D sRNPs functionally assemble as monomeric or dimeric macromolecules. The archaeal box C/D sRNP from Methanococcus jannaschii (Mj) has been shown by glycerol gradient sedimentation, gel filtration chromatography, native gel analysis, and single-particle electron microscopy (EM) to adopt a di-sRNP architecture, containing four copies of each box C/D core protein and two copies of the Mj sR8 sRNA. Subsequently, investigators used a two-stranded artificial guide sRNA, CD45, to assemble a box C/D sRNP from Sulfolobus solfataricus with a short RNA methylation substrate, yielding a crystal structure of a mono-sRNP. To more closely examine box C/D sRNP architecture, we investigate the role of the omnipresent sRNA loop as a structural determinant of sRNP assembly. We show through sRNA mutagenesis, native gel electrophoresis, and single-particle EM that a di-sRNP is the near exclusive architecture obtained when reconstituting box C/D sRNPs with natural or artificial sRNAs containing an internal loop. Our results span three distantly related archaeal species--Sulfolobus solfataricus, Pyrococcus abyssi, and Archaeoglobus fulgidus--indicating that the di-sRNP architecture is broadly conserved across the entire archaeal domain.
Collapse
Affiliation(s)
| | | | | | - Susan J. Baserga
- Department of Molecular Biophysics and Biochemistry
- Department of Genetics
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
28
|
Larsen LHG, Rasmussen A, Giessing AMB, Jogl G, Kirpekar F. Identification and characterization of the Thermus thermophilus 5-methylcytidine (m5C) methyltransferase modifying 23 S ribosomal RNA (rRNA) base C1942. J Biol Chem 2012; 287:27593-600. [PMID: 22711535 DOI: 10.1074/jbc.m112.376160] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Methylation of cytidines at carbon-5 is a common posttranscriptional RNA modification encountered across all domains of life. Here, we characterize the modifications of C1942 and C1962 in Thermus thermophilus 23 S rRNA as 5-methylcytidines (m(5)C) and identify the two associated methyltransferases. The methyltransferase modifying C1942, named RlmO, has not been characterized previously. RlmO modifies naked 23 S rRNA, but not the assembled 50 S subunit or 70 S ribosomes. The x-ray crystal structure of this enzyme in complex with the S-adenosyl-l-methionine cofactor at 1.7 Å resolution confirms that RlmO is structurally related to other m(5)C rRNA methyltransferases. Key residues in the active site are located similar to the further distant 5-methyluridine methyltransferase RlmD, suggestive of a similar enzymatic mechanism. RlmO homologues are primarily found in mesophilic bacteria related to T. thermophilus. In accordance, we find that growth of the T. thermophilus strain with an inactivated C1942 methyltransferase gene is not compromised at non-optimal temperatures.
Collapse
Affiliation(s)
- Line H G Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | | | | | | | | |
Collapse
|
29
|
Roy Chowdhury A, Dutta C. A pursuit of lineage-specific and niche-specific proteome features in the world of archaea. BMC Genomics 2012; 13:236. [PMID: 22691113 PMCID: PMC3416665 DOI: 10.1186/1471-2164-13-236] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 06/12/2012] [Indexed: 11/24/2022] Open
Abstract
Background Archaea evoke interest among researchers for two enigmatic characteristics –a combination of bacterial and eukaryotic components in their molecular architectures and an enormous diversity in their life-style and metabolic capabilities. Despite considerable research efforts, lineage- specific/niche-specific molecular features of the whole archaeal world are yet to be fully unveiled. The study offers the first large-scale in silico proteome analysis of all archaeal species of known genome sequences with a special emphasis on methanogenic and sulphur-metabolising archaea. Results Overall amino acid usage in archaea is dominated by GC-bias. But the environmental factors like oxygen requirement or thermal adaptation seem to play important roles in selection of residues with no GC-bias at the codon level. All methanogens, irrespective of their thermal/salt adaptation, show higher usage of Cys and have relatively acidic proteomes, while the proteomes of sulphur-metabolisers have higher aromaticity and more positive charges. Despite of exhibiting thermophilic life-style, korarchaeota possesses an acidic proteome. Among the distinct trends prevailing in COGs (Cluster of Orthologous Groups of proteins) distribution profiles, crenarchaeal organisms display higher intra-order variations in COGs repertoire, especially in the metabolic ones, as compared to euryarchaea. All methanogens are characterised by a presence of 22 exclusive COGs. Conclusions Divergences in amino acid usage, aromaticity/charge profiles and COG repertoire among methanogens and sulphur-metabolisers, aerobic and anaerobic archaea or korarchaeota and nanoarchaeota, as elucidated in the present study, point towards the presence of distinct molecular strategies for niche specialization in the archaeal world.
Collapse
Affiliation(s)
- Anindya Roy Chowdhury
- Structural Biology & Bioinformatics Division, CSIR Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | | |
Collapse
|
30
|
Scott MS, Ono M, Yamada K, Endo A, Barton GJ, Lamond AI. Human box C/D snoRNA processing conservation across multiple cell types. Nucleic Acids Res 2012; 40:3676-88. [PMID: 22199253 PMCID: PMC3333852 DOI: 10.1093/nar/gkr1233] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 11/24/2011] [Accepted: 11/25/2011] [Indexed: 11/18/2022] Open
Abstract
Small nucleolar RNAs (snoRNAs) function mainly as guides for the post-transcriptional modification of ribosomal RNAs (rRNAs). In recent years, several studies have identified a wealth of small fragments (<35 nt) derived from snoRNAs (termed sdRNAs) that stably accumulate in the cell, some of which may regulate splicing or translation. A comparison of human small RNA deep sequencing data sets reveals that box C/D sdRNA accumulation patterns are conserved across multiple cell types although the ratio of the abundance of different sdRNAs from a given snoRNA varies. sdRNA profiles of many snoRNAs are specific and resemble the cleavage profiles of miRNAs. Many do not show characteristics of general RNA degradation, as seen for the accumulation of small fragments derived from snRNA or rRNA. While 53% of the sdRNAs contain an snoRNA box C motif and boxes D and D' are also common in sdRNAs (54%), relatively few (12%) contain a full snoRNA guide region. One box C/D snoRNA, HBII-180C, was analysed in greater detail, revealing the presence of C' box-containing sdRNAs complementary to several pre-messenger RNAs (pre-mRNAs) including FGFR3. Functional analyses demonstrated that this region of HBII-180C can influence the alternative splicing of FGFR3 pre-mRNA, supporting a role for some snoRNAs in the regulation of splicing.
Collapse
Affiliation(s)
- Michelle S Scott
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| | | | | | | | | | | |
Collapse
|
31
|
Bernick DL, Dennis PP, Höchsmann M, Lowe TM. Discovery of Pyrobaculum small RNA families with atypical pseudouridine guide RNA features. RNA (NEW YORK, N.Y.) 2012; 18:402-11. [PMID: 22282340 PMCID: PMC3285929 DOI: 10.1261/rna.031385.111] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Accepted: 11/18/2011] [Indexed: 05/31/2023]
Abstract
In the Eukarya and Archaea, small RNA-guided pseudouridine modification is believed to be an essential step in ribosomal RNA maturation. While readily modeled and identified by computational methods in eukaryotic species, these guide RNAs have not been found in most archaeal genomes. Using high-throughput transcriptome sequencing and comparative genomics, we have identified ten novel small RNA families that appear to function as H/ACA pseudouridylation guide sRNAs, yet surprisingly lack several expected canonical features. The new RNA genes are transcribed and highly conserved across at least six species in the archaeal hyperthermophilic genus Pyrobaculum. The sRNAs exhibit a single hairpin structure interrupted by a conserved kink-turn motif, yet only two of ten families contain the complete canonical structure found in all other H/ACA sRNAs. Half of the sRNAs lack the conserved 3'-terminal ACA sequence, and many contain only a single 3' guide region rather than the canonical 5' and 3' bipartite guides. The predicted sRNA structures contain guide sequences that exhibit strong complementarity to ribosomal RNA or transfer RNA. Most of the predicted targets of pseudouridine modification are structurally equivalent to those known in other species. One sRNA appears capable of guiding pseudouridine modification at positions U54 and U55 in most or all Pyrobaculum tRNAs. We experimentally tested seven predicted pseudouridine modifications in ribosomal RNA, and all but one was confirmed. The structural insights provided by this new set of Pyrobaculum sRNAs will augment existing models and may facilitate the identification and characterization of new guide sRNAs in other archaeal species.
Collapse
Affiliation(s)
- David L. Bernick
- Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064, USA
| | - Patrick P. Dennis
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA
| | - Matthias Höchsmann
- Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064, USA
| | - Todd M. Lowe
- Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064, USA
| |
Collapse
|
32
|
Bratkovič T, Rogelj B. Biology and applications of small nucleolar RNAs. Cell Mol Life Sci 2011; 68:3843-51. [PMID: 21748470 PMCID: PMC11114935 DOI: 10.1007/s00018-011-0762-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 06/20/2011] [Accepted: 06/21/2011] [Indexed: 10/18/2022]
Abstract
Small nucleolar RNAs (snoRNAs) constitute a group of non-coding RNAs principally involved in posttranscriptional modification of ubiquitously expressed ribosomal and small nuclear RNAs. However, a number of tissue-specific snoRNAs have recently been identified that apparently do not target conventional substrates and are presumed to guide processing of primary transcripts of protein-coding genes, potentially expanding the diapason of regulatory RNAs that control translation of mRNA to proteins. Here, we review biogenesis of snoRNAs and redefine their function in light of recent exciting discoveries. We also discuss the potential of recombinant snoRNAs to be used in modulation of gene expression.
Collapse
Affiliation(s)
- Tomaž Bratkovič
- Department of Pharmaceutical Biology, University of Ljubljana, Slovenia.
| | | |
Collapse
|
33
|
Joardar A, Malliahgari SR, Skariah G, Gupta R. 2'-O-methylation of the wobble residue of elongator pre-tRNA(Met) in Haloferax volcanii is guided by a box C/D RNA containing unique features. RNA Biol 2011; 8:782-91. [PMID: 21654217 PMCID: PMC3256356 DOI: 10.4161/rna.8.5.16015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 02/16/2011] [Accepted: 03/29/2011] [Indexed: 11/19/2022] Open
Abstract
The wobble residue C34 of Haloferax volcanii elongator tRNA(Met) is 2'-O-methylated. Neither a protein enzyme nor a guide RNA for this modification has been described. In this study, we show that this methylation is guided by a box C/D RNA targeting the intron-containing precursor of the tRNA. This guide RNA is starkly different from its homologs. This unique RNA of approximately 75 bases, named sR-tMet, is encoded in the genomes of H. volcanii and several other haloarchaea. A unique feature of sR-tMet is that the mature RNA in H. volcanii is substantially larger than its predicted size, whereas those in other haloarchaea are as predicted. While the 5'-ends of all tested haloarchaeal sR-tMets are equivalent, H. volcanii sR-tMet possesses an additional 51-base extension at its 3' end. This extension is present in the precursor but not in the mature sR-tMet of Halobacterium sp., suggesting differential 3'-end processing of sR-tMet in these two closely related organisms. Archaeal box C/D RNAs mostly contain a K-loop at the C'/D' motif. Another unique feature of sR-tMet is that its C'/D' motif lacks either a conventional K-turn or a K-loop. Instead, it contains two tandem, sheared G•A base pairs and a pyrimidine-pyrimidine pair in the non-canonical stem; the latter may form an alternative K-turn. Gel shift assays indicate that the L7Ae protein can form a stable complex with this unusual C'/D' motif, suggesting a novel RNA structure for L7Ae interaction.
Collapse
Affiliation(s)
- Archi Joardar
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, IL, USA
| | | | | | | |
Collapse
|
34
|
Phok K, Moisan A, Rinaldi D, Brucato N, Carpousis AJ, Gaspin C, Clouet-d'Orval B. Identification of CRISPR and riboswitch related RNAs among novel noncoding RNAs of the euryarchaeon Pyrococcus abyssi. BMC Genomics 2011; 12:312. [PMID: 21668986 PMCID: PMC3124441 DOI: 10.1186/1471-2164-12-312] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 06/13/2011] [Indexed: 01/28/2023] Open
Abstract
Background Noncoding RNA (ncRNA) has been recognized as an important regulator of gene expression networks in Bacteria and Eucaryota. Little is known about ncRNA in thermococcal archaea except for the eukaryotic-like C/D and H/ACA modification guide RNAs. Results Using a combination of in silico and experimental approaches, we identified and characterized novel P. abyssi ncRNAs transcribed from 12 intergenic regions, ten of which are conserved throughout the Thermococcales. Several of them accumulate in the late-exponential phase of growth. Analysis of the genomic context and sequence conservation amongst related thermococcal species revealed two novel P. abyssi ncRNA families. The CRISPR family is comprised of crRNAs expressed from two of the four P. abyssi CRISPR cassettes. The 5'UTR derived family includes four conserved ncRNAs, two of which have features similar to known bacterial riboswitches. Several of the novel ncRNAs have sequence similarities to orphan OrfB transposase elements. Based on RNA secondary structure predictions and experimental results, we show that three of the twelve ncRNAs include Kink-turn RNA motifs, arguing for a biological role of these ncRNAs in the cell. Furthermore, our results show that several of the ncRNAs are subjected to processing events by enzymes that remain to be identified and characterized. Conclusions This work proposes a revised annotation of CRISPR loci in P. abyssi and expands our knowledge of ncRNAs in the Thermococcales, thus providing a starting point for studies needed to elucidate their biological function.
Collapse
Affiliation(s)
- Kounthéa Phok
- Laboratoire de Microbiologie et Génétique Moléculaire, Centre National de la Recherche Scientifique et Université de Toulouse III, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
In organisms of all three domains of life, a plethora of sRNAs (small regulatory RNAs) exists in addition to the well-known RNAs such as rRNAs, tRNAs and mRNAs. Although sRNAs have been well studied in eukaryotes and in bacteria, the sRNA population in archaea has just recently been identified and only in a few archaeal species. In the present paper, we summarize our current knowledge about sRNAs and their function in the halophilic archaeon Haloferax volcanii. Using two different experimental approaches, 111 intergenic and 38 antisense sRNAs were identified, as well as 42 tRFs (tRNA-derived fragments). Observation of differential expression under various conditions suggests that these sRNAs might be active as regulators in gene expression like their bacterial and eukaryotic counterparts. The severe phenotypes observed upon deletion and overexpression of sRNA genes revealed that sRNAs are involved in, and important for, a variety of biological functions in H. volcanii and possibly other archaea. Investigation of the Haloferax Lsm protein suggests that this protein is involved in the archaeal sRNA pathway.
Collapse
|
36
|
Abstract
Ribonucleoproteins (RNPs) play key roles in many cellular processes and often function as RNP enzymes. Similar to proteins, some of these RNPs exist and function as multimers, either homomeric or heteromeric. While in some cases the mechanistic function of multimerization is well understood, the functional consequences of multimerization of other RNPs remain enigmatic. In this review we will discuss the function and organization of small RNPs that exist as stable multimers, including RNPs catalyzing RNA chemical modifications, telomerase RNP, and RNPs involved in pre-mRNA splicing.
Collapse
|
37
|
Abstract
RNA-guided RNA 2'-O-methylation and pseudouridylation are naturally occurring processes, in which guide RNAs specifically direct modifications to rRNAs or spliceosomal snRNAs in the nucleus of eukaryotic cells. Modifications can profoundly alter the properties of an RNA, thus influencing the contributions of the RNA to the cellular process in which it participates. Recently, it has been shown that, by expressing artificial guide RNAs (derived from naturally occurring guide RNAs), modifications can also be specifically introduced into other RNAs, thus offering an opportunity to study RNAs in vivo. Here, we present strategies for constructing guide RNAs and manipulating RNA modifications in the nucleus.
Collapse
|
38
|
Qu G, van Nues RW, Watkins NJ, Maxwell ES. The spatial-functional coupling of box C/D and C'/D' RNPs is an evolutionarily conserved feature of the eukaryotic box C/D snoRNP nucleotide modification complex. Mol Cell Biol 2011; 31:365-74. [PMID: 21041475 PMCID: PMC3019978 DOI: 10.1128/mcb.00918-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 09/10/2010] [Accepted: 10/26/2010] [Indexed: 11/20/2022] Open
Abstract
Box C/D ribonucleoprotein particles guide the 2'-O-ribose methylation of target nucleotides in both archaeal and eukaryotic RNAs. These complexes contain two functional centers, assembled around the C/D and C'/D' motifs in the box C/D RNA. The C/D and C'/D' RNPs of the archaeal snoRNA-like RNP (sRNP) are spatially and functionally coupled. Here, we show that similar coupling also occurs in eukaryotic box C/D snoRNPs. The C/D RNP guided 2'-O-methylation when the C'/D' motif was either mutated or ablated. In contrast, the C'/D' RNP was inactive as an independent complex. Additional experiments demonstrated that the internal C'/D' RNP is spatially coupled to the terminal box C/D complex. Pulldown experiments also indicated that all four core proteins are independently recruited to the box C/D and C'/D' motifs. Therefore, the spatial-functional coupling of box C/D and C'/D' RNPs is an evolutionarily conserved feature of both archaeal and eukaryotic box C/D RNP complexes.
Collapse
Affiliation(s)
- Guosheng Qu
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695-7622, USA.
| | | | | | | |
Collapse
|
39
|
Gribaldo S, Poole AM, Daubin V, Forterre P, Brochier-Armanet C. The origin of eukaryotes and their relationship with the Archaea: are we at a phylogenomic impasse? Nat Rev Microbiol 2010; 8:743-52. [PMID: 20844558 DOI: 10.1038/nrmicro2426] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The origin of eukaryotes and their evolutionary relationship with the Archaea is a major biological question and the subject of intense debate. In the context of the classical view of the universal tree of life, the Archaea and the Eukarya have a common ancestor, the nature of which remains undetermined. Alternative views propose instead that the Eukarya evolved directly from a bona fide archaeal lineage. Several recent large-scale phylogenomic studies using an array of approaches are divided in supporting either one or the other scenario, despite analysing largely overlapping data sets of universal genes. We examine the reasons for such a lack of consensus and consider how alternative approaches may enable progress in answering this fascinating and as-yet-unresolved question.
Collapse
|
40
|
Grigsby IF, Pham L, Gopalakrishnan R, Mansky LM, Mansky KC. Downregulation of Gnas, Got2 and Snord32a following tenofovir exposure of primary osteoclasts. Biochem Biophys Res Commun 2009; 391:1324-9. [PMID: 20026012 DOI: 10.1016/j.bbrc.2009.12.039] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 12/09/2009] [Indexed: 11/30/2022]
Abstract
Clinical observations have implicated the antiretroviral drug tenofovir with bone density loss during the management of HIV infection. The goal of this study was to investigate the in vitro effects of tenofovir exposure of primary osteoclasts in order to gain insights into the potential mechanisms for the drug-induced bone density loss. We hypothesized that tenofovir may alter the expression of key genes involved in osteoclast function. To test this, primary osteoclasts were exposed to physiologically relevant concentrations of the prodrug tenofovir disoproxil fumarate (TDF), then intensive microarray analysis was done to compare tenofovir-treated versus untreated cells. Specific downregulation of Gnas, Got2 and Snord32a were observed in the TDF-treated cells. The functions of these genes help to explain the basis for tenofovir-associated bone density loss. Our studies represent the first analysis of the effects of tenofovir on osteoclast gene expression and help to explain the basis of tenofovir-associated bone density loss in HIV-infected individuals.
Collapse
Affiliation(s)
- Iwen F Grigsby
- Division of Orthodontics, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
41
|
Sheng F, Yep A, Feng L, Preiss J, Geiger JH. Oligosaccharide binding in Escherichia coli glycogen synthase. Biochemistry 2009; 48:10089-97. [PMID: 19761218 DOI: 10.1021/bi900916t] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycogen/starch synthase elongates glucan chains and is the key enzyme in the synthesis of glycogen in bacteria and starch in plants. Cocrystallization of Escherichia coli wild-type glycogen synthase (GS) with substrate ADPGlc and the glucan acceptor mimic HEPPSO produced a closed form of GS and suggests that domain-domain closure accompanies glycogen synthesis. Cocrystallization of the inactive GS mutant E377A with substrate ADPGlc and oligosaccharide results in the first oligosaccharide-bound glycogen synthase structure. Four bound oligosaccharides are observed, one in the interdomain cleft (G6a) and three on the N-terminal domain surface (G6b, G6c, and G6d). Extending from the center of the enzyme to the interdomain cleft opening, G6a mostly interacts with the highly conserved N-terminal domain residues lining the cleft of GS. The surface-bound oligosaccharides G6c and G6d have less interaction with enzyme and exhibit a more curled, helixlike structural arrangement. The observation that oligosaccharides bind only to the N-terminal domain of GS suggests that glycogen in vivo probably binds to only one side of the enzyme to ensure unencumbered interdomain movement, which is required for efficient, continuous glucan-chain synthesis.
Collapse
Affiliation(s)
- Fang Sheng
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | |
Collapse
|
42
|
An Overview of the Introns-First Theory. J Mol Evol 2009; 69:527-40. [DOI: 10.1007/s00239-009-9279-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 09/08/2009] [Indexed: 10/20/2022]
|
43
|
Bleichert F, Gagnon KT, Brown BA, Maxwell ES, Leschziner AE, Unger VM, Baserga SJ. A dimeric structure for archaeal box C/D small ribonucleoproteins. Science 2009; 325:1384-7. [PMID: 19745151 DOI: 10.1126/science.1176099] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Methylation of ribosomal RNA (rRNA) is required for optimal protein synthesis. Multiple 2'-O-ribose methylations are carried out by box C/D guide ribonucleoproteins [small ribonucleoproteins (sRNPs) and small nucleolar ribonucleoproteins (snoRNPs)], which are conserved from archaea to eukaryotes. Methylation is dictated by base pairing between the specific guide RNA component of the sRNP or snoRNP and the target rRNA. We determined the structure of a reconstituted and catalytically active box C/D sRNP from the archaeon Methanocaldococcus jannaschii by single-particle electron microscopy. We found that archaeal box C/D sRNPs unexpectedly formed a dimeric structure with an alternative organization of their RNA and protein components that challenges the conventional view of their architecture. Mutational analysis demonstrated that this di-sRNP structure was relevant for the enzymatic function of archaeal box C/D sRNPs.
Collapse
Affiliation(s)
- Franziska Bleichert
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Tran TT, Zhou F, Marshburn S, Stead M, Kushner SR, Xu Y. De novo computational prediction of non-coding RNA genes in prokaryotic genomes. ACTA ACUST UNITED AC 2009; 25:2897-905. [PMID: 19744996 PMCID: PMC2773258 DOI: 10.1093/bioinformatics/btp537] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Motivation: The computational identification of non-coding RNA (ncRNA) genes represents one of the most important and challenging problems in computational biology. Existing methods for ncRNA gene prediction rely mostly on homology information, thus limiting their applications to ncRNA genes with known homologues. Results: We present a novel de novo prediction algorithm for ncRNA genes using features derived from the sequences and structures of known ncRNA genes in comparison to decoys. Using these features, we have trained a neural network-based classifier and have applied it to Escherichia coli and Sulfolobus solfataricus for genome-wide prediction of ncRNAs. Our method has an average prediction sensitivity and specificity of 68% and 70%, respectively, for identifying windows with potential for ncRNA genes in E.coli. By combining windows of different sizes and using positional filtering strategies, we predicted 601 candidate ncRNAs and recovered 41% of known ncRNAs in E.coli. We experimentally investigated six novel candidates using Northern blot analysis and found expression of three candidates: one represents a potential new ncRNA, one is associated with stable mRNA decay intermediates and one is a case of either a potential riboswitch or transcription attenuator involved in the regulation of cell division. In general, our approach enables the identification of both cis- and trans-acting ncRNAs in partially or completely sequenced microbial genomes without requiring homology or structural conservation. Availability: The source code and results are available at http://csbl.bmb.uga.edu/publications/materials/tran/. Contact:xyn@bmb.uga.edu Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Thao T Tran
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | | | | | | |
Collapse
|
45
|
Taft RJ, Glazov EA, Lassmann T, Hayashizaki Y, Carninci P, Mattick JS. Small RNAs derived from snoRNAs. RNA (NEW YORK, N.Y.) 2009; 15:1233-40. [PMID: 19474147 PMCID: PMC2704076 DOI: 10.1261/rna.1528909] [Citation(s) in RCA: 339] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Small nucleolar RNAs (snoRNAs) guide RNA modification and are localized in nucleoli and Cajal bodies in eukaryotic cells. Components of the RNA silencing pathway associate with these structures, and two recent reports have revealed that a human and a protozoan snoRNA can be processed into miRNA-like RNAs. Here we show that small RNAs with evolutionary conservation of size and position are derived from the vast majority of snoRNA loci in animals (human, mouse, chicken, fruit fly), Arabidopsis, and fission yeast. In animals, sno-derived RNAs (sdRNAs) from H/ACA snoRNAs are predominantly 20-24 nucleotides (nt) in length and originate from the 3' end. Those derived from C/D snoRNAs show a bimodal size distribution at approximately 17-19 nt and >27 nt and predominantly originate from the 5' end. SdRNAs are associated with AGO7 in Arabidopsis and Ago1 in fission yeast with characteristic 5' nucleotide biases and show altered expression patterns in fly loquacious and Dicer-2 and mouse Dicer1 and Dgcr8 mutants. These findings indicate that there is interplay between the RNA silencing and snoRNA-mediated RNA processing systems, and that sdRNAs comprise a novel and ancient class of small RNAs in eukaryotes.
Collapse
Affiliation(s)
- Ryan J Taft
- Australian Research Council Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | | | | | | | | | | |
Collapse
|
46
|
Hardin JW, Reyes FE, Batey RT. Analysis of a critical interaction within the archaeal box C/D small ribonucleoprotein complex. J Biol Chem 2009; 284:15317-24. [PMID: 19336398 PMCID: PMC2685712 DOI: 10.1074/jbc.m901368200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Indexed: 11/06/2022] Open
Abstract
In archaea and eukarya, box C/D ribonucleoprotein (RNP) complexes are responsible for 2'-O-methylation of tRNAs and rRNAs. The archaeal box C/D small RNP complex requires a small RNA component (sRNA) possessing Watson-Crick complementarity to the target RNA along with three proteins: L7Ae, Nop5p, and fibrillarin. Transfer of a methyl group from S-adenosylmethionine to the target RNA is performed by fibrillarin, which by itself has no affinity for the sRNA-target duplex. Instead, it is targeted to the site of methylation through association with Nop5p, which in turn binds to the L7Ae-sRNA complex. To understand how Nop5p serves as a bridge between the targeting and catalytic functions of the box C/D small RNP complex, we have employed alanine scanning to evaluate the interaction between the Pyrococcus horikoshii Nop5p domain and an L7Ae box C/D RNA complex. From these data, we were able to construct an isolated RNA-binding domain (Nop-RBD) that folds correctly as demonstrated by x-ray crystallography and binds to the L7Ae box C/D RNA complex with near wild type affinity. These data demonstrate that the Nop-RBD is an autonomously folding and functional module important for protein assembly in a number of complexes centered on the L7Ae-kinkturn RNP.
Collapse
Affiliation(s)
- John W Hardin
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA
| | | | | |
Collapse
|
47
|
Evaluating the evolution of G. lamblia based on the small nucleolar RNAs identified from Archaea and unicellular eukaryotes. Parasitol Res 2009; 104:1543-6. [DOI: 10.1007/s00436-009-1403-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Accepted: 03/11/2009] [Indexed: 11/25/2022]
|
48
|
Myslyuk I, Doniger T, Horesh Y, Hury A, Hoffer R, Ziporen Y, Michaeli S, Unger R. Psiscan: a computational approach to identify H/ACA-like and AGA-like non-coding RNA in trypanosomatid genomes. BMC Bioinformatics 2008; 9:471. [PMID: 18986541 PMCID: PMC2613932 DOI: 10.1186/1471-2105-9-471] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 11/05/2008] [Indexed: 11/12/2022] Open
Abstract
Background Detection of non coding RNA (ncRNA) molecules is a major bioinformatics challenge. This challenge is particularly difficult when attempting to detect H/ACA molecules which are involved in converting uridine to pseudouridine on rRNA in trypanosomes, because these organisms have unique H/ACA molecules (termed H/ACA-like) that lack several of the features that characterize H/ACA molecules in most other organisms. Results We present here a computational tool called Psiscan, which was designed to detect H/ACA-like molecules in trypanosomes. We started by analyzing known H/ACA-like molecules and characterized their crucial elements both computationally and experimentally. Next, we set up constraints based on this analysis and additional phylogenic and functional data to rapidly scan three trypanosome genomes (T. brucei, T. cruzi and L. major) for sequences that observe these constraints and are conserved among the species. In the next step, we used minimal energy calculation to select the molecules that are predicted to fold into a lowest energy structure that is consistent with the constraints. In the final computational step, we used a Support Vector Machine that was trained on known H/ACA-like molecules as positive examples and on negative examples of molecules that were identified by the computational analyses but were shown experimentally not to be H/ACA-like molecules. The leading candidate molecules predicted by the SVM model were then subjected to experimental validation. Conclusion The experimental validation showed 11 molecules to be expressed (4 out of 25 in the intermediate stage and 7 out of 19 in the final validation after the machine learning stage). Five of these 11 molecules were further shown to be bona fide H/ACA-like molecules. As snoRNA in trypanosomes are organized in clusters, the new H/ACA-like molecules could be used as starting points to manually search for additional molecules in their neighbourhood. All together this study increased our repertoire by fourteen H/ACA-like and six C/D snoRNAs molecules from T. brucei and L. Major. In addition the experimental analysis revealed that six ncRNA molecules that are expressed are not downregulated in CBF5 silenced cells, suggesting that they have structural features of H/ACA-like molecules but do not have their standard function. We termed this novel class of molecules AGA-like, and we are exploring their function. This study demonstrates the power of tight collaboration between computational and experimental approaches in a combined effort to reveal the repertoire of ncRNA molecles.
Collapse
Affiliation(s)
- Inna Myslyuk
- Faculty of Life Science, Bar-Ilan University, Ramat-Gan, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Grosjean H, Gaspin C, Marck C, Decatur WA, de Crécy-Lagard V. RNomics and Modomics in the halophilic archaea Haloferax volcanii: identification of RNA modification genes. BMC Genomics 2008; 9:470. [PMID: 18844986 PMCID: PMC2584109 DOI: 10.1186/1471-2164-9-470] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 10/09/2008] [Indexed: 12/14/2022] Open
Abstract
Background Naturally occurring RNAs contain numerous enzymatically altered nucleosides. Differences in RNA populations (RNomics) and pattern of RNA modifications (Modomics) depends on the organism analyzed and are two of the criteria that distinguish the three kingdoms of life. If the genomic sequences of the RNA molecules can be derived from whole genome sequence information, the modification profile cannot and requires or direct sequencing of the RNAs or predictive methods base on the presence or absence of the modifications genes. Results By employing a comparative genomics approach, we predicted almost all of the genes coding for the t+rRNA modification enzymes in the mesophilic moderate halophile Haloferax volcanii. These encode both guide RNAs and enzymes. Some are orthologous to previously identified genes in Archaea, Bacteria or in Saccharomyces cerevisiae, but several are original predictions. Conclusion The number of modifications in t+rRNAs in the halophilic archaeon is surprisingly low when compared with other Archaea or Bacteria, particularly the hyperthermophilic organisms. This may result from the specific lifestyle of halophiles that require high intracellular salt concentration for survival. This salt content could allow RNA to maintain its functional structural integrity with fewer modifications. We predict that the few modifications present must be particularly important for decoding, accuracy of translation or are modifications that cannot be functionally replaced by the electrostatic interactions provided by the surrounding salt-ions. This analysis also guides future experimental validation work aiming to complete the understanding of the function of RNA modifications in Archaeal translation.
Collapse
Affiliation(s)
- Henri Grosjean
- Department of Microbiology, University of Florida, Gainsville, FL 32611, Florida, USA.
| | | | | | | | | |
Collapse
|
50
|
Freyhult E, Edvardsson S, Tamas I, Moulton V, Poole AM. Fisher: a program for the detection of H/ACA snoRNAs using MFE secondary structure prediction and comparative genomics - assessment and update. BMC Res Notes 2008; 1:49. [PMID: 18710502 PMCID: PMC2551606 DOI: 10.1186/1756-0500-1-49] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 07/21/2008] [Indexed: 11/25/2022] Open
Abstract
Background The H/ACA family of small nucleolar RNAs (snoRNAs) plays a central role in guiding the pseudouridylation of ribosomal RNA (rRNA). In an effort to systematically identify the complete set of rRNA-modifying H/ACA snoRNAs from the genome sequence of the budding yeast, Saccharomyces cerevisiae, we developed a program – Fisher – and previously presented several candidate snoRNAs based on our analysis [1]. Findings In this report, we provide a brief update of this work, which was aborted after the publication of experimentally-identified snoRNAs [2] identical to candidates we had identified bioinformatically using Fisher. Our motivation for revisiting this work is to report on the status of the candidate snoRNAs described in [1], and secondly, to report that a modified version of Fisher together with the available multiple yeast genome sequences was able to correctly identify several H/ACA snoRNAs for modification sites not identified by the snoGPS program [3]. While we are no longer developing Fisher, we briefly consider the merits of the Fisher algorithm relative to snoGPS, which may be of use for workers considering pursuing a similar search strategy for the identification of small RNAs. The modified source code for Fisher is made available as supplementary material. Conclusion Our results confirm the validity of using minimum free energy (MFE) secondary structure prediction to guide comparative genomic screening for RNA families with few sequence constraints.
Collapse
Affiliation(s)
- Eva Freyhult
- Linnaeus Centre for Bioinformatics, Uppsala University, Box 598, S-751, 24 Uppsala, Sweden; Department of Clinical Microbiology, Clinical Bacteriology, Umeå University, 901 85 Umeå, Sweden.
| | | | | | | | | |
Collapse
|