1
|
Kim NY, Kim OB. The ybcF Gene of Escherichia coli Encodes a Local Orphan Enzyme, Catabolic Carbamate Kinase. J Microbiol Biotechnol 2022; 32:1527-1536. [PMID: 36384810 PMCID: PMC9843812 DOI: 10.4014/jmb.2210.10037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022]
Abstract
Escherichia coli can use allantoin as its sole nitrogen source under anaerobic conditions. The ureidoglycolate produced by double release of ammonia from allantoin can flow into either the glyoxylate shunt or further catabolic transcarbamoylation. Although the former pathway is well studied, the genes of the latter (catabolic) pathway are not known. In the catabolic pathway, ureidoglycolate is finally converted to carbamoyl phosphate (CP) and oxamate, and then CP is dephosphorylated to carbamate by a catabolic carbamate kinase (CK), whereby ATP is formed. We identified the ybcF gene in a gene cluster containing fdrA-ylbE-ylbF-ybcF that is located downstream of the allDCE-operon. Reverse transcription PCR of total mRNA confirmed that the genes fdrA, ylbE, ylbF, and ybcF are co-transcribed. Deletion of ybcF caused only a slight increase in metabolic flow into the glyoxylate pathway, probably because CP was used to de novo synthesize pyrimidine and arginine. The activity of the catabolic CK was analyzed using purified YbcF protein. The Vmax is 1.82 U/mg YbcF for CP and 1.94 U/mg YbcF for ADP, and the KM value is 0.47 mM for CP and 0.43 mM for ADP. With these results, it was experimentally revealed that the ybcF gene of E. coli encodes catabolic CK, which completes anaerobic allantoin degradation through substrate-level phosphorylation. Therefore, we suggest renaming the ybcF gene as allK.
Collapse
Affiliation(s)
- Nam Yeun Kim
- Department of Life Science, Division of EcoScience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ok Bin Kim
- Department of Life Science, Division of EcoScience, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
2
|
Pols T, Singh S, Deelman‐Driessen C, Gaastra BF, Poolman B. Enzymology of the pathway for ATP production by arginine breakdown. FEBS J 2021; 288:293-309. [PMID: 32306469 PMCID: PMC7818446 DOI: 10.1111/febs.15337] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/06/2020] [Accepted: 04/15/2020] [Indexed: 01/02/2023]
Abstract
In cells, the breakdown of arginine to ornithine and ammonium ion plus carbon dioxide is coupled to the generation of metabolic energy in the form of ATP. The arginine breakdown pathway is minimally composed of arginine deiminase, ornithine transcarbamoylase, carbamate kinase, and an arginine/ornithine antiporter; ammonia and carbon dioxide most likely diffuse passively across the membrane. The genes for the enzymes and transporter have been cloned and expressed, and the proteins have been purified from Lactococcus lactis IL1403 and incorporated into lipid vesicles for sustained production of ATP. Here, we study the kinetic parameters and biochemical properties of the individual enzymes and the antiporter, and we determine how the physicochemical conditions, effector composition, and effector concentration affect the enzymes. We report the KM and VMAX values for catalysis and the native oligomeric state of all proteins, and we measured the effect of pathway intermediates, pH, temperature, freeze-thaw cycles, and salts on the activity of the cytosolic enzymes. We also present data on the protein-to-lipid ratio and lipid composition dependence of the antiporter.
Collapse
Affiliation(s)
- Tjeerd Pols
- Department of BiochemistryGroningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced MaterialsUniversity of GroningenThe Netherlands
| | - Shubham Singh
- Department of BiochemistryGroningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced MaterialsUniversity of GroningenThe Netherlands
| | - Cecile Deelman‐Driessen
- Department of BiochemistryGroningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced MaterialsUniversity of GroningenThe Netherlands
| | - Bauke F. Gaastra
- Department of BiochemistryGroningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced MaterialsUniversity of GroningenThe Netherlands
| | - Bert Poolman
- Department of BiochemistryGroningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced MaterialsUniversity of GroningenThe Netherlands
| |
Collapse
|
3
|
Charlier D, Nguyen Le Minh P, Roovers M. Regulation of carbamoylphosphate synthesis in Escherichia coli: an amazing metabolite at the crossroad of arginine and pyrimidine biosynthesis. Amino Acids 2018; 50:1647-1661. [PMID: 30238253 PMCID: PMC6245113 DOI: 10.1007/s00726-018-2654-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/11/2018] [Indexed: 12/17/2022]
Abstract
In all organisms, carbamoylphosphate (CP) is a precursor common to the synthesis of arginine and pyrimidines. In Escherichia coli and most other Gram-negative bacteria, CP is produced by a single enzyme, carbamoylphosphate synthase (CPSase), encoded by the carAB operon. This particular situation poses a question of basic physiological interest: what are the metabolic controls coordinating the synthesis and distribution of this high-energy substance in view of the needs of both pathways? The study of the mechanisms has revealed unexpected moonlighting gene regulatory activities of enzymes and functional links between mechanisms as diverse as gene regulation and site-specific DNA recombination. At the level of enzyme production, various regulatory mechanisms were found to cooperate in a particularly intricate transcriptional control of a pair of tandem promoters. Transcription initiation is modulated by an interplay of several allosteric DNA-binding transcription factors using effector molecules from three different pathways (arginine, pyrimidines, purines), nucleoid-associated factors (NAPs), trigger enzymes (enzymes with a second unlinked gene regulatory function), DNA remodeling (bending and wrapping), UTP-dependent reiterative transcription initiation, and stringent control by the alarmone ppGpp. At the enzyme level, CPSase activity is tightly controlled by allosteric effectors originating from different pathways: an inhibitor (UMP) and two activators (ornithine and IMP) that antagonize the inhibitory effect of UMP. Furthermore, it is worth noticing that all reaction intermediates in the production of CP are extremely reactive and unstable, and protected by tunneling through a 96 Å long internal channel.
Collapse
Affiliation(s)
- Daniel Charlier
- Research Group of Microbiology, Department of Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
| | - Phu Nguyen Le Minh
- Research Group of Microbiology, Department of Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Martine Roovers
- LABIRIS Institut de Recherches, Av. Emile Gryson 1, 1070, Brussels, Belgium
| |
Collapse
|
4
|
Shi D, Caldovic L, Tuchman M. Sources and Fates of Carbamyl Phosphate: A Labile Energy-Rich Molecule with Multiple Facets. BIOLOGY 2018; 7:biology7020034. [PMID: 29895729 PMCID: PMC6022934 DOI: 10.3390/biology7020034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/25/2018] [Accepted: 06/07/2018] [Indexed: 11/16/2022]
Abstract
Carbamyl phosphate (CP) is well-known as an essential intermediate of pyrimidine and arginine/urea biosynthesis. Chemically, CP can be easily synthesized from dihydrogen phosphate and cyanate. Enzymatically, CP can be synthesized using three different classes of enzymes: (1) ATP-grasp fold protein based carbamyl phosphate synthetase (CPS); (2) Amino-acid kinase fold carbamate kinase (CK)-like CPS (anabolic CK or aCK); and (3) Catabolic transcarbamylase. The first class of CPS can be further divided into three different types of CPS as CPS I, CPS II, and CPS III depending on the usage of ammonium or glutamine as its nitrogen source, and whether N-acetyl-glutamate is its essential co-factor. CP can donate its carbamyl group to the amino nitrogen of many important molecules including the most well-known ornithine and aspartate in the arginine/urea and pyrimidine biosynthetic pathways. CP can also donate its carbamyl group to the hydroxyl oxygen of a variety of molecules, particularly in many antibiotic biosynthetic pathways. Transfer of the carbamyl group to the nitrogen group is catalyzed by the anabolic transcarbamylase using a direct attack mechanism, while transfer of the carbamyl group to the oxygen group is catalyzed by a different class of enzymes, CmcH/NodU CTase, using a different mechanism involving a three-step reaction, decomposition of CP to carbamate and phosphate, transfer of the carbamyl group from carbamate to ATP to form carbamyladenylate and pyrophosphate, and transfer of the carbamyl group from carbamyladenylate to the oxygen group of the substrate. CP is also involved in transferring its phosphate group to ADP to generate ATP in the fermentation of many microorganisms. The reaction is catalyzed by carbamate kinase, which may be termed as catabolic CK (cCK) in order to distinguish it from CP generating CK. CP is a thermally labile molecule, easily decomposed into phosphate and cyanate, or phosphate and carbamate depending on the pH of the solution, or the presence of enzyme. Biological systems have developed several mechanisms including channeling between enzymes, increased affinity of CP to enzymes, and keeping CP in a specific conformation to protect CP from decomposition. CP is highly important for our health as both a lack of, or decreased, CP production and CP accumulation results in many disease conditions.
Collapse
Affiliation(s)
- Dashuang Shi
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA.
- Department of Genomics and Precision Medicine, The George Washington University, Washington, DC 20010, USA.
| | - Ljubica Caldovic
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA.
- Department of Genomics and Precision Medicine, The George Washington University, Washington, DC 20010, USA.
| | - Mendel Tuchman
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA.
- Department of Genomics and Precision Medicine, The George Washington University, Washington, DC 20010, USA.
| |
Collapse
|
5
|
Hyperthermophilic Carbamate Kinase Stability and Anabolic In Vitro Activity at Alkaline pH. Appl Environ Microbiol 2018; 84:AEM.02250-17. [PMID: 29150502 DOI: 10.1128/aem.02250-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 11/04/2017] [Indexed: 01/04/2023] Open
Abstract
Carbamate kinases catalyze the conversion of carbamate to carbamoyl phosphate, which is readily transformed into other compounds. Carbamate forms spontaneously from ammonia and carbon dioxide in aqueous solutions, so the kinases have potential for sequestrative utilization of the latter compounds. Here, we compare seven carbamate kinases from mesophilic, thermophilic, and hyperthermophilic sources. In addition to the known enzymes from Enterococcus faecalis and Pyrococcus furiosus, the previously unreported enzymes from the hyperthermophiles Thermococcus sibiricus and Thermococcus barophilus, the thermophiles Fervidobacterium nodosum and Thermosipho melanesiensis, and the mesophile Clostridium tetani were all expressed recombinantly, each in high yield. Only the clostridial enzyme did not show catalysis. In direct assays of carbamate kinase activity, the three hyperthermophilic enzymes display higher specific activities at elevated temperatures, greater stability, and remarkable substrate turnover at alkaline pH (9.9 to 11.4). Thermococcus barophilus and Thermococcus sibiricus carbamate kinases were found to be the most active when the enzymes were tested at 80°C, and maintained activity over broad temperature and pH ranges. These robust thermococcal enzymes therefore represent ideal candidates for biotechnological applications involving aqueous ammonia solutions, since nonbuffered 0.0001 to 1.0 M solutions have pH values of approximately 9.8 to 11.8. As proof of concept, here we also show that carbamoyl phosphate produced by the Thermococcus barophilus kinase is efficiently converted in situ to carbamoyl aspartate by aspartate transcarbamoylase from the same source organism. Using acetyl phosphate to simultaneously recycle the kinase cofactor ATP, at pH 9.9 carbamoyl aspartate is produced in high yield and directly from solutions of ammonia, carbon dioxide, and aspartate.IMPORTANCE Much of the nitrogen in animal wastes and used in fertilizers is commonly lost as ammonia in water runoff, from which it must be removed to prevent downstream pollution and evolution of nitrogenous greenhouse gases. Since carbamate kinases transform ammonia and carbon dioxide to carbamoyl phosphate via carbamate, and carbamoyl phosphate may be converted into other valuable compounds, the kinases provide a route for useful sequestration of ammonia, as well as of carbon dioxide, another greenhouse gas. At the same time, recycling the ammonia in chemical synthesis reduces the need for its energy-intensive production. However, robust catalysts are required for such biotransformations. Here we show that carbamate kinases from hyperthermophilic archaea display remarkable stability and high catalytic activity across broad ranges of pH and temperature, making them promising candidates for biotechnological applications. We also show that carbamoyl phosphate produced by the kinases may be efficiently used to produce carbamoyl aspartate.
Collapse
|
6
|
Manjasetty BA, Chance MR, Burley SK, Panjikar S, Almo SC. Crystal structure of Clostridium acetobutylicum Aspartate kinase ( CaAK): An important allosteric enzyme for amino acids production. ACTA ACUST UNITED AC 2014; 3:73-85. [PMID: 25170437 PMCID: PMC4142519 DOI: 10.1016/j.btre.2014.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aspartate kinase (AK) is an enzyme which is tightly regulated through feedback control and responsible for the synthesis of 4-phospho-l-aspartate from l-aspartate. This intermediate step is at an important branch point where one path leads to the synthesis of lysine and the other to threonine, methionine and isoleucine. Concerted feedback inhibition of AK is mediated by threonine and lysine and varies between the species. The crystal structure of biotechnologically important Clostridium acetobutylicum aspartate kinase (CaAK; E.C. 2.7.2.4; Mw = 48,030 Da; 437aa; SwissProt: Q97MC0) has been determined to 3 Å resolution. CaAK acquires a protein fold similar to the other known structures of AKs despite the low sequence identity (<30%). It is composed of two domains: an N-terminal catalytic domain (kinase domain) and a C-terminal regulatory domain further comprised of two small domains belonging to the ACT domain family. Pairwise comparison of 12 molecules in the asymmetric unit helped to identify the bending regions which are in the vicinity of ATP binding site involved in domain movements between the catalytic and regulatory domains. All 12 CaAK molecules adopt fully open T-state conformation leading to the formation of three tetramers unique among other similar AK structures. On the basis of comparative structural analysis, we discuss tetramer formation based on the large conformational changes in the catalytic domain associated with the lysine binding at the regulatory domains. The structure described herein is homologous to a target in wide-spread pathogenic (toxin producing) bacteria such as Clostridiumtetani (64% sequence identity) suggesting the potential of the structure solved here to be applied for modeling drug interactions. CaAK structure may serve as a guide to better understand and engineer lysine biosynthesis for the biotechnology industry.
Collapse
|
7
|
Hering S, Sieg A, Kreikemeyer B, Fiedler T. Kinetic characterization of arginine deiminase and carbamate kinase from Streptococcus pyogenes M49. Protein Expr Purif 2013; 91:61-8. [PMID: 23867361 DOI: 10.1016/j.pep.2013.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 06/27/2013] [Accepted: 07/08/2013] [Indexed: 11/28/2022]
Abstract
Streptococcus pyogenes (group A Streptococcus, GAS) is an important human pathogen causing mild superficial infections of skin and mucous membranes, but also life-threatening systemic diseases. S. pyogenes and other prokaryotic organisms use the arginine deiminase system (ADS) for survival in acidic environments. In this study, the arginine deiminase (AD), and carbamate kinase (CK) from S. pyogenes M49 strain 591 were heterologously expressed in Escherichia coli DH5α, purified, and kinetically characterized. AD and CK from S. pyogenes M49 share high amino acid sequence similarity with the respective enzymes from Lactococcus lactis subsp. lactis IL1403 (45.6% and 53.5% identical amino acids) and Enterococcus faecalis V583 (66.8% and 66.8% identical amino acids). We found that the arginine deiminase of S. pyogenes is not allosterically regulated by the intermediates and products of the arginine degradation (e.g., ATP, citrulline, carbamoyl phosphate). The Km and Vmax values for arginine were 1.13±0.12mM (mean±SD) and 1.51±0.07μmol/min/mg protein. The carbamate kinase is inhibited by ATP but unaffected by arginine and citrulline. The Km and Vmax values for ADP were 0.72±0.08mM and 1.10±0.10μmol/min/mg protein and the Km for carbamoyl phosphate was 0.65±0.07mM. The optimum pH and temperature for both enzymes were 6.5 and 37°C, respectively.
Collapse
Affiliation(s)
- Silvio Hering
- Rostock University Medical Centre, Institute of Medical Microbiology, Virology, and Hygiene, Schillingallee 70, 18057 Rostock, Germany
| | | | | | | |
Collapse
|
8
|
Crystal structures of carbamate kinase from Giardia lamblia bound with citric acid and AMP-PNP. PLoS One 2013; 8:e64004. [PMID: 23700444 PMCID: PMC3659122 DOI: 10.1371/journal.pone.0064004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 04/07/2013] [Indexed: 11/19/2022] Open
Abstract
The parasite Giardia lamblia utilizes the L-arginine dihydrolase pathway to generate ATP from L-arginine. Carbamate kinase (CK) catalyzes the last step in this pathway, converting ADP and carbamoyl phosphate to ATP and ammonium carbamate. Because the L-arginine pathway is essential for G. lamblia survival and absent in high eukaryotes including humans, the enzyme is a potential target for drug development. We have determined two crystal structures of G. lamblia CK (glCK) with bound ligands. One structure, in complex with a nonhydrolyzable ATP analog, adenosine 5′-adenylyl-β,γ-imidodiphosphate (AMP-PNP), was determined at 2.6 Å resolution. The second structure, in complex with citric acid bound in the postulated carbamoyl phosphate binding site, was determined in two slightly different states at 2.1 and 2.4 Å resolution. These structures reveal conformational flexibility of an auxiliary domain (amino acid residues 123–170), which exhibits open or closed conformations or structural disorder, depending on the bound ligand. The structures also reveal a smaller conformational change in a region associated the AMP-PNP adenine binding site. The protein residues involved in binding, together with a model of the transition state, suggest that catalysis follows an in-line, predominantly dissociative, phosphotransfer reaction mechanism, and that closure of the flexible auxiliary domain is required to protect the transition state from bulk solvent.
Collapse
|
9
|
Gallego P, Planell R, Benach J, Querol E, Perez-Pons JA, Reverter D. Structural characterization of the enzymes composing the arginine deiminase pathway in Mycoplasma penetrans. PLoS One 2012; 7:e47886. [PMID: 23082227 PMCID: PMC3474736 DOI: 10.1371/journal.pone.0047886] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 09/24/2012] [Indexed: 11/19/2022] Open
Abstract
The metabolism of arginine towards ATP synthesis has been considered a major source of energy for microorganisms such as Mycoplasma penetrans in anaerobic conditions. Additionally, this pathway has also been implicated in pathogenic and virulence mechanism of certain microorganisms, i.e. protection from acidic stress during infection. In this work we present the crystal structures of the three enzymes composing the gene cluster of the arginine deiminase pathway from M. penetrans: arginine deiminase (ADI), ornithine carbamoyltransferase (OTC) and carbamate kinase (CK). The arginine deiminase (ADI) structure has been refined to 2.3 Å resolution in its apo-form, displaying an "open" conformation of the active site of the enzyme in comparison to previous complex structures with substrate intermediates. The active site pocket of ADI is empty, with some of the catalytic and binding residues far from their active positions, suggesting major conformational changes upon substrate binding. Ornithine carbamoyltransferase (OTC) has been refined in two crystal forms at 2.5 Å and 2.6 Å resolution, respectively, both displaying an identical dodecameric structure with a 23-point symmetry. The dodecameric structure of OTC represents the highest level of organization in this protein family and in M.penetrans it is constituted by a novel interface between the four catalytic homotrimers. Carbamate kinase (CK) has been refined to 2.5 Å resolution and its structure is characterized by the presence of two ion sulfates in the active site, one in the carbamoyl phosphate binding site and the other in the β-phosphate ADP binding pocket of the enzyme. The CK structure also shows variations in some of the elements that regulate the catalytic activity of the enzyme. The relatively low number of metabolic pathways and the relevance in human pathogenesis of Mycoplasma penetrans places the arginine deiminase pathway enzymes as potential targets to design specific inhibitors against this human parasite.
Collapse
Affiliation(s)
- Pablo Gallego
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Raquel Planell
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jordi Benach
- Experiments Division, ALBA Synchrotron Light Source, Barcelona, Spain
| | - Enrique Querol
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep A. Perez-Pons
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - David Reverter
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
10
|
Madeo J, Mihajlovic M, Lazaridis T, Gunner MR. Slow dissociation of a charged ligand: analysis of the primary quinone Q(A) site of photosynthetic bacterial reaction centers. J Am Chem Soc 2011; 133:17375-85. [PMID: 21863833 PMCID: PMC3202297 DOI: 10.1021/ja205811f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Indexed: 12/14/2022]
Abstract
Reaction centers (RCs) are integral membrane proteins that undergo a series of electron transfer reactions during the process of photosynthesis. In the Q(A) site of RCs from Rhodobacter sphaeroides, ubiquinone-10 is reduced, by a single electron transfer, to its semiquinone. The neutral quinone and anionic semiquinone have similar affinities, which is required for correct in situ reaction thermodynamics. A previous study showed that despite similar affinities, anionic quinones associate and dissociate from the Q(A) site at rates ≈10(4) times slower than neutral quinones indicating that anionic quinones encounter larger binding barriers (Madeo, J.; Gunner, M. R. Modeling binding kinetics at the Q(A) site in bacterial reaction centers. Biochemistry 2005, 44, 10994-11004). The present study investigates these barriers computationally, using steered molecular dynamics (SMD) to model the unbinding of neutral ground state ubiquinone (UQ) and its reduced anionic semiquinone (SQ(-)) from the Q(A) site. In agreement with experiment, the SMD unbinding barrier for SQ(-) is larger than for UQ. Multi Conformational Continuum Electrostatics (MCCE), used here to calculate the binding energy, shows that SQ(-) and UQ have comparable affinities. In the Q(A) site, there are stronger binding interactions for SQ(-) compared to UQ, especially electrostatic attraction to a bound non-heme Fe(2+). These interactions compensate for the higher SQ(-) desolvation penalty, allowing both redox states to have similar affinities. These additional interactions also increase the dissociation barrier for SQ(-) relative to UQ. Thus, the slower SQ(-) dissociation rate is a direct physical consequence of the additional binding interactions required to achieve a Q(A) site affinity similar to that of UQ. By a similar mechanism, the slower association rate is caused by stronger interactions between SQ(-) and the polar solvent. Thus, stronger interactions for both the unbound and bound states of charged and highly polar ligands can slow their binding kinetics without a conformational gate. Implications of this for other systems are discussed.
Collapse
Affiliation(s)
- Jennifer Madeo
- Departments of Physics and Chemistry, City College of New York, New York, New York 10031, United States
| | - Maja Mihajlovic
- Departments of Physics and Chemistry, City College of New York, New York, New York 10031, United States
| | - Themis Lazaridis
- Departments of Physics and Chemistry, City College of New York, New York, New York 10031, United States
| | - M. R. Gunner
- Departments of Physics and Chemistry, City College of New York, New York, New York 10031, United States
| |
Collapse
|
11
|
Marcos E, Crehuet R, Bahar I. Changes in dynamics upon oligomerization regulate substrate binding and allostery in amino acid kinase family members. PLoS Comput Biol 2011; 7:e1002201. [PMID: 21980279 PMCID: PMC3182869 DOI: 10.1371/journal.pcbi.1002201] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 08/04/2011] [Indexed: 11/25/2022] Open
Abstract
Oligomerization is a functional requirement for many proteins. The interfacial interactions and the overall packing geometry of the individual monomers are viewed as important determinants of the thermodynamic stability and allosteric regulation of oligomers. The present study focuses on the role of the interfacial interactions and overall contact topology in the dynamic features acquired in the oligomeric state. To this aim, the collective dynamics of enzymes belonging to the amino acid kinase family both in dimeric and hexameric forms are examined by means of an elastic network model, and the softest collective motions (i.e., lowest frequency or global modes of motions) favored by the overall architecture are analyzed. Notably, the lowest-frequency modes accessible to the individual subunits in the absence of multimerization are conserved to a large extent in the oligomer, suggesting that the oligomer takes advantage of the intrinsic dynamics of the individual monomers. At the same time, oligomerization stiffens the interfacial regions of the monomers and confers new cooperative modes that exploit the rigid-body translational and rotational degrees of freedom of the intact monomers. The present study sheds light on the mechanism of cooperative inhibition of hexameric N-acetyl-L-glutamate kinase by arginine and on the allosteric regulation of UMP kinases. It also highlights the significance of the particular quaternary design in selectively determining the oligomer dynamics congruent with required ligand-binding and allosteric activities. Protein function requires a three-dimensional structure with specific dynamic features for catalytic and binding events, and, in many cases, the structure results from the assembly of more than one polypeptide chain (also called monomer or subunit) to form an oligomer or multimer. Proteins such as hemoglobin or chaperonin GroEL are oligomers formed by 2 and 14 subunits, respectively, whereas virus capsids are multimers composed of hundreds of monomers. In these cases, the architecture of the interface between the subunits and the overall assembly geometry are essential in determining the functional motions that these sophisticated structures are able to perform under physiological conditions. Here we present results from our computational study of the large-amplitude motions of dimeric and hexameric proteins that belong to the Amino Acid Kinase family. Our study reveals that the monomers in these oligomeric proteins are arranged in such a way that the oligomer inherits the intrinsic dynamic features of its components. The packing geometry additionally confers the ability to perform highly cooperative conformational changes that involve all monomers and enable the biological activity of the multimer. The study highlights the significance of the quaternary design in favoring the oligomer dynamics that enables ligand-binding and allosteric regulation functions.
Collapse
Affiliation(s)
- Enrique Marcos
- Department of Biological Chemistry and Molecular Modelling, IQAC-CSIC, Barcelona, Spain
| | - Ramon Crehuet
- Department of Biological Chemistry and Molecular Modelling, IQAC-CSIC, Barcelona, Spain
- * E-mail: (RC) (RC); (IB) (IB)
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (RC) (RC); (IB) (IB)
| |
Collapse
|
12
|
Marcos E, Crehuet R, Bahar I. On the conservation of the slow conformational dynamics within the amino acid kinase family: NAGK the paradigm. PLoS Comput Biol 2010; 6:e1000738. [PMID: 20386738 PMCID: PMC2851564 DOI: 10.1371/journal.pcbi.1000738] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 03/05/2010] [Indexed: 11/18/2022] Open
Abstract
N-Acetyl-L-Glutamate Kinase (NAGK) is the structural paradigm for examining the catalytic mechanisms and dynamics of amino acid kinase family members. Given that the slow conformational dynamics of the NAGK (at the microseconds time scale or slower) may be rate-limiting, it is of importance to assess the mechanisms of the most cooperative modes of motion intrinsically accessible to this enzyme. Here, we present the results from normal mode analysis using an elastic network model representation, which shows that the conformational mechanisms for substrate binding by NAGK strongly correlate with the intrinsic dynamics of the enzyme in the unbound form. We further analyzed the potential mechanisms of allosteric signalling within NAGK using a Markov model for network communication. Comparative analysis of the dynamics of family members strongly suggests that the low-frequency modes of motion and the associated intramolecular couplings that establish signal transduction are highly conserved among family members, in support of the paradigm sequence→structure→dynamics→function. During the last 20 years both the experimental and computational communities have provided strong evidence that proteins cannot be regarded as static entities, but as intrinsically flexible molecules that exploit their fluctuation dynamics for catalytic and ligand-binding events, as well as for allosteric regulation. This intrinsic dynamics is encoded in the protein structure and, therefore, those proteins with similar folding should share dynamic features essential to their biological function. In this work, we have applied an Elastic Network Model to predict the large-amplitude dynamics of different enzymes belonging to the same protein family (Amino Acid Kinase family). Subsequent comparison of the dynamics of these proteins reveals that this protein family follows the same dynamic pattern. The present results are strongly supported by experimental data and provide new insights into the performance of biological function by these enzymes. The investigation presented here provides us with a useful framework to identify dynamic fingerprints among proteins with structural similarities.
Collapse
Affiliation(s)
- Enrique Marcos
- Department of Biological Chemistry and Molecular Modelling, IQAC-CSIC, Barcelona, Spain
| | - Ramon Crehuet
- Department of Biological Chemistry and Molecular Modelling, IQAC-CSIC, Barcelona, Spain
- * E-mail: (RC); (IB)
| | - Ivet Bahar
- Department of Computational Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (RC); (IB)
| |
Collapse
|
13
|
Galkin A, Kulakova L, Wu R, Nash TE, Dunaway-Mariano D, Herzberg O. X-ray structure and characterization of carbamate kinase from the human parasite Giardia lamblia. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:386-90. [PMID: 20383005 PMCID: PMC2852327 DOI: 10.1107/s1744309110004665] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 02/05/2010] [Indexed: 11/10/2022]
Abstract
Carbamate kinase catalyzes the reversible conversion of carbamoyl phosphate and ADP to ATP and ammonium carbamate, which is hydrolyzed to ammonia and carbonate. The three-dimensional structure of carbamate kinase from the human parasite Giardia lamblia (glCK) has been determined at 3 A resolution. The crystals belonged to the monoclinic space group P2(1), with unit-cell parameters a = 69.77, b = 85.41, c = 102.1 A, beta = 106.8 degrees . The structure was refined to a final R factor of 0.227. The essentiality of glCK together with its absence in humans makes the enzyme an attractive candidate for anti-Giardia drug development. Steady-state kinetic rate constants have been determined. The k(cat) for ATP formation is 319 +/- 9 s(-1). The K(m) values for carbamoyl phosphate and ADP are 85 +/- 6 and 70 +/- 5 microM, respectively. The structure suggests that three invariant lysine residues (Lys131, Lys216 and Lys278) may be involved in the binding of substrates and phosphoryl transfer. The structure of glCK reveals that a glycerol molecule binds in the likely carbamoyl phosphate-binding site.
Collapse
Affiliation(s)
- Andrey Galkin
- W. M. Keck Laboratory for Structural Biology, Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, Maryland, USA
| | - Liudmila Kulakova
- W. M. Keck Laboratory for Structural Biology, Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, Maryland, USA
| | - Rui Wu
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Theodore E. Nash
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Debra Dunaway-Mariano
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Osnat Herzberg
- W. M. Keck Laboratory for Structural Biology, Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, Maryland, USA
| |
Collapse
|
14
|
Ramón-Maiques S, Marina A, Guinot A, Gil-Ortiz F, Uriarte M, Fita I, Rubio V. Substrate binding and catalysis in carbamate kinase ascertained by crystallographic and site-directed mutagenesis studies: movements and significance of a unique globular subdomain of this key enzyme for fermentative ATP production in bacteria. J Mol Biol 2010; 397:1261-75. [PMID: 20188742 DOI: 10.1016/j.jmb.2010.02.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 02/17/2010] [Accepted: 02/22/2010] [Indexed: 11/30/2022]
Abstract
Carbamate kinase (CK) makes ATP from ADP and carbamoyl phosphate (CP) in the final step of the microbial fermentative catabolism of arginine, agmatine, and oxalurate/allantoin. Two previously reported CK structures failed to clarify CP binding and catalysis and to reveal the significance of the protruding subdomain (PSD) that hangs over the CK active center as an exclusive and characteristic CK feature. We clarify now these three questions by determining two crystal structures of Enterococcus faecalis CK (one at 1.5 A resolution and containing bound MgADP, and the other at 2.1 A resolution and having in the active center one sulfate and two fixed water molecules that mimic one bound CP molecule) and by mutating active-center residues, determining the consequences of these mutations on enzyme functionality. Superimposition of the present crystal structures reconstructs the filled active center in the ternary complex, immediately suggesting in-line associative phosphoryl group transfer and a mechanism for enzyme catalysis involving N51, K209, K271, D210, and the PSD residue K128. The large respective increases and decreases in K(m)(CP) and k(cat) triggered by the mutations N51A, K128A, K209A, and D210N corroborate the ternary complex active-site architecture and the catalytic mechanism proposed. The extreme negative effects of K128A demonstrate a key role of the PSD in substrate binding and catalysis. The crystal structures reveal large rigid-body movements of the PSD towards the enzyme body that place K128 next to CP and bury the CP site. A mechanism that connects CP site occupation with the PSD approach, involving V206-I207 in the CP site and P162-S163 in the PSD stem, is identified. The effects of the V206A and V206L mutations support this mechanism. It is concluded that the PSD movement allows CK to select against the abundant CP/carbamate analogues acetylphosphate/acetate and bicarbonate, rendering CK highly selective for CP/carbamate.
Collapse
Affiliation(s)
- Santiago Ramón-Maiques
- Instituto de Biomedicina de Valencia-Consejo Superior de Investigaciones Científicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (Instituto de Salud Carlos III), Jaime Roig 11, Valencia 46010, Spain
| | | | | | | | | | | | | |
Collapse
|
15
|
Tu JL, Chin KH, Wang AHJ, Chou SH. Unique GTP-binding pocket and allostery of uridylate kinase from a gram-negative phytopathogenic bacterium. J Mol Biol 2008; 385:1113-26. [PMID: 19059268 DOI: 10.1016/j.jmb.2008.11.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 11/03/2008] [Accepted: 11/12/2008] [Indexed: 11/29/2022]
Abstract
Using X-ray diffraction methodology, we have successfully determined the tertiary structures of the apo- and GTP-bound forms of uridylate kinase (UMPK) from the gram-negative plant pathogen Xanthomonas campestris with crystals grown under a strong magnetic field. The flexible ATP- and UMP-binding loops are clearly shown under this situation. X. campestris UMPK contains a unique patch of noticeably positive nature from residue R100 to residue R127, allowing it to form a special GTP-binding pocket in the central hole of the structure. Although GTP is found to be situated in a pocket similar to that of the ATP-binding pocket in Bacillus anthracis UMPK, superimposition between the two pockets indicates that they adopt very distinct conformations. Detailed structural analyses of X. campestris UMPK between its apo- and GTP-bound forms reveal that binding of GTP does not induce global conformational change for X. campestris UMPK and only moderates movements for the ATP- and UMP-binding loops. Binding of GTP effector seems to "heat up" X. campestris UMPK, causing overall increases of B-factors for the protein, except for residues interacting with the guanine base. Moderate increase of enzyme activity, as is the case detected in other gram-negative bacteria, is observed for X. campestris UMPK in the presence of an allosteric GTP effector. Given that the GTP molecules bind in the central cavity of the hexamer and that each GTP molecule interacts with more than one monomer, it is likely that binding of GTP modifies the hexameric assembly to exert long-range allosteric control on X. campestris UMPK, similar to that suggested for the effect of ATP effector on B. anthracis UMPK.
Collapse
Affiliation(s)
- Jhe-Le Tu
- Institute of Biochemistry, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | | | | | | |
Collapse
|
16
|
Shi D, Sagar V, Jin Z, Yu X, Caldovic L, Morizono H, Allewell NM, Tuchman M. The crystal structure of N-acetyl-L-glutamate synthase from Neisseria gonorrhoeae provides insights into mechanisms of catalysis and regulation. J Biol Chem 2008; 283:7176-84. [PMID: 18184660 PMCID: PMC4099063 DOI: 10.1074/jbc.m707678200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The crystal structures of N-acetylglutamate synthase (NAGS) in the arginine biosynthetic pathway of Neisseria gonorrhoeae complexed with acetyl-CoA and with CoA plus N-acetylglutamate have been determined at 2.5- and 2.6-A resolution, respectively. The monomer consists of two separately folded domains, an amino acid kinase (AAK) domain and an N-acetyltransferase (NAT) domain connected through a 10-A linker. The monomers assemble into a hexameric ring that consists of a trimer of dimers with 32-point symmetry, inner and outer ring diameters of 20 and 100A, respectively, and a height of 110A(.) Each AAK domain interacts with the cognate domains of two adjacent monomers across two 2-fold symmetry axes and with the NAT domain from a second monomer of the adjacent dimer in the ring. The catalytic sites are located within the NAT domains. Three active site residues, Arg316, Arg425, and Ser427, anchor N-acetylglutamate in a position at the active site to form hydrogen bond interactions to the main chain nitrogen atoms of Cys356 and Leu314, and hydrophobic interactions to the side chains of Leu313 and Leu314. The mode of binding of acetyl-CoA and CoA is similar to other NAT family proteins. The AAK domain, although catalytically inactive, appears to bind arginine. This is the first reported crystal structure of any NAGS, and it provides insights into the catalytic function and arginine regulation of NAGS enzymes.
Collapse
Affiliation(s)
- Dashuang Shi
- Children's Research Institute, Children's National Medical Center, The George Washington University, Washington, DC 20010, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Curien G, Biou V, Mas-Droux C, Robert-Genthon M, Ferrer JL, Dumas R. Amino acid biosynthesis: new architectures in allosteric enzymes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:325-339. [PMID: 18272376 DOI: 10.1016/j.plaphy.2007.12.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Indexed: 05/25/2023]
Abstract
This review focuses on the allosteric controls in the Aspartate-derived and the branched-chain amino acid biosynthetic pathways examined both from kinetic and structural points of view. The objective is to show the differences that exist among the plant and microbial worlds concerning the allosteric regulation of these pathways and to unveil the structural bases of this diversity. Indeed, crystallographic structures of enzymes from these pathways have been determined in bacteria, fungi and plants, providing a wonderful opportunity to obtain insight into the acquisition and modulation of allosteric controls in the course of evolution. This will be examined using two enzymes, threonine synthase and the ACT domain containing enzyme aspartate kinase. In a last part, as many enzymes in these pathways display regulatory domains containing the conserved ACT module, the organization of ACT domains in this kind of allosteric enzymes will be reviewed, providing explanations for the variety of allosteric effectors and type of controls observed.
Collapse
Affiliation(s)
- Gilles Curien
- Laboratoire de Physiologie Cellulaire Végétale, Université Joseph Fourier, Commissariat à l'Energie Atomique, Institut de Recherche et de Technologie des Sciences du Vivant, 38054 Grenoble, France
| | | | | | | | | | | |
Collapse
|
18
|
Marco-Marín C, Gil-Ortiz F, Pérez-Arellano I, Cervera J, Fita I, Rubio V. A Novel Two-domain Architecture Within the Amino Acid Kinase Enzyme Family Revealed by the Crystal Structure of Escherichia coli Glutamate 5-kinase. J Mol Biol 2007; 367:1431-46. [PMID: 17321544 DOI: 10.1016/j.jmb.2007.01.073] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 01/25/2007] [Accepted: 01/27/2007] [Indexed: 11/17/2022]
Abstract
Glutamate 5-kinase (G5K) makes the highly unstable product glutamyl 5-phosphate (G5P) in the initial, controlling step of proline/ornithine synthesis, being feedback-inhibited by proline or ornithine, and causing, when defective, clinical hyperammonaemia. We determined two crystal structures of G5K from Escherichia coli, at 2.9 A and 2.5 A resolution, complexed with glutamate and sulphate, or with G5P, sulphate and the proline analogue 5-oxoproline. E. coli G5K presents a novel tetrameric (dimer of dimers) architecture. Each subunit contains a 257 residue AAK domain, typical of acylphosphate-forming enzymes, with characteristic alpha(3)beta(8)alpha(4) sandwich topology. This domain is responsible for catalysis and proline inhibition, and has a crater on the beta sheet C-edge that hosts the active centre and bound 5-oxoproline. Each subunit contains a 93 residue C-terminal PUA domain, typical of RNA-modifying enzymes, which presents the characteristic beta(5)beta(4) sandwich fold and three alpha helices. The AAK and PUA domains of one subunit associate non-canonically in the dimer with the same domains of the other subunit, leaving a negatively charged hole between them that hosts two Mg ions in one crystal, in line with the G5K requirement for free Mg. The tetramer, formed by two dimers interacting exclusively through their AAK domains, is flat and elongated, and has in each face, pericentrically, two exposed active centres in alternate subunits. This would permit the close apposition of two active centres of bacterial glutamate-5-phosphate reductase (the next enzyme in the proline/ornithine-synthesising route), supporting the postulated channelling of G5P. The structures clarify substrate binding and catalysis, justify the high glutamate specificity, explain the effects of known point mutations, and support the binding of proline near glutamate. Proline binding may trigger the movement of a loop that encircles glutamate, and which participates in a hydrogen bond network connecting active centres, which is possibly involved in the cooperativity for glutamate.
Collapse
Affiliation(s)
- Clara Marco-Marín
- Instituto de Biomedicina de Valencia (IBV-CSIC) and Center for Biomedical Research on Rare Diseases (CIBERER-ISCIII), Jaume Roig 11, Valencia-46010, Spain
| | | | | | | | | | | |
Collapse
|
19
|
Evrin C, Straut M, Slavova-Azmanova N, Bucurenci N, Onu A, Assairi L, Ionescu M, Palibroda N, Bârzu O, Gilles AM. Regulatory mechanisms differ in UMP kinases from gram-negative and gram-positive bacteria. J Biol Chem 2007; 282:7242-53. [PMID: 17210578 DOI: 10.1074/jbc.m606963200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this work, we examined the regulation by GTP and UTP of the UMP kinases from eight bacterial species. The enzyme from Gram-positive organisms exhibited cooperative kinetics with ATP as substrate. GTP decreased this cooperativity and increased the affinity for ATP. UTP had the opposite effect, as it decreased the enzyme affinity for ATP. The nucleotide analogs 5-bromo-UTP and 5-iodo-UTP were 5-10 times stronger inhibitors than the parent compound. On the other hand, UMP kinases from the Gram-negative organisms did not show cooperativity in substrate binding and catalysis. Activation by GTP resulted mainly from the reversal of inhibition caused by excess UMP, and inhibition by UTP was accompanied by a strong increase in the apparent K(m) for UMP. Altogether, these results indicate that, depending on the bacteria considered, GTP and UTP interact with different enzyme recognition sites. In Gram-positive bacteria, GTP and UTP bind to a single site or largely overlapping sites, shifting the T R equilibrium to either the R or T form, a scenario corresponding to almost all regulatory proteins, commonly called K systems. In Gram-negative organisms, the GTP-binding site corresponds to the unique allosteric site of the Gram-positive bacteria. In contrast, UTP interacts cooperatively with a site that overlaps the catalytic center, i.e. the UMP-binding site and part of the ATP-binding site. These characteristics make UTP an original regulator of UMP kinases from Gram-negative organisms, beyond the common scheme of allosteric control.
Collapse
Affiliation(s)
- Cécile Evrin
- UnitédeGénétique des Génomes Bactériens, Institut Pasteur, 75724 Paris Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Structures of R- and T-state Escherichia coli Aspartokinase III. J Biol Chem 2006. [DOI: 10.1016/s0021-9258(19)84068-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
21
|
Kotaka M, Ren J, Lockyer M, Hawkins AR, Stammers DK. Structures of R- and T-stateEscherichia coliAspartokinase III. J Biol Chem 2006; 281:31544-52. [PMID: 16905770 DOI: 10.1074/jbc.m605886200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aspartokinase III (AKIII) from Escherichia coli catalyzes an initial commitment step of the aspartate pathway, giving biosynthesis of certain amino acids including lysine. We report crystal structures of AKIII in the inactive T-state with bound feedback allosteric inhibitor lysine and in the R-state with aspartate and ADP. The structures reveal an unusual configuration for the regulatory ACT domains, in which ACT2 is inserted into ACT1 rather than the expected tandem repeat. Comparison of R- and T-state AKIII indicates that binding of lysine to the regulatory ACT1 domain in R-state AKIII instigates a series of changes that release a "latch", the beta15-alphaK loop, from the catalytic domain, which in turn undergoes large rotational rearrangements, promoting tetramer formation and completion of the transition to the T-state. Lysine-induced allosteric transition in AKIII involves both destabilizing the R-state and stabilizing the T-state tetramer. Rearrangement of the catalytic domain blocks the ATP-binding site, which is therefore the structural basis for allosteric inhibition of AKIII by lysine.
Collapse
Affiliation(s)
- Masayo Kotaka
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | | | | | | | | |
Collapse
|
22
|
Mas-Droux C, Curien G, Robert-Genthon M, Laurencin M, Ferrer JL, Dumas R. A novel organization of ACT domains in allosteric enzymes revealed by the crystal structure of Arabidopsis aspartate kinase. THE PLANT CELL 2006; 18:1681-92. [PMID: 16731588 PMCID: PMC1488909 DOI: 10.1105/tpc.105.040451] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 04/19/2006] [Accepted: 05/04/2006] [Indexed: 05/09/2023]
Abstract
Asp kinase catalyzes the first step of the Asp-derived essential amino acid pathway in plants and microorganisms. Depending on the source organism, this enzyme contains up to four regulatory ACT domains and exhibits several isoforms under the control of a great variety of allosteric effectors. We report here the dimeric structure of a Lys and S-adenosylmethionine-sensitive Asp kinase isoform from Arabidopsis thaliana in complex with its two inhibitors. This work reveals the structure of an Asp kinase and an enzyme containing two ACT domains cocrystallized with its effectors. Only one ACT domain (ACT1) is implicated in effector binding. A loop involved in the binding of Lys and S-adenosylmethionine provides an explanation for the synergistic inhibition by these effectors. The presence of S-adenosylmethionine in the regulatory domain indicates that ACT domains are also able to bind nucleotides. The organization of ACT domains in the present structure is different from that observed in Thr deaminase and in the regulatory subunit of acetohydroxyacid synthase III.
Collapse
Affiliation(s)
- Corine Mas-Droux
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Joseph Fourier, Commissariat à l'Energie Atomique, Département Réponse et Dynamique Cellulaires, France
| | | | | | | | | | | |
Collapse
|
23
|
Ramón-Maiques S, Fernández-Murga ML, Gil-Ortiz F, Vagin A, Fita I, Rubio V. Structural bases of feed-back control of arginine biosynthesis, revealed by the structures of two hexameric N-acetylglutamate kinases, from Thermotoga maritima and Pseudomonas aeruginosa. J Mol Biol 2005; 356:695-713. [PMID: 16376937 DOI: 10.1016/j.jmb.2005.11.079] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2005] [Revised: 11/23/2005] [Accepted: 11/24/2005] [Indexed: 11/17/2022]
Abstract
N-Acetylglutamate kinase (NAGK) catalyses the second step in the route of arginine biosynthesis. In many organisms this enzyme is inhibited by the final product of the route, arginine, and thus plays a central regulatory role. In addition, in photosynthetic organisms NAGK is the target of the nitrogen-signalling protein PII. The 3-D structure of homodimeric, arginine-insensitive, Escherichia coli NAGK, clarified substrate binding and catalysis but shed no light on arginine inhibition of NAGK. We now shed light on arginine inhibition by determining the crystal structures, at 2.75 A and 2.95 A resolution, of arginine-complexed Thermotoga maritima and arginine-free Pseudomonas aeruginosa NAGKs, respectively. Both enzymes are highly similar ring-like hexamers having a central orifice of approximately 30 A diameter. They are formed by linking three E.coli NAGK-like homodimers through the interlacing of an N-terminal mobile kinked alpha-helix, which is absent from E.coli NAGK. Arginine is bound in each subunit of T.maritima NAGK, flanking the interdimeric junction, in a site formed between the N helix and the C lobe of the subunit. This site is also present, in variable conformations, in P.aeruginosa NAGK, but is missing from E.coli NAGK. Arginine, by gluing the C lobe of each subunit to the inter-dimeric junction, may stabilize an enlarged active centre conformation, hampering catalysis. Acetylglutamate counters arginine inhibition by promoting active centre closure. The hexameric architecture justifies the observed sigmoidal arginine inhibition kinetics with a high Hill coefficient (N approximately 4), and appears essential for arginine inhibition and for NAGK-PII complex formation, since this complex may involve binding of NAGK and PII with their 3-fold axes aligned. The NAGK structures allow identification of diagnostic sequence signatures for arginine inhibition. These signatures are found also in the homologous arginine-inhibited enzyme NAG synthase. The findings on NAGK shed light on the structure, function and arginine inhibition of this synthase, for which a hexameric model is constructed.
Collapse
|
24
|
Pérez-Arellano I, Rubio V, Cervera J. Dissection of Escherichia coli glutamate 5-kinase: functional impact of the deletion of the PUA domain. FEBS Lett 2005; 579:6903-8. [PMID: 16337196 DOI: 10.1016/j.febslet.2005.11.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 11/15/2005] [Accepted: 11/15/2005] [Indexed: 11/30/2022]
Abstract
Glutamate 5-kinase (G5K) catalyzes the controlling first step of the synthesis of the osmoprotective amino acid proline, which feed-back inhibits G5K. Microbial G5K generally consists of one amino acid kinase (AAK) and one PUA (named after pseudo uridine synthases and archaeosine-specific transglycosylases) domain. To investigate the role of the PUA domain, we have deleted it from Escherichia coli G5K. We show that wild-type G5K requires free Mg for activity, it is tetrameric, and it aggregates to higher forms in a proline-dependent way. G5K lacking the PUA domain remains tetrameric, active, and proline-inhibitable, but the Mg requirement and the proline-triggered aggregation are greatly diminished and abolished, respectively, and more proline is needed for inhibition. We propose that the PUA domain modulates the function of the AAK domain, opening the way to potential PUA domain-mediated regulation of G5K; and that this domain moves, exposing new surfaces upon proline binding.
Collapse
Affiliation(s)
- Isabel Pérez-Arellano
- Centro de Investigación Príncipe Felipe, Avda. Autopista del Saler, 16, Valencia 46013, Spain
| | | | | |
Collapse
|
25
|
Massant J, Glansdorff N. New experimental approaches for investigating interactions between Pyrococcus furiosus carbamate kinase and carbamoyltransferases, enzymes involved in the channeling of thermolabile carbamoyl phosphate. ARCHAEA (VANCOUVER, B.C.) 2005; 1:365-73. [PMID: 16243776 PMCID: PMC2685582 DOI: 10.1155/2005/865962] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Accepted: 03/30/2005] [Indexed: 11/17/2022]
Abstract
A somewhat neglected but essential aspect of the molecular physiology of hyperthermophiles is the protection of thermolabile metabolites and coenzymes. An example is carbamoyl phosphate (CP), a precursor of pyrimidines and arginine, which is an extremely labile and potentially toxic intermediate. The first evidence for a biologically significant interaction between carbamate kinase (CK) and ornithine carbamoyltransferase (OTC) from Pyrococcus furiosus was provided by affinity electrophoresis and co-immunoprecipitation in combination with cross-linking (Massant et al. 2002). Using the yeast two-hybrid system, Hummel-Dreyer chromatography and isothermal titration calorimetry, we obtained additional concrete evidence for an interaction between CK and OTC, the first evidence for an interaction between CK and aspartate carbamoyltransferase (ATC) and an estimate of the binding constant between CK and ATC. The physical interaction between CK and OTC or ATC may prevent thermodenaturation of CP in the aqueous cytoplasmic environment. Here we emphasize the importance of developing experimental approaches to investigate the mechanism of thermal protection of metabolic intermediates by metabolic channeling and the molecular basis of transient protein-protein interactions in the physiology of hyperthermophiles.
Collapse
Affiliation(s)
- Jan Massant
- Laboratorium voor Erfelijkheidsleer en Microbiologie, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium.
| | | |
Collapse
|
26
|
Yahi N, Fantini J, Henry M, Tourrès C, Tamalet C. Structural analysis of reverse transcriptase mutations at codon 215 explains the predominance of T215Y over T215F in HIV-1 variants selected under antiretroviral therapy. J Biomed Sci 2005; 12:701-10. [PMID: 16200350 DOI: 10.1007/s11373-005-9011-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Accepted: 07/19/2005] [Indexed: 10/25/2022] Open
Abstract
Mutations at codon 215 of HIV-1 reverse transcriptase (RT) confer resistance to nucleoside analogs through RT-catalyzed ATP-dependent phosphorolysis. We showed that mutation T215Y is predominant over T215F (respectively 38.8 vs. 7.04% of 7312 sequences from a cohort of patients receiving antiretroviral therapy in France). Ambiguous mixtures at codon 215 (e.g. TNYS and TFSI) were resolved by cloning and sequencing representative clinical samples. Mutation T215F was preferentially associated with K70R (>71%), D67N (>73%) and K219Q/E/N (>76%), whereas T215Y was associated with M41L (>84%) and L210W (>58%). A similar distribution was observed with RT sequences stored in the Stanford HIV Drug Resistance Database. The structural background of these two distinct mutational patterns was investigated by molecular modeling of ATP-mutant RT complexes, on the basis of known ATP-protein interactions. We found that the aromatic side chain of tyrosine (Y)--but not phenylalanine (F)--optimally stacked with the adenine ring of ATP. Mutation L210W further stabilized this aromatic pi-pi stacking interaction, increasing the affinity of the T215Y/L210W double mutant for ATP. Overall, this study provides a biochemical basis accounting for the evolutionary pathway of T215 mutations in HIV-1 RT, leading to the preferential selection of T215Y vs. T215F.
Collapse
Affiliation(s)
- Nouara Yahi
- Laboratoire de Biochimie et Physicochimie des Membranes Biologiques, Faculté des Sciences et Techniques St-Jérôme, Université Paul Cézanne, 13013, Marseille, France.
| | | | | | | | | |
Collapse
|
27
|
Marco-Marín C, Gil-Ortiz F, Rubio V. The crystal structure of Pyrococcus furiosus UMP kinase provides insight into catalysis and regulation in microbial pyrimidine nucleotide biosynthesis. J Mol Biol 2005; 352:438-54. [PMID: 16095620 DOI: 10.1016/j.jmb.2005.07.045] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2005] [Revised: 07/12/2005] [Accepted: 07/14/2005] [Indexed: 11/21/2022]
Abstract
UMP kinase (UMPK), the enzyme responsible for microbial UMP phosphorylation, plays a key role in pyrimidine nucleotide biosynthesis, regulating this process via feed-back control and via gene repression of carbamoyl phosphate synthetase (the first enzyme of the pyrimidine biosynthesis pathway). We present crystal structures of Pyrococcus furiosus UMPK, free or complexed with AMPPNP or AMPPNP and UMP, at 2.4 A, 3 A and 2.55 A resolution, respectively, providing a true snapshot of the catalytically competent bisubstrate complex. The structure proves that UMPK does not resemble other nucleoside monophosphate kinases, including the UMP/CMP kinase found in animals, and thus UMPK may be a potential antimicrobial target. This enzyme has a homohexameric architecture centred around a hollow nucleus, and is organized as a trimer of dimers. The UMPK polypeptide exhibits the amino acid kinase family (AAKF) fold that has been reported in carbamate kinase and acetylglutamate kinase. Comparison with acetylglutamate kinase reveals that the substrates bind within each subunit at equivalent, adequately adapted sites. The UMPK structure contains two bound Mg ions, of which one helps stabilize the transition state, thus having the same catalytic role as one lysine residue found in acetylglutamate kinase, which is missing from P.furiosus UMPK. Relative to carbamate kinase and acetylglutamate kinase, UMPK presents a radically different dimer architecture, lacking the characteristic 16-stranded beta-sheet backbone that was considered a signature of AAKF enzymes. Its hexameric architecture, also a novel trait, results from equatorial contacts between the A and B subunits of adjacent dimers combined with polar contacts between A or B subunits, and may be required for the UMPK regulatory functions, such as gene regulation, proposed here to be mediated by hexamer-hexamer interactions with the DNA-binding protein PepA.
Collapse
Affiliation(s)
- Clara Marco-Marín
- Instituto de Biomedicina de Valencia (IBV-CSIC), Jaume Roig 11,Valencia 46010, Spain
| | | | | |
Collapse
|
28
|
Briozzo P, Evrin C, Meyer P, Assairi L, Joly N, Barzu O, Gilles AM. PTEN, but not SHIP2, suppresses insulin signaling through the phosphatidylinositol 3-kinase/Akt pathway in 3T3-L1 adipocytes. J Biol Chem 2005; 280:25533-40. [PMID: 15857829 DOI: 10.1074/jbc.m501849200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucose homeostasis is controlled by insulin in part through the stimulation of glucose transport in muscle and fat cells. This insulin signaling pathway requires phosphatidylinositol (PI) 3-kinase-mediated 3'-polyphosphoinositide generation and activation of Akt/protein kinase B. Previous experiments using dominant negative constructs and gene ablation in mice suggested that two phosphoinositide phosphatases, SH2 domain-containing inositol 5'-phosphatase 2 (SHIP2) and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) negatively regulate this insulin signaling pathway. Here we directly tested this hypothesis by selectively inhibiting the expression of SHIP2 or PTEN in intact cultured 3T3-L1 adipocytes through the use of short interfering RNA (siRNA). Attenuation of PTEN expression by RNAi markedly enhanced insulin-stimulated Akt and glycogen synthase kinase 3alpha (GSK-3alpha) phosphorylation, as well as deoxyglucose transport in 3T3-L1 adipocytes. In contrast, depletion of SHIP2 protein by about 90% surprisingly failed to modulate these insulin-regulated events under identical assay conditions. In control studies, no diminution of insulin signaling to the mitogen-activated protein kinases Erk1 and Erk2 was observed when either PTEN or SHIP2 were depleted. Taken together, these results demonstrate that endogenous PTEN functions as a suppressor of insulin signaling to glucose transport through the PI 3-kinase pathway in cultured 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Pierre Briozzo
- Unité de Chimie Biologique, UMR 206 Institut National de la Recherche Agronomique, Institut National Agronomique Paris-Grignon, 78850 Thiverval-Grignon, URA 2171 CNRS, Institut Pasteur, 75724 Paris Cedex 15.
| | | | | | | | | | | | | |
Collapse
|
29
|
Marco-Marín C, Escamilla-Honrubia JM, Rubio V. First-time crystallization and preliminary X-ray crystallographic analysis of a bacterial-archaeal type UMP kinase, a key enzyme in microbial pyrimidine biosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1747:271-5. [PMID: 15698963 DOI: 10.1016/j.bbapap.2004.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 11/16/2004] [Accepted: 11/17/2004] [Indexed: 11/17/2022]
Abstract
UMP phosphorylation, a key step for pyrimidine nucleotide biosynthesis, is catalyzed in bacteria by UMP kinase (UMPK), an enzyme specific for UMP that is dissimilar to the eukaryotic UMP/CMP kinase or to other nucleoside monophosphate kinases. UMPK is allosterically regulated and participates in pyrimidine-triggered gene repression. As first step towards determining UMPK structure, the putative UMPK-encoding gene of the hyperthermophilic archaeon Pyrococcus furiosus was cloned and overexpressed in Escherichia coli. The protein product was purified and confirmed to be a genuine UMPK. It was crystallized at 294 K in hanging drops by the vapor diffusion technique using 3.5-4 M Na formate. Cubic 0.2-mm crystals diffracted synchrotron X-rays to 2.4-angstroms resolution. Space group was I23 (a=b=c=144.95 angstroms), and the asymmetric unit contained two monomers, with 52% solvent content. The self-rotation function suggests that the enzyme is hexameric, which agrees with biochemical studies on bacterial UMPKs.
Collapse
Affiliation(s)
- Clara Marco-Marín
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), C/Jaime Roig 11, 46010-Valencia, Spain
| | | | | |
Collapse
|
30
|
Fernandez-Fuentes N, Hermoso A, Espadaler J, Querol E, Aviles FX, Oliva B. Classification of common functional loops of kinase super-families. Proteins 2004; 56:539-55. [PMID: 15229886 DOI: 10.1002/prot.20136] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A structural classification of loops has been obtained from a set of 141 protein structures classified as kinases. A total of 1813 loops was classified into 133 subclasses (9 betabeta(links), 15 betabeta(hairpins), 31 alpha-alpha, 46 alpha-beta and 32 beta-alpha). Functional information and specific features relating subclasses and function were included in the classification. Functional loops such as the P-loop (shared by different folds) or the Gly-rich-loop, among others, were classified into structural motifs. As a result, a common mechanism of catalysis and substrate binding was proved for most kinases. Additionally, the multiple-alignment of loop sequences made within each subclass was shown to be useful for comparative modeling of kinase loops. The classification is summarized in a kinase loop database located at http://sbi.imim.es/archki.
Collapse
Affiliation(s)
- Narcis Fernandez-Fuentes
- Institut de Biotecnologia i Biomedicina and Department de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | | | | | | | | | | |
Collapse
|
31
|
Mao L, Wang Y, Liu Y, Hu X. Molecular determinants for ATP-binding in proteins: a data mining and quantum chemical analysis. J Mol Biol 2004; 336:787-807. [PMID: 15095988 DOI: 10.1016/j.jmb.2003.12.056] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2003] [Revised: 11/29/2003] [Accepted: 12/11/2003] [Indexed: 11/26/2022]
Abstract
Adenosine 5'-triphosphate (ATP) plays an essential role in all forms of life. Molecular recognition of ATP in proteins is a subject of great importance for understanding enzymatic mechanism and for drug design. We have carried out a large-scale data mining of the Protein Data Bank (PDB) to analyze molecular determinants for recognition of the adenine moiety of ATP by proteins. Non-bonded intermolecular interactions (hydrogen bonding, pi-pi stacking interactions, and cation-pi interactions) between adenine base and surrounding residues in its binding pockets are systematically analyzed for 68 non-redundant, high-resolution crystal structures of adenylate-binding proteins. In addition to confirming the importance of the widely known hydrogen bonding, we found out that cation-pi interactions between adenine base and positively charged residues (Lys and Arg) and pi-pi stacking interactions between adenine base and surrounding aromatic residues (Phe, Tyr, Trp) are also crucial for adenine binding in proteins. On average, there exist 2.7 hydrogen bonding interactions, 1.0 pi-pi stacking interactions, and 0.8 cation-pi interactions in each adenylate-binding protein complex. Furthermore, a high-level quantum chemical analysis was performed to analyze contributions of each of the three forms of intermolecular interactions (i.e. hydrogen bonding, pi-pi stacking interactions, and cation-pi interactions) to the overall binding force of the adenine moiety of ATP in proteins. Intermolecular interaction energies for representative configurations of intermolecular complexes were analyzed using the supermolecular approach at the MP2/6-311 + G* level, which resulted in substantial interaction strengths for all the three forms of intermolecular interactions. This work represents a timely undertaking at a historical moment when a large number of X-ray crystallographic structures of proteins with bound ATP ligands have become available, and when high-level quantum chemical analysis of intermolecular interactions of large biomolecular systems becomes computationally feasible. The establishment of the molecular basis for recognition of the adenine moiety of ATP in proteins will directly impact molecular design of ATP-binding site targeted enzyme inhibitors such as kinase inhibitors.
Collapse
Affiliation(s)
- Lisong Mao
- Department of Chemistry, University of Toledo, Toledo, OH 43606-3390, USA
| | | | | | | |
Collapse
|
32
|
Marco-Marín C, Ramón-Maiques S, Tavárez S, Rubio V. Site-directed mutagenesis of Escherichia coli acetylglutamate kinase and aspartokinase III probes the catalytic and substrate-binding mechanisms of these amino acid kinase family enzymes and allows three-dimensional modelling of aspartokinase. J Mol Biol 2003; 334:459-76. [PMID: 14623187 DOI: 10.1016/j.jmb.2003.09.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We test, using site-directed mutagenesis, predictions based on the X-ray structure of N-acetyl-L-glutamate kinase (NAGK), the paradigm of the amino acid kinase protein family, about the roles of specific residues on substrate binding and catalysis. The mutations K8R and D162E decreased V([sustrate]= infinity ) 100-fold and 1000-fold, respectively, in agreement with the predictions that K8 catalyzes phosphoryl transfer and D162 organizes the catalytic groups. R66K and N158Q increased selectively K(m)(Asp) three to four orders of magnitude, in agreement with the binding of R66 and N158 to the C(alpha) substituents of NAG. Mutagenesis in parallel of aspartokinase III (AKIII phosphorylates aspartate instead of acetylglutamate), another important amino acid kinase family member of unknown 3-D structure, identified in AKIII two residues, K8 and D202, that appear to play roles similar to those of K8 and D162 of NAGK, and supports the involvement of E119 and R198, similarly to R66 and N158 of NAGK, in the binding of the amino acid substrate, apparently interacting, respectively, with the alpha-NH(3)(+) and alpha-COO(-) of aspartate. These results and an improved alignment of the NAGK and AKIII sequences have guided us into 3-D modelling of the amino acid kinase domain of AKIII using NAGK as template. The model has good stereochemistry and validation parameters. It provides insight into substrate binding and catalysis, agreeing with mutagenesis results with another aspartokinase that were not considered when building the model.AKIII is homodimeric and is inhibited by lysine. Lysine may bind to a regulatory region that is C-terminal to the amino acid kinase domain. We make a C-terminally truncated AKIII (AKIIIt) and show that the C-region is involved in intersubunit interactions, since AKIIIt is found to be monomeric. Further, it is inactive, as demanded if dimer formation is essential for activity. Models for AKIII architecture are proposed that account for these findings.
Collapse
Affiliation(s)
- Clara Marco-Marín
- Department of Genomics and Proteomics, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), C/Jaime Roig 11, 46010, Valencia, Spain
| | | | | | | |
Collapse
|
33
|
Gagyi C, Bucurenci N, Sîrbu O, Labesse G, Ionescu M, Ofiteru A, Assairi L, Landais S, Danchin A, Bârzu O, Gilles AM. UMP kinase from the Gram-positive bacterium Bacillus subtilis is strongly dependent on GTP for optimal activity. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:3196-204. [PMID: 12869195 DOI: 10.1046/j.1432-1033.2003.03702.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The gene encoding Bacillus subtilis UMP kinase (pyrH/smbA) is transcribed in vivo into a functional enzyme, which represents approximately 0.1% of total soluble proteins. The specific activity of the purified enzyme under optimal conditions is 25 units.mg-1 of protein. In the absence of GTP, the activity of B. subtilis enzyme is less than 10% of its maximum activity. Only dGTP and 3'-anthraniloyl-2'-deoxyguanosine-5'-triphosphate (Ant-dGTP) can increase catalysis significantly. Binding of Ant-dGTP to B. subtilis UMP kinase increased the quantum yield of the fluorescent analogue by a factor of more than three. UTP and GTP completely displaced Ant-dGTP, whereas GMP and UMP were ineffective. UTP inhibits UMP kinase of B. subtilis with a lower affinity than that shown towards the Escherichia coli enzyme. Among nucleoside monophosphates, 5-fluoro-UMP (5F-UMP) and 6-aza-UMP were actively phosphorylated by B. subtilis UMP kinase, explaining the cytotoxicity of the corresponding nucleosides towards this bacterium. A structural model of UMP kinase, based on the conservation of the fold of carbamate kinase and N-acetylglutamate kinase (whose crystals were recently resolved), was analysed in the light of physicochemical and kinetic differences between B. subtilis and E. coli enzymes.
Collapse
Affiliation(s)
- Cristina Gagyi
- Laboratoire de Chimie Structurale des Macromolécules, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Gil-Ortiz F, Ramón-Maiques S, Fita I, Rubio V. The course of phosphorus in the reaction of N-acetyl-L-glutamate kinase, determined from the structures of crystalline complexes, including a complex with an AlF(4)(-) transition state mimic. J Mol Biol 2003; 331:231-44. [PMID: 12875848 DOI: 10.1016/s0022-2836(03)00716-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
N-Acetyl-L-glutamate kinase (NAGK), the structural paradigm of the enzymes of the amino acid kinase family, catalyzes the phosphorylation of the gamma-COO(-) group of N-acetyl-L-glutamate (NAG) by ATP. We determine here the crystal structures of NAGK complexes with MgADP, NAG and the transition-state analog AlF(4)(-); with MgADP and NAG; and with ADP and SO(4)(2-). Comparison of these structures with that of the MgAMPPNP-NAG complex allows to delineate three successive steps during phosphoryl transfer: at the beginning, when the attacking and leaving O atoms and the P atom are imperfectly aligned and the distance between the attacking O atom and the P atom is 2.8A; midway, at the bipyramidal intermediate, with nearly perfect alignment and a distance of 2.3A; and, when the transfer is completed. The transfer occurs in line and is strongly associative, with Lys8 and Lys217 stabilizing the transition state and the leaving group, respectively, and with Lys61, in contrast with an earlier proposal, not being involved. Three water molecules found in all the complexes play, together with Asp162 and the Mg, crucial structural roles. Two glycine-rich loops (beta1-alphaA and beta2-alphaB) are also very important, moving in the different complexes in concert with the ligands, to which they are hydrogen-bonded, either locking them in place for reaction or stabilizing the transition state. The active site is too narrow to accommodate the substrates without compressing the reacting groups, and this compressive strain appears a crucial component of the catalytic mechanism of NAGK, and possibly of other enzymes of the amino acid kinase family such as carbamate kinase. Initial binding of the two substrates would require a different enzyme conformation with a wider active site, and the energy of substrate binding would be used to change the conformation of the active center, causing substrate strain towards the transition state.
Collapse
Affiliation(s)
- Fernando Gil-Ortiz
- Department of Genomics and Proteomics, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), C/Jaime Roig 11, 46010- Valencia, Spain
| | | | | | | |
Collapse
|
35
|
Fujita T, Maggio A, Garcia-Rios M, Stauffacher C, Bressan RA, Csonka LN. Identification of regions of the tomato gamma-glutamyl kinase that are involved in allosteric regulation by proline. J Biol Chem 2003; 278:14203-10. [PMID: 12566437 DOI: 10.1074/jbc.m212177200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The first step of proline biosynthesis is catalyzed by gamma-glutamyl kinase (GK). To better understand the feedback inhibition properties of GK, we randomly mutagenized a plasmid carrying tomato tomPRO1 cDNA, which encodes proline-sensitive GK. A pool of mutagenized plasmids was transformed into an Escherichia coli GK mutant, and proline-overproducing derivatives were selected on minimal medium containing the toxic proline analog 3,4-dehydro-dl-proline. Thirty-two mutations that conferred 3,4-dehydro-dl-proline resistance were obtained. Thirteen different single amino acid substitutions were identified at nine different residues. The residues were distributed throughout the N-terminal two-thirds of the polypeptide, but 9 mutations affecting 6 residues were in a cluster of 16 residues. GK assays revealed that these amino acid substitutions caused varying degrees of diminished sensitivity to proline feedback inhibition and also resulted in a range of increased proline accumulation in vivo. GK belongs to a family of amino acid kinases, and a predicted three-dimensional model of this enzyme was constructed on the basis of the crystal structures of three related kinases. In the model, residues that were identified as important for allosteric control were located close to each other, suggesting that they may contribute to the structure of a proline binding site. The putative allosteric binding site partially overlaps the dimerization and substrate binding domains, suggesting that the allosteric regulation of GK may involve a direct structural interaction between the proline binding site and the dimerization and catalytic domains.
Collapse
Affiliation(s)
- Tomomichi Fujita
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47906-1392, USA
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Kinases are a ubiquitous group of enzymes that catalyze the phosphoryl transfer reaction from a phosphate donor (usually ATP) to a receptor substrate. Although all kinases catalyze essentially the same phosphoryl transfer reaction, they display remarkable diversity in their substrate specificity, structure, and the pathways in which they participate. In order to learn the relationship between structural fold and functional specificities in kinases, we have done a comprehensive survey of all available kinase sequences (>17,000) and classified them into 30 distinct families based on sequence similarities. Of these families, 19, covering nearly 98% of all sequences, fall into seven general structural folds for which three-dimensional structures are known. These fold groups include some of the most widespread protein folds, such as Rossmann fold, ferredoxin fold, ribonuclease H fold, and TIM beta/alpha-barrel. On the basis of this classification system, we examined the shared substrate binding and catalytic mechanisms as well as variations of these mechanisms in the same fold groups. Cases of convergent evolution of identical kinase activities occurring in different folds are discussed.
Collapse
Affiliation(s)
- Sara Cheek
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | | | | |
Collapse
|
37
|
Labesse G, Bucurenci N, Douguet D, Sakamoto H, Landais S, Gagyi C, Gilles AM, Bârzu O. Comparative modelling and immunochemical reactivity of Escherichia coli UMP kinase. Biochem Biophys Res Commun 2002; 294:173-9. [PMID: 12054759 DOI: 10.1016/s0006-291x(02)00450-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Bacterial UMP kinases do not exhibit any sequence homology with other nucleoside monophosphate kinases described so far, and appear under oligomeric forms, submitted to complex regulation by nucleotides. We propose here a structural model of UMP kinase from Escherichia coli based on the conservation of the fold of carbamate kinase whose crystal structure was recently solved. Despite sequence identity of only 18% over 203 amino acids, alignment of UMP kinase from E. coli with carbamate kinase from Enterococcus faecalis by hydrophobic cluster analysis and threading suggested the conservation of the overall structure, except for a small subdomain (absent in UMP kinase). The modelled dimer suggested conservation of the dimer interface observed in carbamate kinase while interaction of UMP kinase with a monoclonal antibody (Mab 44-2) suggests a three in-plane dimer subunit arrangement. The model was analyzed in light of various modified forms of UMP kinase obtained by site-directed mutagenesis.
Collapse
Affiliation(s)
- Gilles Labesse
- Centre de Biochimie Structurale, Faculté de Pharmacie, Université de Montpellier I, 34000 Montpellier, France.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Massant J, Verstreken P, Durbecq V, Kholti A, Legrain C, Beeckmans S, Cornelis P, Glansdorff N. Metabolic channeling of carbamoyl phosphate, a thermolabile intermediate: evidence for physical interaction between carbamate kinase-like carbamoyl-phosphate synthetase and ornithine carbamoyltransferase from the hyperthermophile Pyrococcus furiosus. J Biol Chem 2002; 277:18517-22. [PMID: 11893735 DOI: 10.1074/jbc.m111481200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two different approaches provided evidence for a physical interaction between the carbamate kinase-like carbamoyl-phosphate synthetase (CKase) and ornithine carbamoyltransferase (OTCase) from the hyperthermophilic archaeon Pyrococcus furiosus. Affinity electrophoresis indicated that CKase and OTCase associate into a multienzyme cluster. Further evidence for a biologically significant interaction between CKase and OTCase was obtained by co-immunoprecipitation combined with formaldehyde cross-linking experiments. These experiments support the hypothesis that CKase and OTCase form an efficient channeling cluster for carbamoyl phosphate, an extremely thermolabile and potentially toxic metabolic intermediate. Therefore, by physically interacting with each other, CKase and OTCase prevent the thermodenaturation of carbamoyl phosphate in the aqueous cytoplasmic environment.
Collapse
Affiliation(s)
- Jan Massant
- Department of Microbiology, Vrije Universiteit Brussel, Flanders Interuniversity Institute for Biotechnology, Université Libre de Bruxelles, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Ramón-Maiques S, Britton HG, Rubio V. Molecular physiology of phosphoryl group transfer from carbamoyl phosphate by a hyperthermophilic enzyme at low temperature. Biochemistry 2002; 41:3916-24. [PMID: 11900534 DOI: 10.1021/bi011637d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enzymes from thermophilic organisms often exhibit low activity at reduced temperature. To obtain a better understanding of this sluggishness, we have studied the reaction at 24 degrees C of the carbamate kinase (CK) from the hyperthermophile Pyrococcus furiosus. This enzyme is much slower at low temperature than is the CK from the mesophile Enterococcus faecalis. X-ray structures demonstrated bound ADP (even when no nucleotide was added) with the hyperthermophilic but not with the mesophilic CK. We use centrifugal gel filtration, rate of dialysis and pulse-chase experiments to demonstrate that the pyrococcal enzyme, at 24 degrees C, binds ADP avidly (K(D) = 34 nM), that ADP dissociates from this complex with a t1/2 value of 2.4 s, and that ADP binding is very fast (kappa = 8.4 x 10(6) M(-1) x s(-1)). The high affinity, rather than restrictions to dissociation, explains the isolation of the pyrococcal enzyme as an ADP complex. Carbamoyl phosphate adds quickly to this complex, and ADP cannot dissociate from the resulting ternary complex, being that it is converted very slowly (t1/2 = 10.3 s) to ATP, which dissociates quickly (t1/2 < 2.4 s). The slow conversion is a part of the normal enzyme reaction and limits the rate of the reaction at 24 degrees C. Thus, the sluggishness of the enzyme at low temperature is not due to slow substrate binding or product release but to the very slow rate of isomerization between enzyme-bound substrates and products. Probably the catalysis of the phosphoryl group transfer is less efficient at low temperature, as suggested by structural data showing that Lys131 is improperly positioned to assist the transfer.
Collapse
|
40
|
Ramón-Maiques S, Marina A, Gil-Ortiz F, Fita I, Rubio V. Structure of acetylglutamate kinase, a key enzyme for arginine biosynthesis and a prototype for the amino acid kinase enzyme family, during catalysis. Structure 2002; 10:329-42. [PMID: 12005432 DOI: 10.1016/s0969-2126(02)00721-9] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
N-Acetyl-L-glutamate kinase (NAGK), a member of the amino acid kinase family, catalyzes the second and frequently controlling step of arginine synthesis. The Escherichia coli NAGK crystal structure to 1.5 A resolution reveals a 258-residue subunit homodimer nucleated by a central 16-stranded molecular open beta sheet sandwiched between alpha helices. In each subunit, AMPPNP, as an alphabetagamma-phosphate-Mg2+ complex, binds along the sheet C edge, and N-acetyl-L-glutamate binds near the dyadic axis with its gamma-COO- aligned at short distance from the gamma-phosphoryl, indicating associative phosphoryl transfer assisted by: (1) Mg2+ complexation; (2) the positive charges on Lys8, Lys217, and on two helix dipoles; and (3) by hydrogen bonding with the y-phosphate. The structural resemblance with carbamate kinase and the alignment of the sequences suggest that NAGK is a structural and functional prototype for the amino acid kinase family, which differs from other acylphosphate-making devices represented by phosphoglycerate kinase, acetate kinase, and biotin carboxylase.
Collapse
Affiliation(s)
- Santiago Ramón-Maiques
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), Spain
| | | | | | | | | |
Collapse
|
41
|
Ahuja A, Purcarea C, Guy HI, Evans DR. A novel carbamoyl-phosphate synthetase from Aquifex aeolicus. J Biol Chem 2001; 276:45694-703. [PMID: 11574542 DOI: 10.1074/jbc.m106382200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aquifex aeolicus, an extreme hyperthermophile, has neither a full-length carbamoyl-phosphate synthetase (CPSase) resembling the enzyme found in all mesophilic organisms nor a carbamate kinase-like CPSase such as those present in several hyperthermophilic archaea. However, the genome has open reading frames encoding putative proteins that are homologous to the major CPSase domains. The glutaminase, CPS.A, and CPS.B homologs from A. aeolicus were cloned, overexpressed in Escherichia coli, and purified to homogeneity. The isolated proteins could catalyze several partial reactions but not the overall synthesis of carbamoyl phosphate. However, a stable 124-kDa complex could be reconstituted from stoichiometric amounts of CPS.A and CPS.B proteins that synthesized carbamoyl phosphate from ATP, bicarbonate, and ammonia. The inclusion of the glutaminase subunit resulted in the formation of a 171-kDa complex that could utilize glutamine as the nitrogen-donating substrate, although the catalytic efficiency was significantly compromised. Molecular modeling, using E. coli CPSase as a template, showed that the enzyme has a similar structural organization and interdomain interfaces and that all of the residues known to be essential for function are conserved and properly positioned. A steady state kinetic study at 78 degrees C indicated that although the substrate affinity was similar for bicarbonate, ammonia, and glutamine, the K(m) for ATP was appreciably higher than that of any known CPSase. The A. aeolicus complex, with a split gene encoding the major synthetase domains and relatively inefficient coupling of amidotransferase and synthetase functions, may be more closely related to the ancestral precursor of contemporary mesophilic CPSases.
Collapse
Affiliation(s)
- A Ahuja
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
42
|
Uriarte M, Marina A, Ramón-Maiques S, Rubio V, Durbecq V, Legrain C, Glansdorff N. Carbamoyl phosphate synthesis: carbamate kinase from Pyrococcus furiosus. Methods Enzymol 2001; 331:236-47. [PMID: 11265466 DOI: 10.1016/s0076-6879(01)31062-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- M Uriarte
- Instituto de Biomedicina de Valencia (CSIC), Valencia 46010, Spain
| | | | | | | | | | | | | |
Collapse
|
43
|
Alcántara C, Cervera J, Rubio V. Carbamate kinase can replace in vivo carbamoyl phosphate synthetase. Implications for the evolution of carbamoyl phosphate biosynthesis. FEBS Lett 2000; 484:261-4. [PMID: 11078889 DOI: 10.1016/s0014-5793(00)02168-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The exclusive involvement of carbamate kinase (CK) in fermentative ATP production and of carbamoyl phosphate synthetase (CPS) in the production of carbamoyl phosphate (CP) for pyrimidines and arginine biosynthesis was challenged by the finding of CK as the only activity synthesising CP in the archaea Pyrococcus furiosus and Pyrococcus abyssi. We now show that CK can replace CPS in vivo: transformation of Escherichia coli devoid of the CPS gene with plasmids encoding the CK from P. furiosus or from Enterococcus faecalis (which uses CK for making ATP) restores the ability of CPS-deficient E. coli to grow in the absence of arginine and uracil if ammonia and bicarbonate are present.
Collapse
Affiliation(s)
- C Alcántara
- Instituto de Investigaciones Citológicas (FVIB), Valencia, Spain
| | | | | |
Collapse
|