1
|
Malgowska M, Gudanis D, Kierzek R, Wyszko E, Gabelica V, Gdaniec Z. Distinctive structural motifs of RNA G-quadruplexes composed of AGG, CGG and UGG trinucleotide repeats. Nucleic Acids Res 2014; 42:10196-207. [PMID: 25081212 PMCID: PMC4150804 DOI: 10.1093/nar/gku710] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Trinucleotide repeats are microsatellite sequences that are polymorphic in length. Their expansion in specific genes underlies a number of neurodegenerative disorders. Using ultraviolet-visible, circular dichroism, nuclear magnetic resonance (NMR) spectroscopies and electrospray ionization mass spectrometry, the structural preferences of RNA molecules composed of two and four repeats of AGG, CGG and UGG in the presence of K+, Na+ and NH4+ were analysed. (AGG)2A, (AGG)4A, p(UGG)2U and p(UGG)4U strongly prefer folding into G-quadruplexes, whereas CGG-containing sequences can adopt different types of structure depending on the cation and on the number of repeats. In particular, the two-repeat CGG sequence folds into a G-quadruplex in potassium buffer. We also found that each G-quadruplex fold is different: A:(G:G:G:G)A hexads were found for (AGG)2A, whereas mixed G:C:G:C tetrads and U-tetrads were observed in the NMR spectra of G(CGG)2C and p(UGG)2U, respectively. Finally, our NMR study highlights the influence of the strand sequence on the structure formed, and the influence of the intracellular environment on the folding. Importantly, we highlight that although potassium ions are prevalent in cells, the structures observed in the HeLa cell extract are not always the same as those prevailing in biophysical studies in the presence of K+ ions.
Collapse
Affiliation(s)
- Magdalena Malgowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Noskowskiego 12/14, Poland
| | - Dorota Gudanis
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Noskowskiego 12/14, Poland
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Noskowskiego 12/14, Poland
| | - Eliza Wyszko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Noskowskiego 12/14, Poland
| | - Valérie Gabelica
- Laboratoire de Spectrométrie de Masse, Institut de Chimie, Bat. B6c, Université de Liège, B-4000 Liège, Belgium Inserm, U869 ARNA Laboratory, F-33000 Bordeaux, France University of Bordeaux, IECB, ARNA Laboratory, F-33600 Pessac, France
| | - Zofia Gdaniec
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Noskowskiego 12/14, Poland
| |
Collapse
|
2
|
Fekry MI, Szekely J, Dutta S, Breydo L, Zang H, Gates KS. Noncovalent DNA binding drives DNA alkylation by leinamycin: evidence that the Z,E-5-(thiazol-4-yl)-penta-2,4-dienone moiety of the natural product serves as an atypical DNA intercalator. J Am Chem Soc 2011; 133:17641-51. [PMID: 21954957 PMCID: PMC3268133 DOI: 10.1021/ja2046149] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Molecular recognition and chemical modification of DNA are important in medicinal chemistry, toxicology, and biotechnology. Historically, natural products have revealed many interesting and unexpected mechanisms for noncovalent DNA binding and covalent DNA modification. The studies reported here characterize the molecular mechanisms underlying the efficient alkylation of duplex DNA by the Streptomyces-derived natural product leinamycin. Previous studies suggested that alkylation of duplex DNA by activated leinamycin (2) is driven by noncovalent association of the natural product with the double helix. This is striking because leinamycin does not contain a classical noncovalent DNA-binding motif, such as an intercalating unit, a groove binder, or a polycation. The experiments described here provide evidence that leinamycin is an atypical DNA-intercalating agent. A competition binding assay involving daunomycin-mediated inhibition of DNA alkylation by leinamycin provided evidence that activated leinamycin binds to duplex DNA with an apparent binding constant of approximately 4.3 ± 0.4 × 10(3) M(-1). Activated leinamycin caused duplex unwinding and hydrodynamic changes in DNA-containing solutions that are indicative of DNA intercalation. Characterization of the reaction of activated leinamycin with palindromic duplexes containing 5'-CG and 5'-GC target sites, bulge-containing duplexes, and 5-methylcytosine-containing duplexes provided evidence regarding the orientation of leinamycin with respect to target guanine residues. The data allow construction of a model for the leinamycin-DNA complex suggesting how a modest DNA-binding constant combines with proper positioning of the natural product to drive efficient alkylation of guanine residues in the major groove of duplex DNA.
Collapse
Affiliation(s)
- Mostafa I. Fekry
- University of Missouri–Columbia Departments of Chemistry and Biochemistry 125 Chemistry Building Columbia, MO 65211
- Cairo University Pharmacognosy Department Faculty of Pharmacy Kasr El-Aini, Cairo, Egypt 11562
| | - Jozsef Szekely
- University of Missouri–Columbia Departments of Chemistry and Biochemistry 125 Chemistry Building Columbia, MO 65211
| | - Sanjay Dutta
- University of Missouri–Columbia Departments of Chemistry and Biochemistry 125 Chemistry Building Columbia, MO 65211
| | - Leonid Breydo
- University of Missouri–Columbia Departments of Chemistry and Biochemistry 125 Chemistry Building Columbia, MO 65211
| | - Hong Zang
- University of Missouri–Columbia Departments of Chemistry and Biochemistry 125 Chemistry Building Columbia, MO 65211
| | - Kent S. Gates
- University of Missouri–Columbia Departments of Chemistry and Biochemistry 125 Chemistry Building Columbia, MO 65211
| |
Collapse
|
3
|
Varghese MK, Thomas R, Unnikrishnan NV, Sudarsanakumar C. Molecular dynamics simulations of xDNA. Biopolymers 2009; 91:351-60. [DOI: 10.1002/bip.21137] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
4
|
Popenda L, Adamiak RW, Gdaniec Z. Bulged Adenosine Influence on the RNA Duplex Conformation in Solution. Biochemistry 2008; 47:5059-67. [DOI: 10.1021/bi7024904] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lukasz Popenda
- Institute of Bioorganic Chemistry, Polish Academy of Science, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Ryszard W. Adamiak
- Institute of Bioorganic Chemistry, Polish Academy of Science, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Zofia Gdaniec
- Institute of Bioorganic Chemistry, Polish Academy of Science, Noskowskiego 12/14, 61-704 Poznań, Poland
| |
Collapse
|
5
|
Priyakumar UD, Mackerell AD. Atomic detail investigation of the structure and dynamics of DNA.RNA hybrids: a molecular dynamics study. J Phys Chem B 2008; 112:1515-24. [PMID: 18197661 DOI: 10.1021/jp709827m] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA.RNA hybrid duplexes are biologically important molecules and are shown to have potential therapeutic properties. To investigate the relationship between structures, energetics, solvation and RNase H activity of hybrid duplexes in comparison with pure DNA and RNA duplexes, a molecular dynamics study using the CHARMM27 force field was undertaken. The structural properties of all four nucleic acids considered are in very good agreement with the experimental data. The backbone dihedral angles and the puckering of the (deoxy)ribose indicate that the purine rich strands retain their A-/B-like properties but the pyrimidine rich DNA strand undergoes A-B conformational transitions. The minor groove widths of the hybrid structures are narrower than those in the RNA duplex, a requirement for RNase H binding. In addition, sampling of noncanonical phosphodiester backbone dihedrals by the DNA strands, differential solvation properties and helical properties, most notably rise, are suggested to contribute to hybrids being RNase H substrates. Differential RNase H activity toward hybrids containing purine versus pyrimidine rich RNA strands is suggested to be due to sampling of values of the phosphodiester backbone dihedrals in the DNA strands. Notably, the present results indicate that hybrids have decreased flexibility as compared to RNA, in contrast to previous reports.
Collapse
Affiliation(s)
- U Deva Priyakumar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, USA
| | | |
Collapse
|
6
|
Pan B, Shi K, Sundaralingam M. Base-tetrad swapping results in dimerization of RNA quadruplexes: implications for formation of the i-motif RNA octaplex. Proc Natl Acad Sci U S A 2006; 103:3130-4. [PMID: 16492787 PMCID: PMC1413875 DOI: 10.1073/pnas.0507730103] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2005] [Indexed: 11/18/2022] Open
Abstract
Nucleic acids adopt different multistranded helical architectures to perform various biological functions. Here, we report a crystal structure of an RNA quadruplex containing "base-tetrad swapping" and bulged nucleotide at 2.1-Angstroms resolution. The base-tetrad swapping results in a dimer of quadruplexes with an intercalated octaplex fragment at the 5' end junction. The intercalated base tetrads provide the basic repeat unit for constructing a model of intercalated RNA octaplex. The model we obtained shows fundamentally different characteristics from duplex, triplex, and quadruplex. We also observed two different orientations of bulged uridine residues that are related to the interaction with surroundings. This structural evidence reflects the conformational flexibility of bulged nucleotides in RNA quadruplexes and implies the potential roles of bulged nucleotides as recognition and interaction sites in RNA-protein and RNA-RNA interactions.
Collapse
Affiliation(s)
- Baocheng Pan
- Departments of Chemistry and Biochemistry, Ohio State University, 200 Johnston Laboratory, 176 West 19th Avenue, Columbus, OH 43210-1002; and
| | - Ke Shi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street Southeast, Minneapolis, MN 55455
| | - Muttaiya Sundaralingam
- Departments of Chemistry and Biochemistry, Ohio State University, 200 Johnston Laboratory, 176 West 19th Avenue, Columbus, OH 43210-1002; and
| |
Collapse
|
7
|
Han GW, Kopka ML, Langs D, Sawaya MR, Dickerson RE. Crystal structure of an RNA.DNA hybrid reveals intermolecular intercalation: dimer formation by base-pair swapping. Proc Natl Acad Sci U S A 2003; 100:9214-9. [PMID: 12872000 PMCID: PMC170898 DOI: 10.1073/pnas.1533326100] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An intermolecular intercalation of base pairs was found at the CA step in the I222 crystal structure of the RNA.DNA hybrid, r(CAAAGAAAAG).d(CTTTTCTTTG), which contains two-thirds of the polypurine tract sequence of HIV-1 with a substitution of cytosine for the initial adenine. This sequence crystallized in both P212121 and I222 space groups, with an rms difference of only 0.63 A between residues 3 to 18 of the two forms. P212121 and I222 helices are both A-like, but intercalation occurs only in the I222 crystal form. The present structure shows bases stacked in parallel rather than perpendicular as in intercalated DNA (I-DNA). The base intercalation is also different from zipper-like meshing of bases seen in the center of the crystal structure of d(GCGAAAGCT), which does not have Watson-Crick base pairing. The base-step intercalation seen here is reminiscent of domain swapping in proteins; therefore, we call this phenomenon "base-pair swapping." It involves a highly mobile CA step and seems to be sequence-specific and electrostatically stable without disrupting Watson-Crick interactions. It also exhibits a large rise concurrent with unwinding of the helix (low twist). We present a base-pair swapping dimer in nucleic acids.
Collapse
Affiliation(s)
- Gye Won Han
- Molecular Biology Institute, University of California, Los Angeles, CA 90095-1570, USA
| | | | | | | | | |
Collapse
|
8
|
Shi K, Pan B, Sundaralingam M. The crystal structure of an alternating RNA heptamer r(GUAUACA) forming a six base-paired duplex with 3'-end adenine overhangs. Nucleic Acids Res 2003; 31:1392-7. [PMID: 12595546 PMCID: PMC149819 DOI: 10.1093/nar/gkg226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The crystal structure of an alternating RNA heptamer r(GUAUACA) has been determined to 2.0 A resolution and refined to an R(work) of 17.1% and R(free) of 18.5% using 2797 reflections. The heptamer crystallized in the space group C222 with a unit cell of a = 25.74, b = 106.58, c = 30.26 A and two independent strands in the asymmetric unit. Each heptamer forms a duplex with its symmetry-related strand and each duplex contains six Watson-Crick base pairs and 3'-end adenosine overhangs. Therefore, two kinds of duplex (duplex 1 and duplex 2) are formed. Duplexes 1 stack on each other forming a pseudo-continuous column, which is typical of the RNA packing mode, while duplex 2 is typical of A-DNA packing with its termini in abutting interactions. Overhang adenine residues stack within the duplexes with C3'-endo sugar pucker and C2'-endo sugar pucker in duplexes 1 and 2, respectively. A Na+ ion in the crystal lattice is water bridged to two N1 atoms of symmetry-related A7 bases.
Collapse
Affiliation(s)
- Ke Shi
- Department of Chemistry, The Ohio State University, 200 Johnston Laboratory, Columbus, OH 43210, USA
| | | | | |
Collapse
|
9
|
Xiong Y, Deng J, Sudarsanakumar C, Sundaralingam M. Crystal structure of an RNA duplex r(gugucgcac)(2) with uridine bulges. J Mol Biol 2001; 313:573-82. [PMID: 11676540 DOI: 10.1006/jmbi.2001.5045] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The crystal structure of a nonamer RNA duplex with a uridine bulge in each strand, r(gugucgcac)(2), was determined at 1.4 A resolution. The structure was solved by multiple anomalous diffraction phasing method using a three-wavelength data set collected at the Advanced Protein Source and refined to a final R(work)/R(free) of 21.2 %/23.4 % with 33,271 independent reflections (Friedel pairs unmerged). The RNA duplex crystallized in the tetragonal space group P4(1)22 with two independent molecules in the asymmetric unit. The unit cell dimensions are a=b=47.18 A and c=80.04 A. The helical region of the nonamer adopts the A-form conformation. The uridine bulges assume similar conformations, with uracils flipping out and protruding into the minor groove. The presence of the bulge induces very large twist angles (approximately +50 degrees) between the base-pairs flanking the bulges while causing profound kinks in the helix axis at the bulges. This severe twist and the large kink in turn produces a very narrow major groove at the middle of the molecule. The ribose sugars of the guanosines before the bulges adopt the C2'-endo conformation while the rest, including the bulges, are in the C3'-endo conformation. The intrastrand phosphate-phosphate (P-P) distance of the phosphate groups flanking the bulges (approximately 4.4 A) are significantly shorter than the average P-P distance in the duplex (6.0 A). This short distance between the two phosphate groups brings the non-bridging oxygen atoms close to each other where a calcium ion is bound to each strand. The calcium ions in molecule 1 are well defined while the calcium ions in molecule 2 are disordered.
Collapse
Affiliation(s)
- Y Xiong
- Department of Chemistry, The Ohio State University Biological Macromolecular Structure Center, 012 Rightmire Hall, 1060 Carmack Rd., Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
10
|
Feig M, Zacharias M, Pettitt BM. Conformations of an adenine bulge in a DNA octamer and its influence on DNA structure from molecular dynamics simulations. Biophys J 2001; 81:352-70. [PMID: 11423420 PMCID: PMC1301517 DOI: 10.1016/s0006-3495(01)75705-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Molecular dynamics simulations have been applied to the DNA octamer d(GCGCA-GAAC). d(GTTCGCGC), which has an adenine bulge at the center to determine the pathway for interconversion between the stacked and extended forms. These forms are known to be important in the molecular recognition of bulges. From a total of ~35 ns of simulation time with the most recent CHARMM27 force field a variety of distinct conformations and subconformations are found. Stacked and fully looped-out forms are in excellent agreement with experimental data from NMR and x-ray crystallography. Furthermore, in a number of conformations the bulge base associates with the minor groove to varying degrees. Transitions between many of the conformations are observed in the simulations and used to propose a complete transition pathway between the stacked and fully extended conformations. The effect on the surrounding DNA sequence is investigated and biological implications of the accessible conformational space and the suggested transition pathway are discussed, in particular for the interaction of the MS2 replicase operator RNA with its coat protein.
Collapse
Affiliation(s)
- M Feig
- Department of Chemistry and Institute for Molecular Design, University of Houston, Houston, Texas 77204-5641, USA
| | | | | |
Collapse
|