1
|
AlRawashdeh S, Barakat KH. Applications of Molecular Dynamics Simulations in Drug Discovery. Methods Mol Biol 2024; 2714:127-141. [PMID: 37676596 DOI: 10.1007/978-1-0716-3441-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
In the current drug development process, molecular dynamics (MD) simulations have proven to be very useful. This chapter provides an overview of the current applications of MD simulations in drug discovery, from detecting protein druggable sites and validating drug docking outcomes to exploring protein conformations and investigating the influence of mutations on its structure and functions. In addition, this chapter emphasizes various strategies to improve the conformational sampling efficiency in molecular dynamics simulations. With a growing computer power and developments in the production of force fields and MD techniques, the importance of MD simulations in helping the drug development process is projected to rise significantly in the future.
Collapse
Affiliation(s)
- Sara AlRawashdeh
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Khaled H Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
2
|
Liu C, Jin M, Wang S, Han W, Zhao Q, Wang Y, Xu C, Diao L, Yin Y, Peng C, Bao L, Wang Y, Cong Y. Pathway and mechanism of tubulin folding mediated by TRiC/CCT along its ATPase cycle revealed using cryo-EM. Commun Biol 2023; 6:531. [PMID: 37193829 DOI: 10.1038/s42003-023-04915-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/04/2023] [Indexed: 05/18/2023] Open
Abstract
The eukaryotic chaperonin TRiC/CCT assists the folding of about 10% of cytosolic proteins through an ATP-driven conformational cycle, and the essential cytoskeleton protein tubulin is the obligate substrate of TRiC. Here, we present an ensemble of cryo-EM structures of endogenous human TRiC throughout its ATPase cycle, with three of them revealing endogenously engaged tubulin in different folding stages. The open-state TRiC-tubulin-S1 and -S2 maps show extra density corresponding to tubulin in the cis-ring chamber of TRiC. Our structural and XL-MS analyses suggest a gradual upward translocation and stabilization of tubulin within the TRiC chamber accompanying TRiC ring closure. In the closed TRiC-tubulin-S3 map, we capture a near-natively folded tubulin-with the tubulin engaging through its N and C domains mainly with the A and I domains of the CCT3/6/8 subunits through electrostatic and hydrophilic interactions. Moreover, we also show the potential role of TRiC C-terminal tails in substrate stabilization and folding. Our study delineates the pathway and molecular mechanism of TRiC-mediated folding of tubulin along the ATPase cycle of TRiC, and may also inform the design of therapeutic agents targeting TRiC-tubulin interactions.
Collapse
Affiliation(s)
- Caixuan Liu
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Mingliang Jin
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Shutian Wang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Wenyu Han
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qiaoyu Zhao
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yifan Wang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Cong Xu
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Lei Diao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yue Yin
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, CAS, 201210, Shanghai, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, CAS, 201210, Shanghai, China
| | - Lan Bao
- University of Chinese Academy of Sciences, 100049, Beijing, China
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yanxing Wang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yao Cong
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
3
|
Xie J, Pan G, Li Y, Lai L. How protein topology controls allosteric regulations. J Chem Phys 2023; 158:105102. [PMID: 36922138 DOI: 10.1063/5.0138279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Allostery is an important regulatory mechanism of protein functions. Among allosteric proteins, certain protein structure types are more observed. However, how allosteric regulation depends on protein topology remains elusive. In this study, we extracted protein topology graphs at the fold level and found that known allosteric proteins mainly contain multiple domains or subunits and allosteric sites reside more often between two or more domains of the same fold type. Only a small fraction of fold-fold combinations are observed in allosteric proteins, and homo-fold-fold combinations dominate. These analyses imply that the locations of allosteric sites including cryptic ones depend on protein topology. We further developed TopoAlloSite, a novel method that uses the kernel support vector machine to predict the location of allosteric sites on the overall protein topology based on the subgraph-matching kernel. TopoAlloSite successfully predicted known cryptic allosteric sites in several allosteric proteins like phosphopantothenoylcysteine synthetase, spermidine synthase, and sirtuin 6, demonstrating its power in identifying cryptic allosteric sites without performing long molecular dynamics simulations or large-scale experimental screening. Our study demonstrates that protein topology largely determines how its function can be allosterically regulated, which can be used to find new druggable targets and locate potential binding sites for rational allosteric drug design.
Collapse
Affiliation(s)
- Juan Xie
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Gaoxiang Pan
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yibo Li
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Luhua Lai
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Chang WH, Huang SH, Lin HH, Chung SC, Tu IP. Cryo-EM Analyses Permit Visualization of Structural Polymorphism of Biological Macromolecules. FRONTIERS IN BIOINFORMATICS 2021; 1:788308. [PMID: 36303748 PMCID: PMC9580929 DOI: 10.3389/fbinf.2021.788308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
The functions of biological macromolecules are often associated with conformational malleability of the structures. This phenomenon of chemically identical molecules with different structures is coined structural polymorphism. Conventionally, structural polymorphism is observed directly by structural determination at the density map level from X-ray crystal diffraction. Although crystallography approach can report the conformation of a macromolecule with the position of each atom accurately defined in it, the exploration of structural polymorphism and interpreting biological function in terms of crystal structures is largely constrained by the crystal packing. An alternative approach to studying the macromolecule of interest in solution is thus desirable. With the advancement of instrumentation and computational methods for image analysis and reconstruction, cryo-electron microscope (cryo-EM) has been transformed to be able to produce “in solution” structures of macromolecules routinely with resolutions comparable to crystallography but without the need of crystals. Since the sample preparation of single-particle cryo-EM allows for all forms co-existing in solution to be simultaneously frozen, the image data contain rich information as to structural polymorphism. The ensemble of structure information can be subsequently disentangled through three-dimensional (3D) classification analyses. In this review, we highlight important examples of protein structural polymorphism in relation to allostery, subunit cooperativity and function plasticity recently revealed by cryo-EM analyses, and review recent developments in 3D classification algorithms including neural network/deep learning approaches that would enable cryo-EM analyese in this regard. Finally, we brief the frontier of cryo-EM structure determination of RNA molecules where resolving the structural polymorphism is at dawn.
Collapse
Affiliation(s)
- Wei-Hau Chang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- *Correspondence: Wei-Hau Chang,
| | | | - Hsin-Hung Lin
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Szu-Chi Chung
- Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - I-Ping Tu
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
5
|
Stoppelman JP, Ng TT, Nerenberg PS, Wang LP. Development and Validation of AMBER-FB15-Compatible Force Field Parameters for Phosphorylated Amino Acids. J Phys Chem B 2021; 125:11927-11942. [PMID: 34668708 DOI: 10.1021/acs.jpcb.1c07547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Phosphorylation of select amino acid residues is one of the most common biological mechanisms for regulating protein structures and functions. While computational modeling can be used to explore the detailed structural changes associated with phosphorylation, most molecular mechanics force fields developed for the simulation of phosphoproteins have been noted to be inconsistent with experimental data. In this work, we parameterize force fields for the phosphorylated forms of the amino acids serine, threonine, and tyrosine using the ForceBalance software package with the goal of improving agreement with experiments for these residues. Our optimized force field, denoted as FB18, is parameterized using high-quality ab initio potential energy scans and is designed to be fully compatible with the AMBER-FB15 protein force field. When utilized in MD simulations together with the TIP3P-FB water model, we find that FB18 consistently enhances the prediction of experimental quantities such as 3J NMR couplings and intramolecular hydrogen-bonding propensities in comparison to previously published models. As was reported with AMBER-FB15, we also see improved agreement with the reference QM calculations in regions at and away from local minima. We thus believe that the FB18 parameter set provides a promising route for the further investigation of the varied effects of protein phosphorylation.
Collapse
Affiliation(s)
- John P Stoppelman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Tracey T Ng
- Department of Physics & Astronomy, California State University, Los Angeles, California 90032, United States
| | - Paul S Nerenberg
- Department of Physics & Astronomy, California State University, Los Angeles, California 90032, United States.,Department of Biological Sciences, California State University, Los Angeles, California 90032, United States
| | - Lee-Ping Wang
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
6
|
Panina IS, Mamchur AA, Yaroshevich IA, Zlenko DV, Pichkur EB, Kudryavtseva SS, Muronetz VI, Sokolova OS, Stanishneva-Konovalova TB. Study of GroEL Conformational Mobility by Cryo-Electron Microscopy and Molecular Dynamics. CRYSTALLOGR REP+ 2021. [DOI: 10.1134/s1063774521050163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
Bacterial chaperonin GroEL is a complex ring-shaped protein oligomer that promotes the folding of other proteins by encapsulating them in the cavity. There is very little structural information about the disordered C-terminal fragment of the GroEL subunits, which is involved in the folding of the substrate protein. A 3D reconstruction of the GroEL apo-form was obtained by cryo-electron microscopy (cryo-EM) with a resolution of 3.02 Å and supplemented by molecular dynamics (MD) calculations. The results of cryo-EM and MD are in good agreement and demonstrate a diverse mobility of the protein subunit domains. The MD results predict the dynamics and the network of intramolecular contacts of the C-terminal sections of the protein. These results are of great importance for the subsequent study of the mechanism of protein folding in the GroEL cavity.
Collapse
|
7
|
CryoEM reveals the stochastic nature of individual ATP binding events in a group II chaperonin. Nat Commun 2021; 12:4754. [PMID: 34362932 PMCID: PMC8346469 DOI: 10.1038/s41467-021-25099-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/21/2021] [Indexed: 12/05/2022] Open
Abstract
Chaperonins are homo- or hetero-oligomeric complexes that use ATP binding and hydrolysis to facilitate protein folding. ATP hydrolysis exhibits both positive and negative cooperativity. The mechanism by which chaperonins coordinate ATP utilization in their multiple subunits remains unclear. Here we use cryoEM to study ATP binding in the homo-oligomeric archaeal chaperonin from Methanococcus maripaludis (MmCpn), consisting of two stacked rings composed of eight identical subunits each. Using a series of image classification steps, we obtained different structural snapshots of individual chaperonins undergoing the nucleotide binding process. We identified nucleotide-bound and free states of individual subunits in each chaperonin, allowing us to determine the ATP occupancy state of each MmCpn particle. We observe distinctive tertiary and quaternary structures reflecting variations in nucleotide occupancy and subunit conformations in each chaperonin complex. Detailed analysis of the nucleotide distribution in each MmCpn complex indicates that individual ATP binding events occur in a statistically random manner for MmCpn, both within and across the rings. Our findings illustrate the power of cryoEM to characterize a biochemical property of multi-subunit ligand binding cooperativity at the individual particle level. The mechanism by which chaperonins coordinate ATP utilization in their multiple subunits remains unclear. Here, the authors employ an approach that uses cryo-EM single particle analysis to track the number and distribution of nucleotides bound to each subunit in the homo-oligomeric MmCpn archaeal chaperonin complex and observe that ATP binds in a statistically random manner to MmCpn both within a ring and across the rings, which shows that there is no cooperativity in ATP binding to archaeal group II chaperonins under the conditions used in this study.
Collapse
|
8
|
Fatima K, Naqvi F, Younas H. A Review: Molecular Chaperone-mediated Folding, Unfolding and Disaggregation of Expressed Recombinant Proteins. Cell Biochem Biophys 2021; 79:153-174. [PMID: 33634426 DOI: 10.1007/s12013-021-00970-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/01/2021] [Indexed: 12/26/2022]
Abstract
The advancements in biotechnology over time have led to an increase in the demand of pure, soluble and functionally active proteins. Recombinant protein production has thus been employed to obtain high expression of purified proteins in bulk. E. coli is considered as the most desirable host for recombinant protein production due to its inexpensive and fast cultivation, simple nutritional requirements and known genetics. Despite all these benefits, recombinant protein production often comes with drawbacks, such as, the most common being the formation of inclusion bodies due to improper protein folding. Consequently, this can lead to the loss of the structure-function relationship of a protein. Apart from various strategies, one major strategy to resolve this issue is the use of molecular chaperones that act as folding modulators for proteins. Molecular chaperones assist newly synthesized, aggregated or misfolded proteins to fold into their native conformations. Chaperones have been widely used to improve the expression of various proteins which are otherwise difficult to produce in E. coli. Here, we discuss the structure, function, and role of major E. coli molecular chaperones in recombinant technology such as trigger factor, GroEL, DnaK and ClpB.
Collapse
Affiliation(s)
- Komal Fatima
- Department of Biochemistry, Kinnaird College for Women, Lahore, Punjab, Pakistan
| | - Fatima Naqvi
- Department of Biochemistry, Kinnaird College for Women, Lahore, Punjab, Pakistan
| | - Hooria Younas
- Department of Biochemistry, Kinnaird College for Women, Lahore, Punjab, Pakistan.
| |
Collapse
|
9
|
Horovitz A, Mondal T. Discriminating between Concerted and Sequential Allosteric Mechanisms by Comparing Equilibrium and Kinetic Hill Coefficients. J Phys Chem B 2021; 125:70-73. [PMID: 33397110 PMCID: PMC7884004 DOI: 10.1021/acs.jpcb.0c09351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/10/2020] [Indexed: 11/30/2022]
Abstract
Hill coefficients, which provide a measure of cooperativity in ligand binding, can be determined for equilibrium (or steady-state) data by measuring fractional saturation (or initial reaction velocities) as a function of ligand concentration. Hill coefficients can also be determined for transient kinetic data from plots of the observed rate constant of the ligand-promoted conformational change as a function of ligand concentration. Here, it is shown that the ratio of the values of these two Hill coefficients can provide insight into the allosteric mechanism. Cases when the value of the kinetic Hill coefficient is equal to or greater than the value of the equilibrium coefficient indicate concerted transitions whereas ratios smaller than one indicate a sequential transition. The derivations in this work are for symmetric dimers but are expected to have general applicability for homo-oligomers.
Collapse
Affiliation(s)
- Amnon Horovitz
- Department of Structural
Biology Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tridib Mondal
- Department of Structural
Biology Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
10
|
Zhang Y, Han Z, Li C. Molecular insight into human P-glycoprotein allosteric transition from outward- to inward-facing state. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2020.110823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Bauer JA, Pavlović J, Bauerová-Hlinková V. Normal Mode Analysis as a Routine Part of a Structural Investigation. Molecules 2019; 24:E3293. [PMID: 31510014 PMCID: PMC6767145 DOI: 10.3390/molecules24183293] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/30/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022] Open
Abstract
Normal mode analysis (NMA) is a technique that can be used to describe the flexible states accessible to a protein about an equilibrium position. These states have been shown repeatedly to have functional significance. NMA is probably the least computationally expensive method for studying the dynamics of macromolecules, and advances in computer technology and algorithms for calculating normal modes over the last 20 years have made it nearly trivial for all but the largest systems. Despite this, it is still uncommon for NMA to be used as a component of the analysis of a structural study. In this review, we will describe NMA, outline its advantages and limitations, explain what can and cannot be learned from it, and address some criticisms and concerns that have been voiced about it. We will then review the most commonly used techniques for reducing the computational cost of this method and identify the web services making use of these methods. We will illustrate several of their possible uses with recent examples from the literature. We conclude by recommending that NMA become one of the standard tools employed in any structural study.
Collapse
Affiliation(s)
- Jacob A Bauer
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia.
| | - Jelena Pavlović
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia
| | - Vladena Bauerová-Hlinková
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia
| |
Collapse
|
12
|
Duan L, Guo X, Cong Y, Feng G, Li Y, Zhang JZH. Accelerated Molecular Dynamics Simulation for Helical Proteins Folding in Explicit Water. Front Chem 2019; 7:540. [PMID: 31448259 PMCID: PMC6691143 DOI: 10.3389/fchem.2019.00540] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 07/15/2019] [Indexed: 12/26/2022] Open
Abstract
In this study, we examined the folding processes of eight helical proteins (2I9M, TC5B, 1WN8, 1V4Z, 1HO2, 1HLL, 2KFE, and 1YYB) at room temperature using the explicit solvent model under the AMBER14SB force field with the accelerated molecular dynamics (AMD) and traditional molecular dynamics (MD), respectively. We analyzed and compared the simulation results obtained by these two methods based on several aspects, such as root mean square deviation (RMSD), native contacts, cluster analysis, folding snapshots, free energy landscape, and the evolution of the radius of gyration, which showed that these eight proteins were successfully and consistently folded into the corresponding native structures by AMD simulations carried out at room temperature. In addition, the folding occurred in the range of 40~180 ns after starting from the linear structures of the eight proteins at 300 K. By contrast, these stable folding structures were not found when the traditional molecular dynamics (MD) simulation was used. At the same time, the influence of high temperatures (350, 400, and 450 K) is also further investigated. Study found that the simulation efficiency of AMD is higher than that of MD simulations, regardless of the temperature. Of these temperatures, 300 K is the most suitable temperature for protein folding for all systems. To further investigate the efficiency of AMD, another trajectory was simulated for eight proteins with the same linear structure but different random seeds at 300 K. Both AMD trajectories reached the correct folded structures. Our result clearly shows that AMD simulation are a highly efficient and reliable method for the study of protein folding.
Collapse
Affiliation(s)
- Lili Duan
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Xiaona Guo
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Yalong Cong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Guoqiang Feng
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Yuchen Li
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - John Z H Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, China.,Department of Chemistry, New York University, New York, NY, United States
| |
Collapse
|
13
|
Thirumalai D, Hyeon C, Zhuravlev PI, Lorimer GH. Symmetry, Rigidity, and Allosteric Signaling: From Monomeric Proteins to Molecular Machines. Chem Rev 2019; 119:6788-6821. [DOI: 10.1021/acs.chemrev.8b00760] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- D. Thirumalai
- Department of Chemistry, The University of Texas, Austin, Texas 78712, United States
| | - Changbong Hyeon
- Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
| | - Pavel I. Zhuravlev
- Biophysics Program, Institute for Physical Science and Technology and Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - George H. Lorimer
- Biophysics Program, Institute for Physical Science and Technology and Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
14
|
Thirumalai D, Hyeon C. Signalling networks and dynamics of allosteric transitions in bacterial chaperonin GroEL: implications for iterative annealing of misfolded proteins. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0182. [PMID: 29735736 DOI: 10.1098/rstb.2017.0182] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2018] [Indexed: 12/14/2022] Open
Abstract
Signal transmission at the molecular level in many biological complexes occurs through allosteric transitions. Allostery describes the responses of a complex to binding of ligands at sites that are spatially well separated from the binding region. We describe the structural perturbation method, based on phonon propagation in solids, which can be used to determine the signal-transmitting allostery wiring diagram (AWD) in large but finite-sized biological complexes. Application to the bacterial chaperonin GroEL-GroES complex shows that the AWD determined from structures also drives the allosteric transitions dynamically. From both a structural and dynamical perspective these transitions are largely determined by formation and rupture of salt-bridges. The molecular description of allostery in GroEL provides insights into its function, which is quantitatively described by the iterative annealing mechanism. Remarkably, in this complex molecular machine, a deep connection is established between the structures, reaction cycle during which GroEL undergoes a sequence of allosteric transitions, and function, in a self-consistent manner.This article is part of a discussion meeting issue 'Allostery and molecular machines'.
Collapse
Affiliation(s)
- D Thirumalai
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Changbong Hyeon
- Korea Institute for Advanced Study, Seoul 02455, South Korea
| |
Collapse
|
15
|
Gruber R, Horovitz A. Unpicking allosteric mechanisms of homo-oligomeric proteins by determining their successive ligand binding constants. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0176. [PMID: 29735730 DOI: 10.1098/rstb.2017.0176] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2018] [Indexed: 11/12/2022] Open
Abstract
Advances in native mass spectrometry and single-molecule techniques have made it possible in recent years to determine the values of successive ligand binding constants for large multi-subunit proteins. Given these values, it is possible to distinguish between different allosteric mechanisms and, thus, obtain insights into how various bio-molecular machines work. Here, we describe for ring-shaped homo-oligomers, in particular, how the relationship between the values of successive ligand binding constants is diagnostic for concerted, sequential and probabilistic allosteric mechanisms.This article is part of a discussion meeting issue 'Allostery and molecular machines'.
Collapse
Affiliation(s)
- Ranit Gruber
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Amnon Horovitz
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
16
|
Javidialesaadi A, Flournoy SM, Stan G. Role of Diffusion in Unfolding and Translocation of Multidomain Titin I27 Substrates by a Clp ATPase Nanomachine. J Phys Chem B 2019; 123:2623-2635. [DOI: 10.1021/acs.jpcb.8b10282] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
| | - Shanice M. Flournoy
- Department of Chemistry, Virginia State University, Petersburg, Virginia 23806, United States
| | - George Stan
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
17
|
Piana S, Shaw DE. Atomic-Level Description of Protein Folding inside the GroEL Cavity. J Phys Chem B 2018; 122:11440-11449. [PMID: 30277396 DOI: 10.1021/acs.jpcb.8b07366] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chaperonins (ubiquitous facilitators of protein folding) sequester misfolded proteins within an internal cavity, thus preventing protein aggregation during the process of refolding. GroEL, a tetradecameric bacterial chaperonin, is one of the most studied chaperonins, but the role of the internal cavity in the refolding process is still unclear. It has been suggested that rather than simply isolating proteins while they refold, the GroEL cavity actively promotes protein folding. A detailed characterization of the folding dynamics and thermodynamics of protein substrates encapsulated within the cavity, however, has been difficult to obtain by experimental means, due to the system's complexity and the many steps in the folding cycle. Here, we examine the influence of the GroEL cavity on protein folding based on the results of unbiased, atomistic molecular dynamics simulations. We first verified that the computational setup, which uses a recently developed state-of-the-art force field that more accurately reproduces the aggregation propensity of unfolded states, could recapitulate the essential structural dynamics of GroEL. In these simulations, the GroEL tetradecamer was highly dynamic, transitioning among states corresponding to most of the structures that have been observed experimentally. We then simulated a small, unfolded protein both in the GroEL cavity and in bulk solution and compared the protein's folding process within these two environments. Inside the GroEL cavity, the unfolded protein interacted strongly with the disordered residues in GroEL's C-terminal tails. These interactions stabilized the protein's unfolded states relative to its compact states and increased the roughness of its folding free-energy surface, resulting in slower folding compared to the rate in solution. For larger proteins, which are more typical GroEL substrates, we speculate that these interactions may allow substrates to more quickly escape kinetic traps associated with compact, misfolded states, thereby actively promoting folding.
Collapse
Affiliation(s)
- Stefano Piana
- D. E. Shaw Research , New York , New York 10036 , United States
| | - David E Shaw
- D. E. Shaw Research , New York , New York 10036 , United States.,Department of Biochemistry and Molecular Biophysics , Columbia University , New York , New York 10032 , United States
| |
Collapse
|
18
|
Hollingsworth SA, Dror RO. Molecular Dynamics Simulation for All. Neuron 2018; 99:1129-1143. [PMID: 30236283 PMCID: PMC6209097 DOI: 10.1016/j.neuron.2018.08.011] [Citation(s) in RCA: 1128] [Impact Index Per Article: 161.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/17/2018] [Accepted: 08/07/2018] [Indexed: 12/12/2022]
Abstract
The impact of molecular dynamics (MD) simulations in molecular biology and drug discovery has expanded dramatically in recent years. These simulations capture the behavior of proteins and other biomolecules in full atomic detail and at very fine temporal resolution. Major improvements in simulation speed, accuracy, and accessibility, together with the proliferation of experimental structural data, have increased the appeal of biomolecular simulation to experimentalists-a trend particularly noticeable in, although certainly not limited to, neuroscience. Simulations have proven valuable in deciphering functional mechanisms of proteins and other biomolecules, in uncovering the structural basis for disease, and in the design and optimization of small molecules, peptides, and proteins. Here we describe, in practical terms, the types of information MD simulations can provide and the ways in which they typically motivate further experimental work.
Collapse
Affiliation(s)
- Scott A Hollingsworth
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA; Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University, Stanford, CA 94305, USA; Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Ron O Dror
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA; Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University, Stanford, CA 94305, USA; Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
19
|
Palazzolo L, Parravicini C, Laurenzi T, Guerrini U, Indiveri C, Gianazza E, Eberini I. In silico Description of LAT1 Transport Mechanism at an Atomistic Level. Front Chem 2018; 6:350. [PMID: 30197880 PMCID: PMC6117385 DOI: 10.3389/fchem.2018.00350] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 07/25/2018] [Indexed: 11/24/2022] Open
Abstract
The molecular mechanism of transport mediated by LAT1, a sodium-independent antiporter of large neutral amino acids, was investigated through in silico procedures, specifically making reference to two transported substrates, tyrosine (Tyr) and leucine methyl ester (LME), and to 3,5-diiodo-L-tyrosine (DIT), a well-known LAT1 inhibitor. Two models of the transporter were built by comparative modeling, with LAT1 either in an outward-facing (OF) or in an inward-facing (IF) conformation, based, respectively, on the crystal structure of AdiC and of GadC. As frequently classic Molecular Dynamics (MD) fails to monitor large-scale conformational transitions within a reasonable simulated time, the OF structure was equilibrated for 150 ns then processed through targeted MD (tMD). During this procedure, an elastic force pulled the OF structure to the IF structure and induced, at the same time, substrates/inhibitor to move through the transport channel. This elastic force was modulated by a spring constant (k) value; by decreasing its value from 100 to 70, it was possible to comparatively account for the propensity for transport of the three tested molecules. In line with our expectations, during the tMD simulations, Tyr and LME behaved as substrates, moving down the transport channel, or most of it, for all k values. On the contrary, DIT behaved as an inhibitor, being (almost) transported across the channel only at the highest k value (100). During their transit through the channel, Tyr and LME interacted with specific amino acids (first with Phe252 then with Thr345, Arg348, Tyr259, and Phe262); this suggests that a primary as well as a putative secondary gate may contribute to the transport of substrates. Quite on the opposite, DIT appeared to establish only transient interactions with side chains lining the external part of the transport channel. Our tMD simulations could thus efficiently discriminate between two transported substrates and one inhibitor, and therefore can be proposed as a benchmark for developing novel LAT1 inhibitors of pharmacological interest.
Collapse
Affiliation(s)
- Luca Palazzolo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Chiara Parravicini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Tommaso Laurenzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Uliano Guerrini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Cesare Indiveri
- Dipartimento di Biologia, Ecologia e Scienze della Terra, University of Calabria, Cosenza, Italy
| | - Elisabetta Gianazza
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Ivano Eberini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
20
|
Bashardanesh Z, van der Spoel D. Impact of Dispersion Coefficient on Simulations of Proteins and Organic Liquids. J Phys Chem B 2018; 122:8018-8027. [DOI: 10.1021/acs.jpcb.8b05770] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zahedeh Bashardanesh
- Uppsala Center for Computational Chemistry, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, P.O. Box 596, SE-75124 Uppsala, Sweden
| | - David van der Spoel
- Uppsala Center for Computational Chemistry, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, P.O. Box 596, SE-75124 Uppsala, Sweden
| |
Collapse
|
21
|
Zhang Y, Gong W, Wang Y, Liu Y, Li C. Exploring movement and energy in human P-glycoprotein conformational rearrangement. J Biomol Struct Dyn 2018; 37:1104-1119. [PMID: 29620438 DOI: 10.1080/07391102.2018.1461133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human P-glycoprotein (P-gp), a kind of ATP-Binding Cassette transporter, can export a diverse variety of anti-cancer drugs out of the tumor cell. Its overexpression is one of the main reasons for the multidrug resistance (MDR) of tumor cells. It has been confirmed that during the substrate transport process, P-gp experiences a large-scale structural rearrangement from the inward- to outward-facing states. However, the mechanism of how the nucleotide-binding domains (NBDs) control the transmembrane domains (TMDs) to open towards the periplasm in the outward-facing state has not yet been fully characterized. Herein, targeted molecular dynamics simulations were performed to explore the conformational rearrangement of human P-gp. The results show that the allosteric process proceeds in a coupled way, and first the transition is driven by the NBDs, and then transmitted to the cytoplasmic parts of TMDs, finally to the periplasmic parts. The trajectories show that besides the translational motions, the NBDs undergo a rotation movement, which mainly occurs in xy plane and ensures the formation of the correct ATP-binding pockets. The analyses on the interaction energies between the six structure segments (cICLs) from the TMDs and NBDs reveal that their subtle energy differences play an important role in causing the periplasmic parts of the transmembrane helices to separate from each other in the established directions and in appropriate amplitudes. This conclusion can explain the two experimental phenomena about human P-gp in some extent. These studies have provided a detailed exploration into human P-gp rearrangement process and given an energy insight into the TMD reorientation during P-gp transition.
Collapse
Affiliation(s)
- Yue Zhang
- a College of Life Science and Bioengineering , Beijing University of Technology , Beijing , 100124 , China
| | - Weikang Gong
- a College of Life Science and Bioengineering , Beijing University of Technology , Beijing , 100124 , China
| | - Yan Wang
- b Key Laboratory of Molecular Biophysics of the Ministry of Education, School of Life Science and Technology , Huazhong University of Science and Technology , Wuhan , Hubei , 430074 , China
| | - Yang Liu
- a College of Life Science and Bioengineering , Beijing University of Technology , Beijing , 100124 , China
| | - Chunhua Li
- a College of Life Science and Bioengineering , Beijing University of Technology , Beijing , 100124 , China
| |
Collapse
|
22
|
Design of Elastic Networks with Evolutionary Optimized Long-Range Communication as Mechanical Models of Allosteric Proteins. Biophys J 2017; 113:558-571. [PMID: 28793211 PMCID: PMC5550307 DOI: 10.1016/j.bpj.2017.06.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/25/2017] [Accepted: 06/14/2017] [Indexed: 02/08/2023] Open
Abstract
Allosteric effects often underlie the activity of proteins, and elucidating generic design aspects and functional principles unique to allosteric phenomena represent a major challenge. Here an approach consisting of the in silico design of synthetic structures, which, as the principal element of allostery, encode dynamical long-range coupling among two sites, is presented. The structures are represented by elastic networks, similar to coarse-grained models of real proteins. A strategy of evolutionary optimization was implemented to iteratively improve allosteric coupling. In the designed structures, allosteric interactions were analyzed in terms of strain propagation, and simple pathways that emerged during evolution were identified as signatures through which long-range communication was established. Moreover, robustness of allosteric performance with respect to mutations was demonstrated. As it turned out, the designed prototype structures reveal dynamical properties resembling those found in real allosteric proteins. Hence, they may serve as toy models of complex allosteric systems, such as proteins. Application of the developed modeling scheme to the allosteric transition in the myosin V molecular motor was also demonstrated.
Collapse
|
23
|
Electric-Field-Induced Protein Translocation via a Conformational Transition in SecDF: An MD Study. Biophys J 2017. [PMID: 28636909 DOI: 10.1016/j.bpj.2017.04.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SecDF is an important component of the Sec protein translocation machinery embedded in the bacterial membrane, which is associated with many functions, such as stabilizing other Sec translocon components within the membrane, maintaining the transmembrane (TM) potential, and facilitating the ATP-independent stage of the translocation mechanism. Related studies suggest that SecDF undergoes functionally important conformational changes that involve mainly its P1-head domain and that these changes are coupled with the proton motive force (Δp). However, there still is not a clear understanding of how SecDF functions, its exact role in the translocation machinery, and how its function is related to Δp. Here, using all-atom molecular dynamics simulations combined with umbrella sampling, we study the P1-head conformational change and how it is coupled to the proton motive force. We report potentials of mean force along a root-mean-square-distance-based reaction coordinate obtained in the presence and absence of the TM electrical potential. Our results show that the interaction of the P1 domain dipole moment with the TM electrical field considerably lowers the free-energy barrier in the direction of F-form to I-form transition.
Collapse
|
24
|
Wang LP, McKiernan KA, Gomes J, Beauchamp KA, Head-Gordon T, Rice JE, Swope WC, Martínez TJ, Pande VS. Building a More Predictive Protein Force Field: A Systematic and Reproducible Route to AMBER-FB15. J Phys Chem B 2017; 121:4023-4039. [PMID: 28306259 PMCID: PMC9724927 DOI: 10.1021/acs.jpcb.7b02320] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The increasing availability of high-quality experimental data and first-principles calculations creates opportunities for developing more accurate empirical force fields for simulation of proteins. We developed the AMBER-FB15 protein force field by building a high-quality quantum chemical data set consisting of comprehensive potential energy scans and employing the ForceBalance software package for parameter optimization. The optimized potential surface allows for more significant thermodynamic fluctuations away from local minima. In validation studies where simulation results are compared to experimental measurements, AMBER-FB15 in combination with the updated TIP3P-FB water model predicts equilibrium properties with equivalent accuracy, and temperature dependent properties with significantly improved accuracy, in comparison with published models. We also discuss the effect of changing the protein force field and water model on the simulation results.
Collapse
Affiliation(s)
- Lee-Ping Wang
- Department of Chemistry, University of California, Davis , Davis, California 95616, United States
| | - Keri A McKiernan
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Joseph Gomes
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Kyle A Beauchamp
- Counsyl, Inc. , South San Francisco, California 94080, United States
| | - Teresa Head-Gordon
- Departments of Chemistry, Bioengineering, Chemical and Biomolecular Engineering, and Kenneth S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley , Berkeley, California 94720, United States
- Chemical Sciences Division, Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Julia E Rice
- IBM Almaden Research Center, IBM Research , San Jose, California 95120, United States
| | - William C Swope
- IBM Almaden Research Center, IBM Research , San Jose, California 95120, United States
| | - Todd J Martínez
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
- PULSE Institute, Stanford University , Stanford, California 94305, United States
- SLAC National Accelerator Laboratory , Menlo Park, California 94025, United States
| | - Vijay S Pande
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
- Departments of Computer Science, Structural Biology, and Program in Biophysics, Stanford University , Stanford, California 94305, United States
| |
Collapse
|
25
|
Gao K, Zhao Y. A Network of Conformational Transitions in the Apo Form of NDM-1 Enzyme Revealed by MD Simulation and a Markov State Model. J Phys Chem B 2017; 121:2952-2960. [PMID: 28319394 DOI: 10.1021/acs.jpcb.7b00062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
New Delhi metallo-β-lactamase-1 (NDM-1) is a novel β-lactamase enzyme that confers enteric bacteria with nearly complete resistance to all β-lactam antibiotics, so it raises a formidable and global threat to human health. However, the binding mechanism between apo-NDM-1 and antibiotics as well as related conformational changes remains poorly understood, which largely hinders the overcoming of its antibiotic resistance. In our study, long-time conventional molecular dynamics simulation and Markov state models were applied to reveal both the dynamical and conformational landscape of apo-NDM-1: the MD simulation demonstrates that loop L3, which is responsible for antibiotic binding, is the most flexible and undergoes dramatic conformational changes; moreover, the Markov state model built from the simulation maps four metastable states including open, semiopen, and closed conformations of loop L3 as well as frequent transitions between the states. Our findings propose a possible conformational selection model for the binding mechanism between apo-NDM-1 and antibiotics, which facilitates the design of novel inhibitors and antibiotics.
Collapse
Affiliation(s)
- Kaifu Gao
- Institute of Biophysics and Department of Physics, Central China Normal University , Wuhan 430079, P. R. China
| | - Yunjie Zhao
- Institute of Biophysics and Department of Physics, Central China Normal University , Wuhan 430079, P. R. China
| |
Collapse
|
26
|
Gao K, Jia Y, Yang M. A Network of Conformational Transitions Revealed by Molecular Dynamics Simulations of the Binary Complex of Escherichia coli 6-Hydroxymethyl-7,8-dihydropterin Pyrophosphokinase with MgATP. Biochemistry 2016; 55:6931-6939. [PMID: 27951655 DOI: 10.1021/acs.biochem.6b00720] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) catalyzes the first reaction in the folate biosynthetic pathway. Comparison of its X-ray and nuclear magnetic resonance structures suggests that the enzyme undergoes significant conformational change upon binding to its substrates, especially in three catalytic loops. Experimental research has shown that, in its binary form, even bound by analogues of MgATP, loops 2 and 3 remain rather flexible; this raises questions about the putative large-scale induced-fit conformational change of the HPPK-MgATP binary complex. In this work, long-time all-atomic molecular dynamics simulations were conducted to investigate the loop dynamics in this complex. Our simulations show that, with loop 3 closed, multiple conformations of loop 2, including the open, semiopen, and closed forms, are all accessible to the binary complex. These results provide valuable structural insights into the details of conformational changes upon 6-hydroxymethyl-7,8-dihydropterin (HP) binding and biological activities of HPPK. Conformational network analysis and principal component analysis related to the loops are also discussed.
Collapse
Affiliation(s)
- Kaifu Gao
- Institute of Biophysics and Department of Physics, Central China Normal University , Wuhan 430079, P. R. China
| | - Ya Jia
- Institute of Biophysics and Department of Physics, Central China Normal University , Wuhan 430079, P. R. China
| | - Minghui Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071, P. R. China
| |
Collapse
|
27
|
Jha HC, Pei Y, Robertson ES. Epstein-Barr Virus: Diseases Linked to Infection and Transformation. Front Microbiol 2016; 7:1602. [PMID: 27826287 PMCID: PMC5078142 DOI: 10.3389/fmicb.2016.01602] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 09/26/2016] [Indexed: 12/16/2022] Open
Abstract
Epstein–Barr virus (EBV) was first discovered in 1964, and was the first known human tumor virus now shown to be associated with a vast number of human diseases. Numerous studies have been conducted to understand infection, propagation, and transformation in various cell types linked to human diseases. However, a comprehensive lens through which virus infection, reactivation and transformation of infected host cells can be visualized is yet to be formally established and will need much further investigation. Several human cell types infected by EBV have been linked to associated diseases. However, whether these are a direct result of EBV infection or indirectly due to contributions by additional infectious agents will need to be fully investigated. Therefore, a thorough examination of infection, reactivation, and cell transformation induced by EBV will provide a more detailed view of its contributions that drive pathogenesis. This undoubtedly expand our knowledge of the biology of EBV infection and the signaling activities of targeted cellular factors dysregulated on infection. Furthermore, these insights may lead to identification of therapeutic targets and agents for clinical interventions. Here, we review the spectrum of EBV-associated diseases, the role of the encoded latent antigens, and the switch to latency or lytic replication which occurs in EBV infected cells. Furthermore, we describe the cellular processes and critical factors which contribute to cell transformation. We also describe the fate of B-cells and epithelial cells after EBV infection and the expected consequences which contribute to establishment of viral-associated pathologies.
Collapse
Affiliation(s)
- Hem C Jha
- Department of Otorhinolaryngology-Head and Neck Surgery and Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia PA, USA
| | - Yonggang Pei
- Department of Otorhinolaryngology-Head and Neck Surgery and Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia PA, USA
| | - Erle S Robertson
- Department of Otorhinolaryngology-Head and Neck Surgery and Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia PA, USA
| |
Collapse
|
28
|
Lv D, Li C, Tan J, Zhang X, Wang C, Su J. Identification of functionally key residues in maltose transporter with an elastic network model-based thermodynamic method. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1234077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Dashuai Lv
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Chunhua Li
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Jianjun Tan
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Xiaoyi Zhang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Cunxin Wang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Jiguo Su
- College of Science, Yanshan University, Qinhuangdao, China
| |
Collapse
|
29
|
Suzuki Y, Yura K. Conformational shift in the closed state of GroEL induced by ATP-binding triggers a transition to the open state. Biophys Physicobiol 2016; 13:127-134. [PMID: 27924266 PMCID: PMC5042161 DOI: 10.2142/biophysico.13.0_127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 01/12/2016] [Indexed: 01/11/2023] Open
Abstract
We investigated the effect of ATP binding to GroEL and elucidated a role of ATP in the conformational change of GroEL. GroEL is a tetradecamer chaperonin that helps protein folding by undergoing a conformational change from a closed state to an open state. This conformational change requires ATP, but does not require the hydrolysis of the ATP. The following three types of conformations are crystalized and the atomic coordinates are available; closed state without ATP, closed state with ATP and open state with ADP. We conducted simulations of the conformational change using Elastic Network Model from the closed state without ATP targeting at the open state, and from the closed state with ATP targeting at the open state. The simulations emphasizing the lowest normal mode showed that the one started with the closed state with ATP, rather than the one without ATP, reached a conformation closer to the open state. This difference was mainly caused by the changes in the positions of residues in the initial structure rather than the changes in "connectivity" of residues within the subunit. Our results suggest that ATP should behave as an insulator to induce conformation population shift in the closed state to the conformation that has a pathway leading to the open state.
Collapse
Affiliation(s)
- Yuka Suzuki
- Department of Biology, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Kei Yura
- Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan; Center for Informational Biology, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan; National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
30
|
Ovchinnikov V, Nam K, Karplus M. A Simple and Accurate Method To Calculate Free Energy Profiles and Reaction Rates from Restrained Molecular Simulations of Diffusive Processes. J Phys Chem B 2016; 120:8457-72. [PMID: 27135391 DOI: 10.1021/acs.jpcb.6b02139] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A method is developed to obtain simultaneously free energy profiles and diffusion constants from restrained molecular simulations in diffusive systems. The method is based on low-order expansions of the free energy and diffusivity as functions of the reaction coordinate. These expansions lead to simple analytical relationships between simulation statistics and model parameters. The method is tested on 1D and 2D model systems; its accuracy is found to be comparable to or better than that of the existing alternatives, which are briefly discussed. An important aspect of the method is that the free energy is constructed by integrating its derivatives, which can be computed without need for overlapping sampling windows. The implementation of the method in any molecular simulation program that supports external umbrella potentials (e.g., CHARMM) requires modification of only a few lines of code. As a demonstration of its applicability to realistic biomolecular systems, the method is applied to model the α-helix ↔ β-sheet transition in a 16-residue peptide in implicit solvent, with the reaction coordinate provided by the string method. Possible modifications of the method are briefly discussed; they include generalization to multidimensional reaction coordinates [in the spirit of the model of Ermak and McCammon (Ermak, D. L.; McCammon, J. A. J. Chem. Phys. 1978, 69, 1352-1360)], a higher-order expansion of the free energy surface, applicability in nonequilibrium systems, and a simple test for Markovianity. In view of the small overhead of the method relative to standard umbrella sampling, we suggest its routine application in the cases where umbrella potential simulations are appropriate.
Collapse
Affiliation(s)
- Victor Ovchinnikov
- Department of Chemistry and Chemical Biology, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Kwangho Nam
- Department of Chemistry, Umeå University , Umeå, Sweden , 901 87
| | - Martin Karplus
- Department of Chemistry and Chemical Biology, Harvard University , Cambridge, Massachusetts 02138, United States.,Laboratoire de Chimie Biophysique, ISIS, Université de Strasbourg , 67000 Strasbourg, France
| |
Collapse
|
31
|
Maximova T, Moffatt R, Ma B, Nussinov R, Shehu A. Principles and Overview of Sampling Methods for Modeling Macromolecular Structure and Dynamics. PLoS Comput Biol 2016; 12:e1004619. [PMID: 27124275 PMCID: PMC4849799 DOI: 10.1371/journal.pcbi.1004619] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Investigation of macromolecular structure and dynamics is fundamental to understanding how macromolecules carry out their functions in the cell. Significant advances have been made toward this end in silico, with a growing number of computational methods proposed yearly to study and simulate various aspects of macromolecular structure and dynamics. This review aims to provide an overview of recent advances, focusing primarily on methods proposed for exploring the structure space of macromolecules in isolation and in assemblies for the purpose of characterizing equilibrium structure and dynamics. In addition to surveying recent applications that showcase current capabilities of computational methods, this review highlights state-of-the-art algorithmic techniques proposed to overcome challenges posed in silico by the disparate spatial and time scales accessed by dynamic macromolecules. This review is not meant to be exhaustive, as such an endeavor is impossible, but rather aims to balance breadth and depth of strategies for modeling macromolecular structure and dynamics for a broad audience of novices and experts.
Collapse
Affiliation(s)
- Tatiana Maximova
- Department of Computer Science, George Mason University, Fairfax, Virginia, United States of America
| | - Ryan Moffatt
- Department of Computer Science, George Mason University, Fairfax, Virginia, United States of America
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland, United States of America
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland, United States of America
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amarda Shehu
- Department of Computer Science, George Mason University, Fairfax, Virginia, United States of America
- Department of Biongineering, George Mason University, Fairfax, Virginia, United States of America
- School of Systems Biology, George Mason University, Manassas, Virginia, United States of America
| |
Collapse
|
32
|
Abstract
Chaperonins are nanomachines that facilitate protein folding by undergoing energy (ATP)-dependent movements that are coordinated in time and space owing to complex allosteric regulation. They consist of two back-to-back stacked oligomeric rings with a cavity at each end where protein substrate folding can take place. Here, we focus on the GroEL/GroES chaperonin system from Escherichia coli and, to a lesser extent, on the more poorly characterized eukaryotic chaperonin CCT/TRiC. We describe their various functional (allosteric) states and how they are affected by substrates and allosteric effectors that include ATP, ADP, nonfolded protein substrates, potassium ions, and GroES (in the case of GroEL). We also discuss the pathways of intra- and inter-ring allosteric communication by which they interconvert and the coupling between allosteric transitions and protein folding reactions.
Collapse
Affiliation(s)
- Ranit Gruber
- Department of Structural Biology, Weizmann Institute of Science , Rehovot 76100, Israel
| | - Amnon Horovitz
- Department of Structural Biology, Weizmann Institute of Science , Rehovot 76100, Israel
| |
Collapse
|
33
|
GroEL2 of Mycobacterium tuberculosis Reveals the Importance of Structural Pliability in Chaperonin Function. J Bacteriol 2015; 198:486-97. [PMID: 26553853 DOI: 10.1128/jb.00844-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/05/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Intracellular protein folding is mediated by molecular chaperones, the best studied among which are the chaperonins GroEL and GroES. Conformational changes and allosteric transitions between different metastable states are hallmarks of the chaperonin mechanism. These conformational transitions between three structural domains of GroEL are anchored at two hinges. Although hinges are known to be critical for mediating the communication between different domains of GroEL, the relative importance of hinges on GroEL oligomeric assembly, ATPase activity, conformational changes, and functional activity is not fully characterized. We have exploited the inability of Mycobacterium tuberculosis GroEL2 to functionally complement an Escherichia coli groEL mutant to address the importance of hinge residues in the GroEL mechanism. Various chimeras of M. tuberculosis GroEL2 and E. coli GroEL allowed us to understand the role of hinges and dissect the consequences of oligomerization and substrate binding capability on conformational transitions. The present study explains the concomitant conformational changes observed with GroEL hinge variants and is best supported by the normal mode analysis. IMPORTANCE Conformational changes and allosteric transitions are hallmarks of the chaperonin mechanism. We have exploited the inability of M. tuberculosis GroEL2 to functionally complement a strain of E. coli in which groEL expression is repressed to address the importance of hinges. The significance of conservation at the hinge regions stands out as a prominent feature of the GroEL mechanism in binding to GroES and substrate polypeptides. The hinge residues play a significant role in the chaperonin activity in vivo and in vitro.
Collapse
|
34
|
Gao K, He H, Yang M, Yan H. Molecular dynamics simulations of the Escherichia coli HPPK apo-enzyme reveal a network of conformational transitions. Biochemistry 2015; 54:6734-42. [PMID: 26492157 DOI: 10.1021/acs.biochem.5b01012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) catalyzes the first reaction in the folate biosynthetic pathway. Comparison of its X-ray and nuclear magnetic resonance structures suggests that the enzyme undergoes significant conformational change upon binding to its substrates, especially in three catalytic loops. Experimental research has shown that even when confined by crystal contacts, loops 2 and 3 remain rather flexible when the enzyme is in its apo form, raising questions about the putative large-scale induced-fit conformational change of HPPK. To investigate the loop dynamics in a crystal-free environment, we performed conventional molecular dynamics simulations of the apo-enzyme at two different temperatures (300 and 350 K). Our simulations show that the crystallographic B-factors considerably underestimate the loop dynamics; multiple conformations of loops 2 and 3, including the open, semi-open, and closed conformations that an enzyme must adopt throughout its catalytic cycle, are all accessible to the apo-enzyme. These results revise our previous view of the functional mechanism of conformational change upon MgATP binding and offer valuable structural insights into the workings of HPPK. In this paper, conformational network analysis and principal component analysis related to the loops are discussed to support the presented conclusions.
Collapse
Affiliation(s)
- Kaifu Gao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071, P. R. China
| | - Hongqing He
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071, P. R. China
| | - Minghui Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071, P. R. China
| | - Honggao Yan
- Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States
| |
Collapse
|
35
|
GC JB, Gerstman BS, Chapagain PP. The Role of the Interdomain Interactions on RfaH Dynamics and Conformational Transformation. J Phys Chem B 2015; 119:12750-9. [DOI: 10.1021/acs.jpcb.5b05681] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jeevan B. GC
- Department of Physics, Florida International University, Miami, Florida 33199, United States
| | - Bernard S. Gerstman
- Department of Physics, Florida International University, Miami, Florida 33199, United States
| | - Prem P. Chapagain
- Department of Physics, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
36
|
Kumar CMS, Mande SC, Mahajan G. Multiple chaperonins in bacteria--novel functions and non-canonical behaviors. Cell Stress Chaperones 2015; 20:555-74. [PMID: 25986150 PMCID: PMC4463927 DOI: 10.1007/s12192-015-0598-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 01/05/2023] Open
Abstract
Chaperonins are a class of molecular chaperones that assemble into a large double ring architecture with each ring constituting seven to nine subunits and enclosing a cavity for substrate encapsulation. The well-studied Escherichia coli chaperonin GroEL binds non-native substrates and encapsulates them in the cavity thereby sequestering the substrates from unfavorable conditions and allowing the substrates to fold. Using this mechanism, GroEL assists folding of about 10-15 % of cellular proteins. Surprisingly, about 30 % of the bacteria express multiple chaperonin genes. The presence of multiple chaperonins raises questions on whether they increase general chaperoning ability in the cell or have developed specific novel cellular roles. Although the latter view is widely supported, evidence for the former is beginning to appear. Some of these chaperonins can functionally replace GroEL in E. coli and are generally indispensable, while others are ineffective and likewise are dispensable. Additionally, moonlighting functions for several chaperonins have been demonstrated, indicating a functional diversity among the chaperonins. Furthermore, proteomic studies have identified diverse substrate pools for multiple chaperonins. We review the current perception on multiple chaperonins and their physiological and functional specificities.
Collapse
Affiliation(s)
- C M Santosh Kumar
- Laboratory of Structural Biology, National Centre for Cell Science, Pune, 411007, India,
| | | | | |
Collapse
|
37
|
Skjærven L, Cuellar J, Martinez A, Valpuesta JM. Dynamics, flexibility, and allostery in molecular chaperonins. FEBS Lett 2015; 589:2522-32. [PMID: 26140986 DOI: 10.1016/j.febslet.2015.06.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 06/18/2015] [Accepted: 06/23/2015] [Indexed: 12/26/2022]
Abstract
The chaperonins are a family of molecular chaperones present in all three kingdoms of life. They are classified into Group I and Group II. Group I consists of the bacterial variants (GroEL) and the eukaryotic ones from mitochondria and chloroplasts (Hsp60), while Group II consists of the archaeal (thermosomes) and eukaryotic cytosolic variants (CCT or TRiC). Both groups assemble into a dual ring structure, with each ring providing a protective folding chamber for nascent and denatured proteins. Their functional cycle is powered by ATP binding and hydrolysis, which drives a series of structural rearrangements that enable encapsulation and subsequent release of the substrate protein. Chaperonins have elaborate allosteric mechanisms to regulate their functional cycle. Long-range negative cooperativity between the two rings ensures alternation of the folding chambers. Positive intra-ring cooperativity, which facilitates concerted conformational transitions within the protein subunits of one ring, has only been demonstrated for Group I chaperonins. In this review, we describe our present understanding of the underlying mechanisms and the structure-function relationships in these complex protein systems with a particular focus on the structural dynamics, allostery, and associated conformational rearrangements.
Collapse
Affiliation(s)
- Lars Skjærven
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Jorge Cuellar
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Aurora Martinez
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - José María Valpuesta
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
38
|
Identification of the Conformational transition pathway in PIP2 Opening Kir Channels. Sci Rep 2015; 5:11289. [PMID: 26063437 PMCID: PMC4462750 DOI: 10.1038/srep11289] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 04/29/2015] [Indexed: 11/08/2022] Open
Abstract
The gating of Kir channels depends critically on phosphatidylinositol 4,5-bisphosphate (PIP2), but the detailed mechanism by which PIP2 regulates Kir channels remains obscure. Here, we performed a series of Targeted molecular dynamics simulations on the full-length Kir2.1 channel and, for the first time, were able to achieve the transition from the closed to the open state. Our data show that with the upward motion of the cytoplasmic domain (CTD) the structure of the C-Linker changes from a loop to a helix. The twisting of the C-linker triggers the rotation of the CTD, which induces a small downward movement of the CTD and an upward motion of the slide helix toward the membrane that pulls the inner helix gate open. At the same time, the rotation of the CTD breaks the interaction between the CD- and G-loops thus releasing the G-loop. The G-loop then bounces away from the CD-loop, which leads to the opening of the G-loop gate and the full opening of the pore. We identified a series of interaction networks, between the N-terminus, CD loop, C linker and G loop one by one, which exquisitely regulates the global conformational changes during the opening of Kir channels by PIP2.
Collapse
|
39
|
Barden AO, Goler AS, Humphreys SC, Tabatabaei S, Lochner M, Ruepp MD, Jack T, Simonin J, Thompson AJ, Jones JP, Brozik JA. Tracking individual membrane proteins and their biochemistry: The power of direct observation. Neuropharmacology 2015; 98:22-30. [PMID: 25998277 DOI: 10.1016/j.neuropharm.2015.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/13/2015] [Accepted: 05/06/2015] [Indexed: 10/23/2022]
Abstract
The advent of single molecule fluorescence microscopy has allowed experimental molecular biophysics and biochemistry to transcend traditional ensemble measurements, where the behavior of individual proteins could not be precisely sampled. The recent explosion in popularity of new super-resolution and super-localization techniques coupled with technical advances in optical designs and fast highly sensitive cameras with single photon sensitivity and millisecond time resolution have made it possible to track key motions, reactions, and interactions of individual proteins with high temporal resolution and spatial resolution well beyond the diffraction limit. Within the purview of membrane proteins and ligand gated ion channels (LGICs), these outstanding advances in single molecule microscopy allow for the direct observation of discrete biochemical states and their fluctuation dynamics. Such observations are fundamentally important for understanding molecular-level mechanisms governing these systems. Examples reviewed here include the effects of allostery on the stoichiometry of ligand binding in the presence of fluorescent ligands; the observation of subdomain partitioning of membrane proteins due to microenvironment effects; and the use of single particle tracking experiments to elucidate characteristics of membrane protein diffusion and the direct measurement of thermodynamic properties, which govern the free energy landscape of protein dimerization. The review of such characteristic topics represents a snapshot of efforts to push the boundaries of fluorescence microscopy of membrane proteins to the absolute limit. This article is part of the Special Issue entitled 'Fluorescent Tools in Neuropharmacology'.
Collapse
Affiliation(s)
- Adam O Barden
- Department of Chemistry, Washington State University, PO Box 644630, Pullman, WA, 99164-4630, United States
| | - Adam S Goler
- Department of Chemistry, Washington State University, PO Box 644630, Pullman, WA, 99164-4630, United States
| | - Sara C Humphreys
- Department of Chemistry, Washington State University, PO Box 644630, Pullman, WA, 99164-4630, United States
| | - Samaneh Tabatabaei
- Department of Chemistry, Washington State University, PO Box 644630, Pullman, WA, 99164-4630, United States
| | - Martin Lochner
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Marc-David Ruepp
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Thomas Jack
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Jonathan Simonin
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Andrew J Thompson
- Pharmacology Department, Cambridge University, Tennis Court Road, Cambridge, CB2 1PD, United Kingdom
| | - Jeffrey P Jones
- Department of Chemistry, Washington State University, PO Box 644630, Pullman, WA, 99164-4630, United States
| | - James A Brozik
- Department of Chemistry, Washington State University, PO Box 644630, Pullman, WA, 99164-4630, United States.
| |
Collapse
|
40
|
Ovchinnikov V, Karplus M. Investigations of α-helix↔β-sheet transition pathways in a miniprotein using the finite-temperature string method. J Chem Phys 2014; 140:175103. [PMID: 24811667 PMCID: PMC4032436 DOI: 10.1063/1.4871685] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/07/2014] [Indexed: 12/17/2022] Open
Abstract
A parallel implementation of the finite-temperature string method is described, which takes into account the invariance of coordinates with respect to rigid-body motions. The method is applied to the complex α-helix↔β-sheet transition in a β-hairpin miniprotein in implicit solvent, which exhibits much of the complexity of conformational changes in proteins. Two transition paths are considered, one derived from a linear interpolant between the endpoint structures and the other derived from a targeted dynamics simulation. Two methods for computing the conformational free energy (FE) along the string are compared, a restrained method, and a tessellation method introduced by E. Vanden-Eijnden and M. Venturoli [J. Chem. Phys. 130, 194103 (2009)]. It is found that obtaining meaningful free energy profiles using the present atom-based coordinates requires restricting sampling to a vicinity of the converged path, where the hyperplanar approximation to the isocommittor surface is sufficiently accurate. This sampling restriction can be easily achieved using restraints or constraints. The endpoint FE differences computed from the FE profiles are validated by comparison with previous calculations using a path-independent confinement method. The FE profiles are decomposed into the enthalpic and entropic contributions, and it is shown that the entropy difference contribution can be as large as 10 kcal/mol for intermediate regions along the path, compared to 15-20 kcal/mol for the enthalpy contribution. This result demonstrates that enthalpic barriers for transitions are offset by entropic contributions arising from the existence of different paths across a barrier. The possibility of using systematically coarse-grained representations of amino acids, in the spirit of multiple interaction site residue models, is proposed as a means to avoid ad hoc sampling restrictions to narrow transition tubes.
Collapse
Affiliation(s)
- Victor Ovchinnikov
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Martin Karplus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
41
|
López-Blanco JR, Aliaga JI, Quintana-Ortí ES, Chacón P. iMODS: internal coordinates normal mode analysis server. Nucleic Acids Res 2014; 42:W271-6. [PMID: 24771341 PMCID: PMC4086069 DOI: 10.1093/nar/gku339] [Citation(s) in RCA: 424] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Normal mode analysis (NMA) in internal (dihedral) coordinates naturally reproduces the collective functional motions of biological macromolecules. iMODS facilitates the exploration of such modes and generates feasible transition pathways between two homologous structures, even with large macromolecules. The distinctive internal coordinate formulation improves the efficiency of NMA and extends its applicability while implicitly maintaining stereochemistry. Vibrational analysis, motion animations and morphing trajectories can be easily carried out at different resolution scales almost interactively. The server is versatile; non-specialists can rapidly characterize potential conformational changes, whereas advanced users can customize the model resolution with multiple coarse-grained atomic representations and elastic network potentials. iMODS supports advanced visualization capabilities for illustrating collective motions, including an improved affine-model-based arrow representation of domain dynamics. The generated all-heavy-atoms conformations can be used to introduce flexibility for more advanced modeling or sampling strategies. The server is free and open to all users with no login requirement at http://imods.chaconlab.org.
Collapse
Affiliation(s)
- José Ramón López-Blanco
- Department of Biological Chemical Physics, Rocasolano Physical Chemistry Institute C.S.I.C., Serrano 119, 28006 Madrid, Spain
| | - José I Aliaga
- Department of Computer Science and Engineering, University Jaume I, 12071 Castellón, Spain
| | | | - Pablo Chacón
- Department of Biological Chemical Physics, Rocasolano Physical Chemistry Institute C.S.I.C., Serrano 119, 28006 Madrid, Spain
| |
Collapse
|
42
|
Lee H, Seo S, Kim M, Choi JB, Kim SM, Jeon TJ, Kim MK. Opening and closing of a toroidal group II chaperonin revealed by a symmetry constrained elastic network model. Protein Sci 2014; 23:703-13. [PMID: 24639244 DOI: 10.1002/pro.2454] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 03/01/2014] [Accepted: 03/09/2014] [Indexed: 11/08/2022]
Abstract
Recently, the atomic structures of both the closed and open forms of Group 2 chaperonin protein Mm-cpn were revealed through crystallography and cryo-electron microscopy. This toroidal-like chaperonin is composed of two eightfold rings that face back-to-back. To gain a computational advantage, we used a symmetry constrained elastic network model (SCENM), which requires only a repeated subunit structure and its symmetric connectivity to neighboring subunits to simulate the entire system. In the case of chaperonin, only six subunits (i.e., three from each ring) were used out of the eight subunits comprising each ring. A smooth and symmetric pathway between the open and closed conformations was generated by elastic network interpolation (ENI). To support this result, we also performed a symmetry-constrained normal mode analysis (NMA), which revealed the intrinsic vibration features of the given structures. The NMA and ENI results for the representative single subunit were duplicated according to the symmetry pattern to reconstruct the entire assembly. To test the feasibility of the symmetry model, its results were also compared with those obtained from the full model. This study allowed the folding mechanism of chaperonin Mm-cpn to be elucidated by SCENM in a timely manner.
Collapse
Affiliation(s)
- Hoomin Lee
- School of Mechanical Engineering, Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon, 440-746, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
43
|
Decipher the mechanisms of protein conformational changes induced by nucleotide binding through free-energy landscape analysis: ATP binding to Hsp70. PLoS Comput Biol 2013; 9:e1003379. [PMID: 24348227 PMCID: PMC3861046 DOI: 10.1371/journal.pcbi.1003379] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 10/15/2013] [Indexed: 11/30/2022] Open
Abstract
ATP regulates the function of many proteins in the cell by transducing its binding and hydrolysis energies into protein conformational changes by mechanisms which are challenging to identify at the atomic scale. Based on molecular dynamics (MD) simulations, a method is proposed to analyze the structural changes induced by ATP binding to a protein by computing the effective free-energy landscape (FEL) of a subset of its coordinates along its amino-acid sequence. The method is applied to characterize the mechanism by which the binding of ATP to the nucleotide-binding domain (NBD) of Hsp70 propagates a signal to its substrate-binding domain (SBD). Unbiased MD simulations were performed for Hsp70-DnaK chaperone in nucleotide-free, ADP-bound and ATP-bound states. The simulations revealed that the SBD does not interact with the NBD for DnaK in its nucleotide-free and ADP-bound states whereas the docking of the SBD was found in the ATP-bound state. The docked state induced by ATP binding found in MD is an intermediate state between the initial nucleotide-free and final ATP-bound states of Hsp70. The analysis of the FEL projected along the amino-acid sequence permitted to identify a subset of 27 protein internal coordinates corresponding to a network of 91 key residues involved in the conformational change induced by ATP binding. Among the 91 residues, 26 are identified for the first time, whereas the others were shown relevant for the allosteric communication of Hsp70 s in several experiments and bioinformatics analysis. The FEL analysis revealed also the origin of the ATP-induced structural modifications of the SBD recently measured by Electron Paramagnetic Resonance. The pathway between the nucleotide-free and the intermediate state of DnaK was extracted by applying principal component analysis to the subset of internal coordinates describing the transition. The methodology proposed is general and could be applied to analyze allosteric communication in other proteins. The precise biophysical characterization of the mechanisms of the protein conformational changes controlled by a nucleotide remains a challenge in biology. Molecular dynamics simulations of proteins in different nucleotide-binding states contain information on the nucleotide-dependent conformational dynamics. However, it is difficult to extract relevant information about the conformation-induced mechanism from the raw molecular dynamics data. Herein, we addressed this issue for the major ATP-dependent molecular chaperones Hsp70 s, which contribute to crucial cellular processes and are involved in several neurodegenerative diseases and in cancer. To function, Hsp70 undergoes several conformational changes controlled by the state of its nucleotide-binding domain. We demonstrated that the analysis of the effective free-energy landscape of the protein projected along the amino-acid sequence and computed from the molecular dynamics simulations of Hsp70 in different nucleotide-binding states, holds the key to identify the key residues of the conformational induced pathway. Identification of the key residues involved in the propagation of the structural changes induced by ATP binding offer alternative druggable specific sites other than the ligand binding clefts. The methodology developed for Hsp70 is general and can be adapted to any ligand induced conformational change in proteins.
Collapse
|
44
|
Dissection of the ATP-dependent conformational change cycle of a group II chaperonin. J Mol Biol 2013; 426:447-59. [PMID: 24120682 DOI: 10.1016/j.jmb.2013.09.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 09/15/2013] [Accepted: 09/25/2013] [Indexed: 11/21/2022]
Abstract
Group II chaperonin captures an unfolded protein while in its open conformation and then mediates the folding of the protein during ATP-driven conformational change cycle. In this study, we performed kinetic analyses of the group II chaperonin from a hyperthermophilic archaeon, Thermococcus sp. KS-1 (TKS1-Cpn), by stopped-flow fluorometry and stopped-flow small-angle X-ray scattering to reveal the reaction cycle. Two TKS1-Cpn variants containing a Trp residue at position 265 or position 56 exhibit nearly the same fluorescence kinetics induced by rapid mixing with ATP. Fluorescence started to increase immediately after the start of mixing and reached a maximum at 1-2s after mixing. Only in the presence of K(+) that a gradual decrease in fluorescence was observed after the initial peak. Similar results were obtained by stopped-flow small-angle X-ray scattering. A rapid fluorescence increase, which reflects nucleotide binding, was observed for the mutant containing a Trp residue near the ATP binding site (K485W), irrespective of the presence or absence of K(+). Without K(+), a small, rapid fluorescence decrease followed the initial increase, and then a gradual decrease was observed. In contrast, with K(+), a large, rapid fluorescence decrease occurred just after the initial increase, and then the fluorescence gradually increased. Finally, we observed ATP binding signal and also subtle conformational change in an ATPase-deficient mutant with K485W mutation. Based on these results, we propose a reaction cycle model for group II chaperonins.
Collapse
|
45
|
iMODFIT: efficient and robust flexible fitting based on vibrational analysis in internal coordinates. J Struct Biol 2013; 184:261-70. [PMID: 23999189 DOI: 10.1016/j.jsb.2013.08.010] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/20/2013] [Accepted: 08/22/2013] [Indexed: 12/31/2022]
Abstract
Here, we employed the collective motions extracted from Normal Mode Analysis (NMA) in internal coordinates (torsional space) for the flexible fitting of atomic-resolution structures into electron microscopy (EM) density maps. The proposed methodology was validated using a benchmark of simulated cases, highlighting its robustness over the full range of EM resolutions and even over coarse-grained representations. A systematic comparison with other methods further showcased the advantages of this proposed methodology, especially at medium to lower resolutions. Using this method, computational costs and potential overfitting problems are naturally reduced by constraining the search in low-frequency NMA space, where covalent geometry is implicitly maintained. This method also effectively captures the macromolecular changes of a representative set of experimental test cases. We believe that this novel approach will extend the currently available EM hybrid methods to the atomic-level interpretation of large conformational changes and their functional implications.
Collapse
|
46
|
Gao Y, Iancu CV, Mukind S, Choe JY, Honzatko RB. Mechanism of displacement of a catalytically essential loop from the active site of mammalian fructose-1,6-bisphosphatase. Biochemistry 2013; 52:5206-16. [PMID: 23844654 PMCID: PMC4869526 DOI: 10.1021/bi400532n] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AMP triggers a 15° subunit-pair rotation in fructose-1,6-bisphosphatase (FBPase) from its active R state to its inactive T state. During this transition, a catalytically essential loop (residues 50-72) leaves its active (engaged) conformation. Here, the structures of Ile(10) → Asp FBPase and molecular dynamic simulations reveal factors responsible for loop displacement. The AMP/Mg(2+) and AMP/Zn(2+) complexes of Asp(10) FBPase are in intermediate quaternary conformations (completing 12° of the subunit-pair rotation), but the complex with Zn(2+) provides the first instance of an engaged loop in a near-T quaternary state. The 12° subunit-pair rotation generates close contacts involving the hinges (residues 50-57) and hairpin turns (residues 58-72) of the engaged loops. Additional subunit-pair rotation toward the T state would make such contacts unfavorable, presumably causing displacement of the loop. Targeted molecular dynamics simulations reveal no steric barriers to subunit-pair rotations of up to 14° followed by the displacement of the loop from the active site. Principal component analysis reveals high-amplitude motions that exacerbate steric clashes of engaged loops in the near-T state. The results of the simulations and crystal structures are in agreement: subunit-pair rotations just short of the canonical T state coupled with high-amplitude modes sterically displace the dynamic loop from the active site.
Collapse
Affiliation(s)
- Yang Gao
- Department of Biochemistry, Biophysics, and Molecular Biology, 4206 Molecular Biology Building, Iowa State University, Ames, Iowa 50011-3260, United States
| | | | | | | | - Richard B. Honzatko
- Department of Biochemistry, Biophysics, and Molecular Biology, 4206 Molecular Biology Building, Iowa State University, Ames, Iowa 50011-3260, United States
| |
Collapse
|
47
|
Turpin ER, Fang HJ, Thomas NR, Hirst JD. Cooperativity and site selectivity in the ileal lipid binding protein. Biochemistry 2013; 52:4723-33. [PMID: 23758264 DOI: 10.1021/bi400192w] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The ileal lipid binding protein (ILBP or I-BABP) binds bile salts with positive cooperativity and has unusual site selectivity, whereby cholic acid binds preferentially in one site and chenodeoxycholic in another, despite both sites having an affinity for both ligands and the ligands only differing by a single hydroxyl group. Previous studies of the human variant have assumed that the ligand/protein binding ratio is 2:1, but we show, using electrospray ionization mass spectroscopy, that human ILBP binds bile acids with a 3:1 ratio, even at low protein and ligand concentrations. Docking calculations and molecular dynamics (MD) simulations identify an allosterically active binding site on the protein exterior that induces a change from a closed conformation to an open one, characterized by a movement of one of the α-helices by ~10° with respect to the β-clam shell. Additional independent MD simulations of several hundred nanoseconds implicate the change between conformations in the mechanisms of both cooperativity and ligand site selectivity.
Collapse
Affiliation(s)
- Eleanor R Turpin
- School of Chemistry, University of Nottingham , University Park, Nottingham NG7 2RD, United Kingdom
| | | | | | | |
Collapse
|
48
|
Knapp B, Dorffner G, Schreiner W. Early relaxation dynamics in the LC 13 T cell receptor in reaction to 172 altered peptide ligands: a molecular dynamics simulation study. PLoS One 2013; 8:e64464. [PMID: 23762240 PMCID: PMC3675092 DOI: 10.1371/journal.pone.0064464] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 04/15/2013] [Indexed: 01/24/2023] Open
Abstract
The interaction between the T cell receptor and the major histocompatibility complex is one of the most important events in adaptive immunology. Although several different models for the activation process of the T cell via the T cell receptor have been proposed, it could not be shown that a structural mechanism, which discriminates between peptides of different immunogenicity levels, exists within the T cell receptor. In this study, we performed systematic molecular dynamics simulations of 172 closely related altered peptide ligands in the same T cell receptor/major histocompatibility complex system. Statistical evaluations yielded significant differences in the initial relaxation process between sets of peptides at four different immunogenicity levels.
Collapse
Affiliation(s)
- Bernhard Knapp
- Center for Medical Statistics, Informatics and Intelligent Systems, Section for Biosimulation and Bioinformatics, Medical University of Vienna, Vienna, Austria.
| | | | | |
Collapse
|
49
|
Sahún-Roncero M, Rubio-Ruiz B, Saladino G, Conejo-García A, Espinosa A, Velázquez-Campoy A, Gervasio FL, Entrena A, Hurtado-Guerrero R. The mechanism of allosteric coupling in choline kinase α1 revealed by the action of a rationally designed inhibitor. Angew Chem Int Ed Engl 2013; 52:4582-6. [PMID: 23441033 DOI: 10.1002/anie.201209660] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/16/2013] [Indexed: 01/21/2023]
Abstract
Applying a CHOK hold: Combined experimental and computational studies of the binding mode of a rationally designed inhibitor of the dimeric choline kinase α1 (CHOKα1) explain the molecular mechanism of negative cooperativity (see scheme) and how the monomers are connected. The results give insight into how the symmetry of the dimer can be partially conserved despite a lack of conservation in the static crystal structures.
Collapse
Affiliation(s)
- María Sahún-Roncero
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, BIFI-IQFR (CSIC) Joint Unit, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D; Fundacion ARAID, Edificio Pignatelli 36, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Sahún-Roncero M, Rubio-Ruiz B, Saladino G, Conejo-García A, Espinosa A, Velázquez-Campoy A, Gervasio FL, Entrena A, Hurtado-Guerrero R. The Mechanism of Allosteric Coupling in Choline Kinase α1 Revealed by the Action of a Rationally Designed Inhibitor. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201209660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|