1
|
Read BJ, Mitchell JBO, da Silva RG. Allosteric activation unveils protein-mass modulation of ATP phosphoribosyltransferase product release. Commun Chem 2024; 7:77. [PMID: 38582930 PMCID: PMC10998830 DOI: 10.1038/s42004-024-01165-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/28/2024] [Indexed: 04/08/2024] Open
Abstract
Heavy-isotope substitution into enzymes slows down bond vibrations and may alter transition-state barrier crossing probability if this is coupled to fast protein motions. ATP phosphoribosyltransferase from Acinetobacter baumannii is a multi-protein complex where the regulatory protein HisZ allosterically enhances catalysis by the catalytic protein HisGS. This is accompanied by a shift in rate-limiting step from chemistry to product release. Here we report that isotope-labelling of HisGS has no effect on the nonactivated reaction, which involves negative activation heat capacity, while HisZ-activated HisGS catalytic rate decreases in a strictly mass-dependent fashion across five different HisGS masses, at low temperatures. Surprisingly, the effect is not linked to the chemical step, but to fast motions governing product release in the activated enzyme. Disruption of a specific enzyme-product interaction abolishes the isotope effects. Results highlight how altered protein mass perturbs allosterically modulated thermal motions relevant to the catalytic cycle beyond the chemical step.
Collapse
Affiliation(s)
- Benjamin J Read
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, UK
| | - John B O Mitchell
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, UK
| | - Rafael G da Silva
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, UK.
| |
Collapse
|
2
|
Abstract
![]()
Molecular association of proteins with nucleic
acids is required
for many biological processes essential to life. Electrostatic interactions
via ion pairs (salt bridges) of nucleic acid phosphates and protein
side chains are crucial for proteins to bind to DNA or RNA. Counterions
around the macromolecules are also key constituents for the thermodynamics
of protein–nucleic acid association. Until recently, there
had been only a limited amount of experiment-based information about
how ions and ionic moieties behave in biological macromolecular processes.
In the past decade, there has been significant progress in quantitative
experimental research on ionic interactions with nucleic acids and
their complexes with proteins. The highly negatively charged surfaces
of DNA and RNA electrostatically attract and condense cations, creating
a zone called the ion atmosphere. Recent experimental studies were
able to examine and validate theoretical models on ions and their
mobility and interactions with macromolecules. The ionic interactions
are highly dynamic. The counterions rapidly diffuse within the ion
atmosphere. Some of the ions are released from the ion atmosphere
when proteins bind to nucleic acids, balancing the charge via intermolecular
ion pairs of positively charged side chains and negatively charged
backbone phosphates. Previously, the release of counterions had been
implicated indirectly by the salt-concentration dependence of the
association constant. Recently, direct detection of counterion
release by NMR spectroscopy
has become possible and enabled more accurate and quantitative analysis
of the counterion release and its entropic impact on the thermodynamics
of protein–nucleic acid association. Recent studies also revealed
the dynamic nature of ion pairs of protein side chains and nucleic
acid phosphates. These ion pairs undergo transitions between two major
states. In one of the major states, the cation and the anion are in
direct contact and form hydrogen bonds. In the other major state,
the cation and the anion are separated by water. Transitions between
these states rapidly occur on a picosecond to nanosecond time scale.
When proteins interact with nucleic acids, interfacial arginine (Arg)
and lysine (Lys) side chains exhibit considerably different behaviors.
Arg side chains show a higher propensity to form rigid contacts with
nucleotide bases, whereas Lys side chains tend to be more mobile at
the molecular interfaces. The dynamic ionic interactions may facilitate
adaptive molecular recognition and play both thermodynamic and kinetic
roles in protein–nucleic acid interactions.
Collapse
Affiliation(s)
- Binhan Yu
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, United States
| | - B. Montgomery Pettitt
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, United States
| | - Junji Iwahara
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, United States
| |
Collapse
|
3
|
Lu J, Zhou F, Liu W, Yu F. Mass spectrometry assisted arginine side chains assignment of NMR resonances in natural abundance proteins. JOURNAL OF BIOMOLECULAR NMR 2020; 74:173-181. [PMID: 32008172 DOI: 10.1007/s10858-020-00302-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Arginine side chains play critical roles in many protein-ligand interactions and enzyme catalysis. Unambiguous resonance assignment is a prerequisite for the nuclear magnetic resonance (NMR) spectroscopy studies of arginine side chains dynamics and hydrogen exchange properties from which one can expect to elucidate in more detail the roles of arginine residues in protein structure and function. Here we present a new mass spectrometry (MS)-based method for assigning the side-chain resonances of arginine residues in 2D 1H-15N NMR spectra. The method requires no additional isotopic labeling, and relies on knowledge of the amino acid sequence, the modification of the guanidino groups and liquid chromatography-mass spectrometry rather than the protein's structure or properties. Correlating the modification rates can connect cross-peak positions from NMR data with MS data to support resonances assignments. In the present work, we have extended our original application to natural abundance human ubiquitin to provide ε-NH assessments of three arginine for this well-studied protein.
Collapse
Affiliation(s)
- Jingjing Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
- State Key Laboratory of Long-Acting and Targeting Drug Delivery Technologies, Shandong Luye Pharmaceutical Co. Ltd., Yantai, China
| | - Fengmei Zhou
- State Key Laboratory of Long-Acting and Targeting Drug Delivery Technologies, Shandong Luye Pharmaceutical Co. Ltd., Yantai, China
| | - Wanhui Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Fei Yu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China.
| |
Collapse
|
4
|
Nguyen D, Iwahara J. Impact of two-bond 15N- 15N scalar couplings on 15N transverse relaxation measurements for arginine side chains of proteins. JOURNAL OF BIOMOLECULAR NMR 2018; 71:45-51. [PMID: 29845493 PMCID: PMC6020141 DOI: 10.1007/s10858-018-0189-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
NMR relaxation of arginine (Arg) 15Nε nuclei is useful for studying side-chain dynamics of proteins. In this work, we studied the impact of two geminal 15N-15N scalar couplings on measurements of transverse relaxation rates (R 2 ) for Arg side-chain 15Nε nuclei. For 12 Arg side chains of the DNA-binding domain of the Antp protein, we measured the geminal 15N-15N couplings ( 2 J NN ) of the 15Nε nuclei and found that the magnitudes of the 2 J NN coupling constants were virtually uniform with an average of 1.2 Hz. Our simulations, assuming ideal 180° rotations for all 15N nuclei, suggested that the two 2 J NN couplings of this magnitude could in principle cause significant modulation in signal intensities during the Carr-Purcell-Meiboom-Gill (CPMG) scheme for Arg 15Nε R 2 measurements. However, our experimental data show that the expected modulation via two 2 J NN couplings vanishes during the 15N CPMG scheme. This quenching of J modulation can be explained by the mechanism described in Dittmer and Bodenhausen (Chemphyschem 7:831-836, 2006). This effect allows for accurate measurements of R 2 relaxation rates for Arg side-chain 15Nε nuclei despite the presence of two 2 J NN couplings. Although the so-called recoupling conditions may cause overestimate of R 2 rates for very mobile Arg side chains, such conditions can readily be avoided through appropriate experimental settings.
Collapse
Affiliation(s)
- Dan Nguyen
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, 77555-1068, USA
| | - Junji Iwahara
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, 77555-1068, USA.
| |
Collapse
|
5
|
Yoshimura Y, Oktaviani NA, Yonezawa K, Kamikubo H, Mulder FAA. Unambiguous Determination of Protein Arginine Ionization States in Solution by NMR Spectroscopy. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201609605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuichi Yoshimura
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Nur Alia Oktaviani
- Groningen Biomolecular Sciences and Biotechnology Institute University of Groningen The Netherlands
| | - Kento Yonezawa
- Graduate School of Materials Science Nara Institute of Science and Technology, Ikoma, Nara Japan
| | - Hironari Kamikubo
- Graduate School of Materials Science Nara Institute of Science and Technology, Ikoma, Nara Japan
| | - Frans A. A. Mulder
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
- Groningen Biomolecular Sciences and Biotechnology Institute University of Groningen The Netherlands
| |
Collapse
|
6
|
Yoshimura Y, Oktaviani NA, Yonezawa K, Kamikubo H, Mulder FAA. Unambiguous Determination of Protein Arginine Ionization States in Solution by NMR Spectroscopy. Angew Chem Int Ed Engl 2016; 56:239-242. [PMID: 27897362 DOI: 10.1002/anie.201609605] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Indexed: 11/09/2022]
Abstract
Because arginine residues in proteins are expected to be in their protonated form almost without exception, reports demonstrating that a protein arginine residue is charge-neutral are rare and potentially controversial. Herein, we present a 13 C-detected NMR experiment for probing individual arginine residues in proteins notwithstanding the presence of chemical and conformational exchange effects. In the experiment, the 15 Nη and 15 Nϵ chemical shifts of an arginine head group are correlated with that of the directly attached 13 Cζ . In the resulting spectrum, the number of protons in the arginine head group can be obtained directly from the 15 N-1 H scalar coupling splitting pattern. We applied this method to unambiguously determine the ionization state of the R52 side chain in the photoactive yellow protein from Halorhodospira halophila. Although only three Hη atoms were previously identified by neutron crystallography, we show that R52 is predominantly protonated in solution.
Collapse
Affiliation(s)
- Yuichi Yoshimura
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Nur Alia Oktaviani
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | - Kento Yonezawa
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Hironari Kamikubo
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Frans A A Mulder
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark.,Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| |
Collapse
|
7
|
Esadze A, Chen C, Zandarashvili L, Roy S, Pettitt BM, Iwahara J. Changes in conformational dynamics of basic side chains upon protein-DNA association. Nucleic Acids Res 2016; 44:6961-70. [PMID: 27288446 PMCID: PMC5001603 DOI: 10.1093/nar/gkw531] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/31/2016] [Indexed: 11/24/2022] Open
Abstract
Basic side chains play major roles in recognition of nucleic acids by proteins. However, dynamic properties of these positively charged side chains are not well understood. In this work, we studied changes in conformational dynamics of basic side chains upon protein–DNA association for the zinc-finger protein Egr-1. By nuclear magnetic resonance (NMR) spectroscopy, we characterized the dynamics of all side-chain cationic groups in the free protein and in the complex with target DNA. Our NMR order parameters indicate that the arginine guanidino groups interacting with DNA bases are strongly immobilized, forming rigid interfaces. Despite the strong short-range electrostatic interactions, the majority of the basic side chains interacting with the DNA phosphates exhibited high mobility, forming dynamic interfaces. In particular, the lysine side-chain amino groups exhibited only small changes in the order parameters upon DNA-binding. We found a similar trend in the molecular dynamics (MD) simulations for the free Egr-1 and the Egr-1–DNA complex. Using the MD trajectories, we also analyzed side-chain conformational entropy. The interfacial arginine side chains exhibited substantial entropic loss upon binding to DNA, whereas the interfacial lysine side chains showed relatively small changes in conformational entropy. These data illustrate different dynamic characteristics of the interfacial arginine and lysine side chains.
Collapse
Affiliation(s)
- Alexandre Esadze
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1068, USA
| | - Chuanying Chen
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1068, USA
| | - Levani Zandarashvili
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1068, USA
| | - Sourav Roy
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1068, USA
| | - B Montgometry Pettitt
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1068, USA
| | - Junji Iwahara
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1068, USA
| |
Collapse
|
8
|
Zandarashvili L, Nguyen D, Anderson KM, White MA, Gorenstein DG, Iwahara J. Entropic Enhancement of Protein-DNA Affinity by Oxygen-to-Sulfur Substitution in DNA Phosphate. Biophys J 2016; 109:1026-37. [PMID: 26331260 DOI: 10.1016/j.bpj.2015.07.032] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 07/07/2015] [Accepted: 07/15/2015] [Indexed: 10/23/2022] Open
Abstract
Dithioation of DNA phosphate is known to enhance binding affinities, at least for some proteins. We mechanistically characterized this phenomenon for the Antennapedia homeodomain-DNA complex by integrated use of fluorescence, isothermal titration calorimetry, NMR spectroscopy, and x-ray crystallography. By fluorescence and isothermal titration calorimetry, we found that this affinity enhancement is entropy driven. By NMR, we investigated the ionic hydrogen bonds and internal motions of lysine side-chain NH3(+) groups involved in ion pairs with DNA. By x-ray crystallography, we compared the structures of the complexes with and without dithioation of the phosphate. Our NMR and x-ray data show that the lysine side chain in contact with the DNA phosphate becomes more dynamic upon dithioation. Our thermodynamic, structural, and dynamic investigations collectively suggest that the affinity enhancement by the oxygen-to-sulfur substitution in DNA phosphate is largely due to an entropic gain arising from mobilization of the intermolecular ion pair at the protein-DNA interface.
Collapse
Affiliation(s)
- Levani Zandarashvili
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas
| | - Dan Nguyen
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas
| | - Kurtis M Anderson
- Department of NanoMedicine and Biomedical Engineering and Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Mark A White
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas
| | - David G Gorenstein
- Department of NanoMedicine and Biomedical Engineering and Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Junji Iwahara
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas.
| |
Collapse
|
9
|
Iwahara J, Esadze A, Zandarashvili L. Physicochemical Properties of Ion Pairs of Biological Macromolecules. Biomolecules 2015; 5:2435-63. [PMID: 26437440 PMCID: PMC4693242 DOI: 10.3390/biom5042435] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 11/23/2022] Open
Abstract
Ion pairs (also known as salt bridges) of electrostatically interacting cationic and anionic moieties are important for proteins and nucleic acids to perform their function. Although numerous three-dimensional structures show ion pairs at functionally important sites of biological macromolecules and their complexes, the physicochemical properties of the ion pairs are not well understood. Crystal structures typically show a single state for each ion pair. However, recent studies have revealed the dynamic nature of the ion pairs of the biological macromolecules. Biomolecular ion pairs undergo dynamic transitions between distinct states in which the charged moieties are either in direct contact or separated by water. This dynamic behavior is reasonable in light of the fundamental concepts that were established for small ions over the last century. In this review, we introduce the physicochemical concepts relevant to the ion pairs and provide an overview of the recent advancement in biophysical research on the ion pairs of biological macromolecules.
Collapse
Affiliation(s)
- Junji Iwahara
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Alexandre Esadze
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Levani Zandarashvili
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
10
|
Multistep kinetics of the U1A-SL2 RNA complex dissociation. J Mol Biol 2011; 408:896-908. [PMID: 21419778 DOI: 10.1016/j.jmb.2011.02.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 02/20/2011] [Accepted: 02/22/2011] [Indexed: 11/23/2022]
Abstract
The U1A-SL2 RNA complex is a model system for studying interactions between RNA and the RNA recognition motif (RRM), which is one of the most common RNA binding domains. We report here kinetic studies of dissociation of the U1A-SL2 RNA complex, using laser temperature jump and stopped-flow fluorescence methods with U1A proteins labeled with the intrinsic chromophore tryptophan. An analysis of the kinetic data suggests three phases of dissociation with time scales of ∼100 μs, ∼50 ms, and ∼2 s. We propose that the first step of dissociation is a fast rearrangement of the complex to form a loosely bound complex. The intermediate step is assigned to be the dissociation of the U1A-SL2 RNA complex, and the final step is assigned to a reorganization of the U1A protein structure into the conformation of the free protein. These assignments are consistent with previous proposals based on thermodynamic, NMR, and surface plasmon resonance experiments and molecular dynamics simulations. Together, these results begin to build a comprehensive model of the complex dynamic processes involved in the formation and dissociation of an RRM-RNA complex.
Collapse
|
11
|
Yamane T, Okamura H, Nishimura Y, Kidera A, Ikeguchi M. Side-chain conformational changes of transcription factor PhoB upon DNA binding: a population-shift mechanism. J Am Chem Soc 2011; 132:12653-9. [PMID: 20722414 DOI: 10.1021/ja103218x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using molecular dynamics (MD) simulations and analyses of NMR relaxation order parameters, we investigated conformational changes of side chains in hydrophobic cores upon DNA binding for the DNA binding/transactivation domain of the transcription factor PhoB, in which backbone conformational changes upon DNA binding are small. The simulation results correlated well with experimental order parameters for the backbone and side-chain methyl groups, showing that the order parameters generally represent positional fluctuations of the backbone and side-chain methyl groups. However, topological effects of the side chains on the order parameters were also found and could be eliminated using normalized order parameters for each amino acid type. Consistent with the NMR experiments, the normalized order parameters from the MD simulations showed that the side chains in one of the two hydrophobic cores (the soft core) were highly flexible in comparison with those in the other hydrophobic core (the hard core) before DNA binding and that the flexibility of the hydrophobic cores, particularly of the soft core, was reduced upon DNA binding. Principal component analysis of methyl group configurations revealed strikingly different side-chain dynamics for the soft and hard cores. In the hard core, side-chain configurations were simply distributed around one or two average configurations. In contrast, the side chains in the soft core dynamically varied their configurations in an equilibrium ensemble that included binding configurations as minor components before DNA binding. DNA binding led to a restriction of the side-chain dynamics and a shift in the equilibrium toward binding configurations, in clear correspondence with a population-shift model.
Collapse
Affiliation(s)
- Tsutomu Yamane
- Department of Supramolecular Biology, Graduate School of Nanobioscience, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045 Japan
| | | | | | | | | |
Collapse
|
12
|
Na H, Huisman W, Ellestad KK, Phillips TR, Power C. Domain- and nucleotide-specific Rev response element regulation of feline immunodeficiency virus production. Virology 2010; 404:246-60. [PMID: 20570310 DOI: 10.1016/j.virol.2010.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 02/23/2010] [Accepted: 04/09/2010] [Indexed: 10/19/2022]
Abstract
Computational analysis of feline immunodeficiency virus (FIV) RNA sequences indicated that common FIV strains contain a rev response element (RRE) defined by a long unbranched hairpin with 6 stem-loop sub-domains, termed stem-loop A (SLA). To examine the role of the RNA secondary structure of the RRE, mutational analyses were performed in both an infectious FIV molecular clone and a FIV CAT-RRE reporter system. These studies disclosed that the stems within SLA (SA1, 2, 3, 4, and 5) of the RRE were critical but SA6 was not essential for FIV replication and CAT expression. These studies also revealed that the secondary structure rather than an antisense protein (ASP) mediates virus expression and replication in vitro. In addition, a single synonymous mutation within the FIV-RRE, SA3/45, reduced viral reverse transcriptase activity and p24 expression after transfection but in addition also showed a marked reduction in viral expression and production following infection.
Collapse
Affiliation(s)
- Hong Na
- Department of Medicine, University of Alberta, Edmonton, AB, Canada T6G 2S2
| | | | | | | | | |
Collapse
|
13
|
Michael LA, Chenault JA, Miller BR, Knolhoff AM, Nagan MC. Water, Shape Recognition, Salt Bridges, and Cation–Pi Interactions Differentiate Peptide Recognition of the HIV Rev-Responsive Element. J Mol Biol 2009; 392:774-86. [DOI: 10.1016/j.jmb.2009.07.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 07/06/2009] [Accepted: 07/16/2009] [Indexed: 10/20/2022]
|
14
|
Trbovic N, Cho JH, Abel R, Friesner RA, Rance M, Palmer AG. Protein side-chain dynamics and residual conformational entropy. J Am Chem Soc 2009; 131:615-22. [PMID: 19105660 DOI: 10.1021/ja806475k] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Changes in residual conformational entropy of proteins can be significant components of the thermodynamics of folding and binding. Nuclear magnetic resonance (NMR) spin relaxation is the only experimental technique capable of probing local protein entropy, by inference from local internal conformational dynamics. To assess the validity of this approach, the picosecond-to-nanosecond dynamics of the arginine side-chain N(epsilon)-H(epsilon) bond vectors of Escherichia coli ribonuclease H (RNase H) were determined by NMR spin relaxation and compared to the mechanistic detail provided by molecular dynamics (MD) simulations. The results indicate that arginine N(epsilon) spin relaxation primarily reflects persistence of guanidinium salt bridges and correlates well with simulated side-chain conformational entropy. In particular cases, the simulations show that the aliphatic part of the arginine side chain can retain substantial disorder while the guanidinium group maintains its salt bridges; thus, the N(epsilon)-H(epsilon) bond-vector orientation is conserved and side-chain flexibility is concealed from N(epsilon) spin relaxation. The MD simulations and an analysis of a rotamer library suggest that dynamic decoupling of the terminal moiety from the remainder of the side chain occurs for all five amino acids with more than two side-chain dihedral angles (R, K, E, Q, and M). Dynamic decoupling thus may represent a general biophysical strategy for minimizing the entropic penalties of folding and binding.
Collapse
Affiliation(s)
- Nikola Trbovic
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
15
|
Paquin R, Ferrage F, Mulder FAA, Akke M, Bodenhausen G. Multiple-Timescale Dynamics of Side-Chain Carboxyl and Carbonyl Groups in Proteins by 13C Nuclear Spin Relaxation. J Am Chem Soc 2008; 130:15805-7. [PMID: 18975903 DOI: 10.1021/ja803794g] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Raphaël Paquin
- Département de Chimie, associé au CNRS, Ecole Normale Supérieure, 24, rue Lhomond, 75231 Paris Cedex 05, France, Biophysical Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands, Center for Molecular Protein Science, Division of Biophysical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden, and Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, BCH, CH-1015 Lausanne, Switzerland
| | - Fabien Ferrage
- Département de Chimie, associé au CNRS, Ecole Normale Supérieure, 24, rue Lhomond, 75231 Paris Cedex 05, France, Biophysical Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands, Center for Molecular Protein Science, Division of Biophysical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden, and Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, BCH, CH-1015 Lausanne, Switzerland
| | - Frans A. A. Mulder
- Département de Chimie, associé au CNRS, Ecole Normale Supérieure, 24, rue Lhomond, 75231 Paris Cedex 05, France, Biophysical Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands, Center for Molecular Protein Science, Division of Biophysical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden, and Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, BCH, CH-1015 Lausanne, Switzerland
| | - Mikael Akke
- Département de Chimie, associé au CNRS, Ecole Normale Supérieure, 24, rue Lhomond, 75231 Paris Cedex 05, France, Biophysical Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands, Center for Molecular Protein Science, Division of Biophysical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden, and Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, BCH, CH-1015 Lausanne, Switzerland
| | - Geoffrey Bodenhausen
- Département de Chimie, associé au CNRS, Ecole Normale Supérieure, 24, rue Lhomond, 75231 Paris Cedex 05, France, Biophysical Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands, Center for Molecular Protein Science, Division of Biophysical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden, and Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, BCH, CH-1015 Lausanne, Switzerland
| |
Collapse
|
16
|
Krahn JM, Jackson MR, DeRose EF, Howell EE, London RE. Crystal structure of a type II dihydrofolate reductase catalytic ternary complex. Biochemistry 2007; 46:14878-88. [PMID: 18052202 PMCID: PMC3743094 DOI: 10.1021/bi701532r] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Type II dihydrofolate reductase (DHFR) is a plasmid-encoded enzyme that confers resistance to bacterial DHFR-targeted antifolate drugs. It forms a symmetric homotetramer with a central pore which functions as the active site. Its unusual structure, which results in a promiscuous binding surface that accommodates either the dihydrofolate (DHF) substrate or the NADPH cofactor, has constituted a significant limitation to efforts to understand its substrate specificity and reaction mechanism. We describe here the first structure of a ternary R67 DHFR.DHF.NADP+ catalytic complex, resolved to 1.26 A. This structure provides the first clear picture of how this enzyme, which lacks the active site carboxyl residue that is ubiquitous in Type I DHFRs, is able to function. In the catalytic complex, the polar backbone atoms of two symmetry-related I68 residues provide recognition motifs that interact with the carboxamide on the nicotinamide ring, and the N3-O4 amide function on the pteridine ring. This set of interactions orients the aromatic rings of substrate and cofactor in a relative endo geometry in which the reactive centers are held in close proximity. Additionally, a central, hydrogen-bonded network consisting of two pairs of Y69-Q67-Q67'-Y69' residues provides an unusually tight interface, which appears to serve as a "molecular clamp" holding the substrates in place in an orientation conducive to hydride transfer. In addition to providing the first clear insight regarding how this extremely unusual enzyme is able to function, the structure of the ternary complex provides general insights into how a mutationally challenged enzyme, i.e., an enzyme whose evolution is restricted to four-residues-at-a-time active site mutations, overcomes this fundamental limitation.
Collapse
Affiliation(s)
- Joseph M. Krahn
- Laboratory of Structural Biology, MR-01, National Institute of Environmental Health Sciences, National Institutes of Health, Box 12233, Research Triangle Park, North Carolina 27709
| | - Michael R. Jackson
- Department of Biochemistry, Cellular & Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840
| | - Eugene F. DeRose
- Laboratory of Structural Biology, MR-01, National Institute of Environmental Health Sciences, National Institutes of Health, Box 12233, Research Triangle Park, North Carolina 27709
| | - Elizabeth E. Howell
- Department of Biochemistry, Cellular & Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840
| | - Robert E. London
- Laboratory of Structural Biology, MR-01, National Institute of Environmental Health Sciences, National Institutes of Health, Box 12233, Research Triangle Park, North Carolina 27709
| |
Collapse
|
17
|
Bobeck MJ, Cleary J, Beckingham JA, Ackroyd PC, Glick GD. Effect of somatic mutation on DNA binding properties of anti-DNA autoantibodies. Biopolymers 2007; 85:471-80. [PMID: 17252585 DOI: 10.1002/bip.20691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Autoantibodies that bind DNA are a hallmark of systemic lupus erythematosus. A subset of autoantibody*DNA complexes localize to kidney tissue and lead to damage and even death. 11F8, 9F11, and 15B10 are clonally related anti-DNA autoantibodies isolated from an autoimmune mouse. 11F8 binds ssDNA in a sequence-specific manner and causes tissue damage, while 9F11 and 15B10 bind ssDNA non-specifically and are benign. Among these antibodies, DNA binding properties are mediated by five amino acid differences in primary sequence. Thermodynamic and kinetic parameters associated with recognition of structurally different DNA sequences were determined for each antibody to provide insight toward recognition strategies, and to explore a link between binding properties and disease pathogenesis. A model of 11F8 bound to its high affinity consensus sequence provides a foundation for understanding the differences in thermodynamic and kinetic parameters between the three mAbs. Our data suggest that 11F8 utilizes the proposed ssDNA recognition motif including (Y32)V(L), a hydrogen bonding residue at (91)V(L), and an aromatic residue at the tip of the third heavy chain complementarity determining region. Interestingly, a somatic mutation to arginine at (31)V(H) in 11F8 may afford additional binding site contacts including (R31)V(H), (R96)V(H), and (R98)V(H) that could determine specificity.
Collapse
Affiliation(s)
- Melissa J Bobeck
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | | | | | | | |
Collapse
|
18
|
Bobeck MJ, Rueda D, Walter NG, Glick GD. Structural modeling of sequence specificity by an autoantibody against single-stranded DNA. Biochemistry 2007; 46:6753-65. [PMID: 17503778 DOI: 10.1021/bi700212s] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
11F8 is a sequence-specific pathogenic anti-single-stranded (ss)DNA autoantibody isolated from a lupus prone mouse. Site-directed mutagenesis of 11F8 has shown that six binding site residues (R31VH, W33VH, L97VH, R98VH, Y100VH, and Y32VL) contribute 80% of the free energy for complex formation. Mutagenesis results along with intermolecular distances obtained from fluorescence resonance energy transfer were implemented here as restraints to model docking between 11F8 and the sequence-specific ssDNA. The model of the complex suggests that aromatic stacking and two sets of bidentate hydrogen bonds between binding site arginine residues (R31VH and R96VH) and loop nucleotides provide the molecular basis for high affinity and specificity. In part, 11F8 utilizes the same ssDNA binding motif of Y32VL, H91VL, and an aromatic residue in the third complementarity-determining region to recognize thymine-rich sequences as do two anti-ssDNA autoantibodies crystallized in complex with thymine. R31SVH is a dominant somatic mutation found in the J558 germline sequence that is implicated in 11F8 sequence specificity. A model of the mutant R31S11F8.ssDNA complex suggests that different interface contacts occur when serine replaces arginine 31 at the binding site. The modeled contacts between the R31S11F8 mutant and thymine are closely related to those observed in other anti-ssDNA binding antibodies, while we find additional contacts between 11F8 and ssDNA that involve amino acids not utilized by the other antibodies. These data-driven 11F8.ssDNA models provide testable hypotheses concerning interactions that mediate sequence specificity in 11F8 and the effects of somatic mutation on ssDNA recognition.
Collapse
Affiliation(s)
- Melissa J Bobeck
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | | | | | |
Collapse
|
19
|
Hariton-Gazal E, Rosenbluh J, Zakai N, Fridkin G, Brack-Werner R, Wolff H, Devaux C, Gilon C, Loyter A. Functional analysis of backbone cyclic peptides bearing the arm domain of the HIV-1 Rev protein: characterization of the karyophilic properties and inhibition of Rev-induced gene expression. Biochemistry 2005; 44:11555-66. [PMID: 16114892 DOI: 10.1021/bi050752b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This work describes the synthesis and activity of a novel backbone cyclic (BC) peptide library based on the sequence of the HIV-1 Rev arginine-rich motif (ARM). All the peptides in the library possess the same sequence but differ in their ring-moiety properties. The BC peptides were synthesized using simultaneous multiple-peptide synthesis and were fully assembled using bis(trichloromethyl)carbonate as a coupling agent. All the peptides in the library had inhibitory effects on the binding of Rev-GFP to importin beta in vitro. Studies performed with one of the BC Rev-ARM analogues, Rev-13, demonstrated that, like its parental linear peptide, it is karyophilic; i.e., it is able to mediate the nuclear import of conjugated bovine serum albumin (BSA) molecules. The cell penetrating properties of the BC peptides were assessed utilizing an ELISA-based system. This assay provides a quantitative evaluation of cell penetration. Most of the peptides from the library were able to penetrate intact Colo-205 cells to varying degrees. Furthermore, these BC peptides were able to carry BSA into intact Colo-205 cells. In addition to its cell penetrating and binding properties, the BC Rev-13 analogue inhibited Rev-induced gene expression in HeLa cells by 60-70% in the low micromolar range and exhibited no cell toxicity. The potential of BC peptides bearing ARM domains as lead compounds for the production of anti-HIV drugs is discussed.
Collapse
Affiliation(s)
- Elana Hariton-Gazal
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9104, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Akinsiku OT, Yu ET, Fabris D. Mass spectrometric investigation of protein alkylation by the RNA footprinting probe kethoxal. JOURNAL OF MASS SPECTROMETRY : JMS 2005; 40:1372-81. [PMID: 16237662 DOI: 10.1002/jms.932] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The reactivity of the RNA footprinting reagent kethoxal (KT) toward proteins was investigated by electrospray ionization-Fourier transform mass spectrometry. Using standard peptides, KT was shown to selectively modify the guanidino group of arginine side chains at neutral pH, while primary amino groups of lysine and N-terminus were found to be unreactive under these conditions. Gas-phase fragmentation of KT adducts provided evidence for a cyclic 1,2-diol structure. Esterification of the 1,2-diol product was obtained in borate buffer, and its structure was also investigated by tandem mass spectrometry. When model proteins were probed with this RNA footprinting reagent, the adducts proved to be sufficiently stable to allow for the application of different peptide-mapping procedures to identify the location of modified arginines. Probing of proteins under native folding conditions provided modification patterns that very closely matched the structural context of arginines in the global protein structure. A strong correlation was demonstrated between the susceptibility to modification and residue accessibility calculated from the known 3D structure. When the complexes formed by HIV-1 nucleocapsid (NC) protein and RNA stemloops SL2 and SL3 were investigated, KT footprinting provided accurate information regarding the involvement of individual arginines in binding RNA and showed different reactivity according to their mode of interaction.
Collapse
Affiliation(s)
- Olusimidele T Akinsiku
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | | | | |
Collapse
|
21
|
Landt SG, Tipton AR, Frankel AD. Localized Influence of 2‘-Hydroxyl Groups and Helix Geometry on Protein Recognition in the RNA Major Groove. Biochemistry 2005; 44:6547-58. [PMID: 15850388 DOI: 10.1021/bi047916t] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The local geometry of a DNA helix can influence protein recognition, but the sequence-specific features that contribute to helix structure are not fully understood, and even less is known about how RNA helix geometry may affect protein recognition. To begin to understand how local or global helix structure may influence binding in an RNA model system, we generated a series of DNA analogues of HIV and BIV TAR RNAs in which ribose sugars were systematically substituted in and around the known binding sites for argininamide and a BIV Tat arginine-rich peptide, respectively, and measured their corresponding binding affinities. For each TAR interaction, binding occurs in the RNA major groove with high specificity, whereas binding to the all-DNA analogue is weak and nonspecific. Relatively few substitutions are needed to convert either DNA analogue of TAR into a high-affinity binder, with the ribose requirements being restricted largely to regions that directly contact the ligand. Substitutions at individual positions show up to 70-fold differences in binding affinity, even at adjacent base pairs, while two base pairs at the core of the BIV Tat peptide-RNA interface are largely unaffected by deoxyribose substitution. These results suggest that the helix geometries and unique conformational features required for binding are established locally and are relatively insulated from effects more than one base pair away. It seems plausible that arginine-rich peptides are able to adapt to a mosaic helical architecture in which segments as small as single base steps may be considered as modular recognition units.
Collapse
Affiliation(s)
- Stephen G Landt
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143-2280, USA
| | | | | |
Collapse
|
22
|
Wilkinson TA, Zhu L, Hu W, Chen Y. Retention of Conformational Flexibility in HIV-1 Rev−RNA Complexes. Biochemistry 2004; 43:16153-60. [PMID: 15610009 DOI: 10.1021/bi048409e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sequence-specific recognition between HIV-1 Rev and viral RNA mediates the nuclear export of the viral mRNA and thus is important for the viral life cycle. HIV Rev binds to its viral RNA target with high affinity and specificity and also binds to an in vitro selected RNA aptamer that has a significantly different sequence from the viral RNA target with a 6-fold higher affinity than its natural target. The high-resolution structures of HIV Rev Arg-rich motif (ARM) in complexes with the wild-type RNA and the RNA aptamer reveal that, despite the significantly different RNA sequences, the two complexes share similar structural features and the protein-RNA interactions are mediated mostly by the Arg side chains in Rev ARM. To gain further insight into the role of these Arg side chains in the sequence-specific protein-RNA recognition, we have characterized the flexibility of these Arg side chains at the interfaces of the two high-affinity complexes using (15)N R(1), R(2), nuclear Overhauser effect, and chemical-shift anisotropy dipolar cross-correlation relaxation measurements. The ARM peptide contains uniformly (13)C/(15)N-labeled Arg residues, and the RNA samples were unlabeled. Despite the apparently similar roles of Arg side chains in both complexes, most of them display a different dynamic behavior in the context of different RNA molecules, and extensive and highly diverse motions have been observed for all of these side chains that interact with RNA. Most of the differences in side-chain dynamics between the complexes cannot be inferred from the three-dimensional structures. Additionally, more than half of the residues have increased flexibility in the Rev-RNA aptamer complex that has a higher affinity. This study provides new insights into ARM-RNA recognition and indicates that retention of conformational flexibility is likely important in high-affinity ARM-RNA recognition.
Collapse
Affiliation(s)
- Thomas A Wilkinson
- Division of Immunology, Beckman Research Institute of the City of Hope National Medical Center, Duarte, California 91010, USA
| | | | | | | |
Collapse
|
23
|
Lapidot A, Vijayabaskar V, Litovchick A, Yu J, James TL. Structure-activity relationships of aminoglycoside-arginine conjugates that bind HIV-1 RNAs as determined by fluorescence and NMR spectroscopy. FEBS Lett 2004; 577:415-21. [PMID: 15556620 DOI: 10.1016/j.febslet.2004.10.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Revised: 10/11/2004] [Accepted: 10/14/2004] [Indexed: 11/28/2022]
Abstract
We present here a new set of aminoglycoside-arginine conjugates (AACs) that are either site-specific or per-arginine conjugates of paromomycin, neamine, and neomycin B as well as their structure-activity relationships. Their binding constants (KD) for TAR and RRE RNAs, measured by fluorescence anisotropy, revealed dependence on the number and location of arginines in the different aminoglycoside conjugates. The binding affinity of the per-arginine aminoglycosides to TAR is higher than to RRE, and hexa-arginine neomycin B is the most potent binder (KD=5 and 23 nM, respectively). The 2D TOCSY NMR spectrum of the TAR monoarginine-neomycin complex reveals binding at the bulge region of TAR.
Collapse
Affiliation(s)
- Aviva Lapidot
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | | | | | |
Collapse
|
24
|
Fineberg K, Fineberg T, Graessmann A, Luedtke NW, Tor Y, Lixin R, Jans DA, Loyter A. Inhibition of nuclear import mediated by the Rev-arginine rich motif by RNA molecules. Biochemistry 2003; 42:2625-33. [PMID: 12614157 DOI: 10.1021/bi0206199] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The HIV-1 Rev protein plays a pivotal role in viral replication, and therefore, inhibition of its function should block the progression of the virus-induced immune deficiency syndrome (AIDS). Here, RNA molecules have been shown to inhibit import of the HIV-1 Rev protein into nuclei of permeabilized cells. Nuclear uptake of biotinylated recombinant His-tagged Rev-GFP was assessed in nuclear extracts from digitonin-permeabilized cells by binding to either importin beta-receptors or nickel molecules immobilized on a microtiter plate. Using this method together with fluorescence microscopy, we determined that nuclear import of Rev is inhibited by the addition of a reticulocyte lysate which routinely is used as a source of nuclear import receptors. This inhibition was released by treatment with the RNase enzyme. Also t-RNA molecules and the oligoribonucleotide RRE IIB, namely, the second stem structure of the Rev responsive element (RRE) of the viral RNA, inhibit Rev nuclear import. Similar results were obtained when BSA molecules with covalently attached Rev-arginine rich motif (ARM) peptides were used as a nuclear transport substrate, indicating that the nuclear import inhibition of the Rev protein is due to the presence of the ARM domain. Binding experiments revealed that the RNA molecules inhibit the interaction between the ARM region and importin beta, implying that the RNA prevents the formation of the import complex. The implication of our results for the regulation of the nuclear import of Rev as well as for the use of RNA molecules as antiviral drugs is discussed.
Collapse
Affiliation(s)
- Konstantin Fineberg
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Cleary J, Glick GD. Mutational analysis of a sequence-specific ssDNA binding lupus autoantibody. Biochemistry 2003; 42:30-41. [PMID: 12515537 DOI: 10.1021/bi0203942] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
11F8 is a murine anti-ssDNA monoclonal autoantibody isolated from a lupus prone autoimmune mouse. This mAb binds sequence specifically, and prior studies have defined the thermodynamic and kinetic basis for sequence-specific recognition of ssDNA (Ackroyd, P. C., et al. (2001) Biochemistry 40, 2911-2922; Beckingham, J. A. and Glick, G. D. (2001) Bioorg. Med. Chem. 9, 2243-2252). Here we present experiments designed to identify the residues on 11F8 that mediate sequence-specific, noncognate, and nonspecific recognition of ssDNA and their contribution to the overall binding thermodynamics. Site-directed mutagenesis of an 11F8 single-chain construct reveals that six residues within the complementarity determining regions of 11F8 account for ca. 80% of the binding free energy and that there is little cooperativity between these residues. Germline-encoded aromatic and hydrophobic side chains provides the basis for nonspecific recognition of single-stranded thymine nucleobases. Sequence-specific recognition is controlled by a tyrosine in the heavy chain along with a somatically mutated arginine residue. Our data show that the manner in which 11F8 achieves sequence-specific recognition more closely resembles RNA-binding proteins such as U1A than other types of nucleic acid binding proteins. In addition, comparing the primary sequence of 11F8 with clonally related antibodies that differ by less than five amino acids suggests that somatic mutations which confer sequence specificity may be a feature that distinguishes glomerulotrophic pathogenic anti-DNA from those that are benign.
Collapse
Affiliation(s)
- Joanne Cleary
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | |
Collapse
|
26
|
Lesnik EA, Sampath R, Ecker DJ. Rev response elements (RRE) in lentiviruses: an RNAMotif algorithm-based strategy for RRE prediction. Med Res Rev 2002; 22:617-36. [PMID: 12369091 DOI: 10.1002/med.10027] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Lentiviruses (a sub-family of the retroviridae family) include primate and non-primate viruses associated with chronic diseases of the immune system and the central nervous system. All lentiviruses encode a regulatory protein Rev that is essential for post-transcriptional transport of the unspliced and incompletely spliced viral mRNAs from nuclei to cytoplasm. The Rev protein acts via binding to an RNA structural element known as the Rev responsive element (RRE). The RRE location and structure and the mechanism of the Rev-RRE interaction in primate and non-primate lentiviruses have been analyzed and compared. Based on structural data available for RRE of HIV-1, a two step computational strategy for prediction of putative RRE regions in lentivirus genomes has been developed. First, the RNAMotif algorithm was used to search genomic sequence for highly structured regions (HSR). Then the program RNAstructure, version 3.6 was used to calculate the structure and thermodynamic stability of the region of approximately 350 nucleotides encompassing the HSR. Our strategy correctly predicted the locations of all previously reported lentivirus RREs. We were able also to predict the locations and structures of potential RREs in four additional lentiviruses.
Collapse
Affiliation(s)
- Elena A Lesnik
- IBIS Therapeutics, 2292 Faraday Ave, Carlsbad, California 92008, USA
| | | | | |
Collapse
|
27
|
Ramboarina S, Srividya N, Atkinson RA, Morellet N, Roques BP, Lefèvre JF, Mély Y, Kieffer B. Effects of temperature on the dynamic behaviour of the HIV-1 nucleocapsid NCp7 and its DNA complex. J Mol Biol 2002; 316:611-27. [PMID: 11866521 DOI: 10.1006/jmbi.2001.5379] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The nucleocapsid protein NCp7 of human immunodeficiency virus type 1 (HIV-1) contains two highly conserved CCHC zinc fingers and is involved in many crucial steps of the virus life-cycle. A large number of physiological rôles of NCp7 involve its binding to single-stranded nucleic acid chains. Several solution structures of NCp7 and its complex with single-stranded RNA or DNA have been reported. We have investigated the changes in the dynamic behaviour experienced by the (12-53)NCp7 peptide upon DNA binding using (15)N heteronuclear relaxation measurements at 293 K and 308 K, and fluorescence spectroscopy. The relaxation data were interpreted using the reduced spectral density approach, which allowed the high-frequency motion, overall tumbling rates and the conformational exchange contributions to be characterized for various states of the peptide without using a specific motional model. Analysis of the temperature-dependent correlation times derived from both NMR and fluorescence data indicated a co-operative change of the molecular shape of apo (12-53)NCp7 around 303 K, leading to an increased hydrodynamic radius at higher temperatures. The binding of (12-53)NCp7 to a single-stranded d(ACGCC) pentanucleotide DNA led to a reduction of the conformational flexibility that characterized the apo peptide. Translational diffusion experiments as well as rotational correlation times indicated that the (12-53)NCp7/d(ACGCC) complex tumbles as a rigid object. The amplitudes of high-frequency motions were restrained in the complex and the occurrence of conformational exchange was displaced from the second zinc finger to the linker residue Ala30.
Collapse
Affiliation(s)
- Stéphanie Ramboarina
- Laboratoire de Génomique Structurale, CNRS UPR 9004 ESBS, Bd Sébastien Brant, Illkirch, France
| | | | | | | | | | | | | | | |
Collapse
|