1
|
Leite JP, Costa-Rodrigues D, Gales L. Inhibitors of Transthyretin Amyloidosis: How to Rank Drug Candidates Using X-ray Crystallography Data. Molecules 2024; 29:895. [PMID: 38398647 PMCID: PMC10893244 DOI: 10.3390/molecules29040895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Amyloidosis is a group of protein misfolding diseases, which include spongiform encephalopathies, Alzheimer's disease and transthyretin (TTR) amyloidosis; all of them are characterized by extracellular deposits of an insoluble fibrillar protein. TTR amyloidosis is a highly debilitating and life-threatening disease. Patients carry less stable TTR homotetramers that are prone to dissociation into non-native monomers, which in turn rapidly self-assemble into oligomers and, ultimately, amyloid fibrils. Liver transplantation to induce the production of wild-type TTR was the only therapeutic strategy until recently. A promising approach to ameliorate transthyretin (TTR) amyloidosis is based on the so-called TTR kinetic stabilizers. More than 1000 TTR stabilizers have already been tested by many research groups, but the diversity of experimental techniques and conditions used hampers an objective prioritization of the compounds. One of the most reliable and unambiguous techniques applied to determine the structures of the TTR/drug complexes is X-ray diffraction. Most of the potential inhibitors bind in the TTR channel and the crystal structures reveal the atomic details of the interaction between the protein and the compound. Here we suggest that the stabilization effect is associated with a compaction of the quaternary structure of the protein and propose a scoring function to rank drugs based on X-ray crystallography data.
Collapse
Affiliation(s)
- José P. Leite
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Diogo Costa-Rodrigues
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Luís Gales
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
2
|
A serine protease secreted from Bacillus subtilis cleaves human plasma transthyretin to generate an amyloidogenic fragment. Commun Biol 2020; 3:764. [PMID: 33311636 PMCID: PMC7733459 DOI: 10.1038/s42003-020-01493-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
Aggregation of human wild-type transthyretin (hTTR), a homo-tetrameric plasma protein, leads to acquired senile systemic amyloidosis (SSA), recently recognised as a major cause of cardiomyopathies in 1-3% older adults. Fragmented hTTR is the standard composition of amyloid deposits in SSA, but the protease(s) responsible for amyloidogenic fragments generation in vivo is(are) still elusive. Here, we show that subtilisin secreted from Bacillus subtilis, a gut microbiota commensal bacterium, translocates across a simulated intestinal epithelium and cleaves hTTR both in solution and human plasma, generating the amyloidogenic fragment hTTR(59-127), which is also found in SSA amyloids in vivo. To the best of our knowledge, these findings highlight a novel pathogenic mechanism for SSA whereby increased permeability of the gut mucosa, as often occurs in elderly people, allows subtilisin (and perhaps other yet unidentified bacterial proteases) to reach the bloodstream and trigger generation of hTTR fragments, acting as seeding nuclei for preferential amyloid fibrils deposition in the heart.
Collapse
|
3
|
Exploration of the Misfolding Mechanism of Transthyretin Monomer: Insights from Hybrid-Resolution Simulations and Markov State Model Analysis. Biomolecules 2019; 9:biom9120889. [PMID: 31861226 PMCID: PMC6995605 DOI: 10.3390/biom9120889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 01/08/2023] Open
Abstract
Misfolding and aggregation of transthyretin (TTR) is widely known to be responsible for a progressive systemic disorder called amyloid transthyretin (ATTR) amyloidosis. Studies suggest that TTR aggregation is initiated by a rate-limiting dissociation of the homo-tetramer into its monomers, which can rapidly misfold and self-assemble into amyloid fibril. Thus, exploring conformational change involved in TTR monomer misfolding is of vital importance for understanding the pathogenesis of ATTR amyloidosis. In this work, microsecond timescale hybrid-resolution molecular dynamics (MD) simulations combined with Markov state model (MSM) analysis were performed to investigate the misfolding mechanism of the TTR monomer. The results indicate that a macrostate with partially unfolded conformations may serve as the misfolded state of the TTR monomer. This misfolded state was extremely stable with a very large equilibrium probability of about 85.28%. With secondary structure analysis, we found the DAGH sheet in this state to be significantly destroyed. The CBEF sheet was relatively stable and sheet structure was maintained. However, the F-strand in this sheet was likely to move away from E-strand and reform a new β-sheet with the H-strand. This observation is consistent with experimental finding that F and H strands in the outer edge drive the misfolding of TTR. Finally, transition pathways from a near native state to this misfolded macrostate showed that the conformational transition can occur either through a native-like β-sheet intermediates or through partially unfolded intermediates, while the later appears to be the main pathway. As a whole, we identified a potential misfolded state of the TTR monomer and elucidated the misfolding pathway for its conformational transition. This work can provide a valuable theoretical basis for understanding of TTR aggregation and the pathogenesis of ATTR amyloidosis at the atomic level.
Collapse
|
4
|
Childers MC, Daggett V. Drivers of α-Sheet Formation in Transthyretin under Amyloidogenic Conditions. Biochemistry 2019; 58:4408-4423. [PMID: 31609590 DOI: 10.1021/acs.biochem.9b00769] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Amyloid diseases make up a set of fatal disorders in which proteins aggregate to form fibrils that deposit in tissues throughout the body. Amyloid-associated diseases are challenging to study because amyloid formation occurs on time scales that span several orders of magnitude and involve heterogeneous, interconverting protein conformations. The development of more effective technologies to diagnose and treat amyloid disease requires both a map of the conformations sampled during amyloidogenesis and an understanding of the molecular mechanisms that drive this process. In prior molecular dynamics simulations of amyloid proteins, we observed the formation of a nonstandard type of secondary structure, called α-sheet, that we proposed is associated with the pathogenic conformers in amyloid disease, the soluble oligomers. However, the detailed molecular interactions that drive the conversion to α-sheet remain elusive. Here we use molecular dynamics simulations to interrogate a critical event in transthyretin aggregation, the formation of aggregation-competent, monomeric species. We show that conformational changes in one of the two β-sheets in transthyretin enable solvent molecules and polar side chains to form electrostatic interactions with main-chain peptide groups to facilitate and modulate conversion to α-sheet secondary structure. Our results shed light on the early conformational changes that drive transthyretin toward the α-sheet structure associated with toxicity. Delineation of the molecular events that lead to aggregation at atomic resolution can aid strategies to target the early, critical toxic soluble oligomers.
Collapse
Affiliation(s)
- Matthew Carter Childers
- Department of Bioengineering , University of Washington , Seattle , Washington 98195-5013 , United States
| | - Valerie Daggett
- Department of Bioengineering , University of Washington , Seattle , Washington 98195-5013 , United States
| |
Collapse
|
5
|
Corazza A, Verona G, Waudby CA, Mangione PP, Bingham R, Uings I, Canetti D, Nocerino P, Taylor GW, Pepys MB, Christodoulou J, Bellotti V. Binding of Monovalent and Bivalent Ligands by Transthyretin Causes Different Short- and Long-Distance Conformational Changes. J Med Chem 2019; 62:8274-8283. [PMID: 31393717 PMCID: PMC6863598 DOI: 10.1021/acs.jmedchem.9b01037] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
![]()
The wild type protein,
transthyretin (TTR), and over 120 genetic
TTR variants are amyloidogenic and cause, respectively, sporadic and
hereditary systemic TTR amyloidosis. The homotetrameric TTR contains
two identical thyroxine binding pockets, occupation of which by specific
ligands can inhibit TTR amyloidogenesis in vitro. Ligand binding stabilizes
the tetramer, inhibiting its proteolytic cleavage and its dissociation.
Here, we show with solution-state NMR that ligand binding induces
long-distance conformational changes in the TTR that have not previously
been detected by X-ray crystallography, consistently with the inhibition
of the cleavage of the DE loop. The NMR findings, coupled with surface
plasmon resonance measurements, have identified dynamic exchange processes
underlying the negative cooperativity of binding of “monovalent”
ligand tafamidis. In contrast, mds84, our prototypic “bivalent”
ligand, which is a more potent stabilizer of TTR in vitro that occupies
both thyroxine pockets and the intramolecular channel between them,
has greater structural effects.
Collapse
Affiliation(s)
- Alessandra Corazza
- Department of Medicine (DAME) , University of Udine , Udine 33100 , Italy.,Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine , University College London , London NW3 2PF , U.K.,Istituto Nazionale Biostrutture e Biosistemi , Roma 00136 , Italy
| | - Guglielmo Verona
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine , University College London , London NW3 2PF , U.K
| | - Christopher A Waudby
- Institute of Structural and Molecular Biology , University College London , London WC1E 6BT , U.K.,Institute of Structural and Molecular Biology , Birkbeck College , London WC1E 7HX , U.K
| | - P Patrizia Mangione
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine , University College London , London NW3 2PF , U.K.,Department of Molecular Medicine, Institute of Biochemistry , University of Pavia , Pavia 27100 , Italy
| | - Ryan Bingham
- GSK Medicines Research Centre , Stevenage , Hertfordshire SG1 2NY , U.K
| | - Iain Uings
- GSK Medicines Research Centre , Stevenage , Hertfordshire SG1 2NY , U.K
| | - Diana Canetti
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine , University College London , London NW3 2PF , U.K
| | - Paola Nocerino
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine , University College London , London NW3 2PF , U.K
| | - Graham W Taylor
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine , University College London , London NW3 2PF , U.K
| | - Mark B Pepys
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine , University College London , London NW3 2PF , U.K.,National Amyloidosis Centre , University College London and Royal Free Hospital , London NW3 2PF , U.K
| | - John Christodoulou
- Institute of Structural and Molecular Biology , University College London , London WC1E 6BT , U.K.,Institute of Structural and Molecular Biology , Birkbeck College , London WC1E 7HX , U.K
| | - Vittorio Bellotti
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine , University College London , London NW3 2PF , U.K.,Department of Molecular Medicine, Institute of Biochemistry , University of Pavia , Pavia 27100 , Italy
| |
Collapse
|
6
|
Probing conformational changes of monomeric transthyretin with second derivative fluorescence. Sci Rep 2019; 9:10988. [PMID: 31358790 PMCID: PMC6662758 DOI: 10.1038/s41598-019-47230-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/02/2019] [Indexed: 02/06/2023] Open
Abstract
We have studied the intrinsic fluorescence spectra of a monomeric variant of human transthyretin (M-TTR), a protein involved in the transport of the thyroid hormone and retinol and associated with various forms of amyloidosis, extending our analysis to the second order derivative of the spectra. This procedure allowed to identify three peaks readily assigned to Trp41, as the three peaks were also visible in a mutant lacking the other tryptophan (Trp79) and had similar FRET efficiency values with an acceptor molecule positioned at position 10. The wavelength values of the three peaks and their susceptibility to acrylamide quenching revealed that the three corresponding conformers experience different solvent-exposure, polarity of the environment and flexibility. We could monitor the three peaks individually in urea-unfolding and pH-unfolding curves. This revealed changes in the distribution of the corresponding conformers, indicating conformational changes and alterations of the dynamics of the microenvironment that surrounds the associated tryptophan residue in such transitions, but also native-like conformers of such residues in unfolded states. We also found that the amyloidogenic state adopted by M-TTR at mildly low pH has a structural and dynamical microenvironment surrounding Trp41 indistinguishable from that of the fully folded and soluble state at neutral pH.
Collapse
|
7
|
Leach BI, Zhang X, Kelly JW, Dyson HJ, Wright PE. NMR Measurements Reveal the Structural Basis of Transthyretin Destabilization by Pathogenic Mutations. Biochemistry 2018; 57:4421-4430. [PMID: 29972637 PMCID: PMC6067956 DOI: 10.1021/acs.biochem.8b00642] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Inherited mutations of transthyretin (TTR) destabilize its structure, leading to aggregation and familial amyloid disease. Although numerous crystal structures of wild-type (WT) and mutant TTRs have been determined, they have failed to yield a comprehensive structural explanation for destabilization by pathogenic mutations. To identify structural and dynamic variations that are not readily observed in the crystal structures, we used NMR to study WT TTR and three kinetically and/or thermodynamically destabilized pathogenic variants (V30M, L55P, and V122I). Sequence-corrected chemical shifts reveal important structural differences between WT and mutant TTR. The L55P mutation linked to aggressive early onset cardiomyopathy and polyneuropathy induces substantial structural perturbations in both the DAGH and CBEF β-sheets, whereas the V30M polyneuropathy-linked substitution perturbs primarily the CBEF sheet. In both variants, the structural perturbations propagate across the entire width of the β-sheets from the site of mutation. Structural changes caused by the V122I cardiomyopathy-associated mutation are restricted to the immediate vicinity of the mutation site, directly perturbing the subunit interfaces. NMR relaxation dispersion measurements show that WT TTR and the three pathogenic variants undergo millisecond time scale conformational fluctuations to populate a common excited state with an altered structure in the subunit interfaces. The excited state is most highly populated in L55P. The combined application of chemical shift analysis and relaxation dispersion to these pathogenic variants reveals differences in ground state structure and in the population of a transient excited state that potentially facilitates tetramer dissociation, providing new insights into the molecular mechanism by which mutations promote TTR amyloidosis.
Collapse
Affiliation(s)
- Benjamin I. Leach
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037
| | - Xin Zhang
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania16802
| | - Jeffery W. Kelly
- Department of Chemistry and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037
| | - H. Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037
| | - Peter E. Wright
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037
| |
Collapse
|
8
|
Unusual duplication mutation in a surface loop of human transthyretin leads to an aggressive drug-resistant amyloid disease. Proc Natl Acad Sci U S A 2018; 115:E6428-E6436. [PMID: 29941560 DOI: 10.1073/pnas.1802977115] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transthyretin (TTR) is a globular tetrameric transport protein in plasma. Nearly 140 single amino acid substitutions in TTR cause life-threatening amyloid disease. We report a one-of-a-kind pathological variant featuring a Glu51, Ser52 duplication mutation (Glu51_Ser52dup). The proband, heterozygous for the mutation, exhibited an unusually aggressive amyloidosis that was refractory to treatment with the small-molecule drug diflunisal. To understand the poor treatment response and expand therapeutic options, we explored the structure and stability of recombinant Glu51_Ser52dup. The duplication did not alter the protein secondary or tertiary structure but decreased the stability of the TTR monomer and tetramer. Diflunisal, which bound with near-micromolar affinity, partially restored tetramer stability. The duplication had no significant effect on the free energy and enthalpy of diflunisal binding, and hence on the drug-protein interactions. However, the duplication induced tryptic digestion of TTR at near-physiological conditions, releasing a C-terminal fragment 49-129 that formed amyloid fibrils under conditions in which the full-length protein did not. Such C-terminal fragments, along with the full-length TTR, comprise amyloid deposits in vivo. Bioinformatics and structural analyses suggested that increased disorder in the surface loop, which contains the Glu51_Ser52dup duplication, not only helped generate amyloid-forming fragments but also decreased structural protection in the amyloidogenic residue segment 25-34, promoting misfolding of the full-length protein. Our studies of a unique duplication mutation explain its diflunisal-resistant nature, identify misfolding pathways for amyloidogenic TTR variants, and provide therapeutic targets to inhibit amyloid fibril formation by variant TTR.
Collapse
|
9
|
Ghadami SA, Bemporad F, Sala BM, Tiana G, Ricagno S, Chiti F. FRET studies of various conformational states adopted by transthyretin. Cell Mol Life Sci 2017; 74:3577-3598. [PMID: 28478513 PMCID: PMC11107560 DOI: 10.1007/s00018-017-2533-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/15/2017] [Accepted: 05/02/2017] [Indexed: 01/01/2023]
Abstract
Transthyretin (TTR) is an extracellular protein able to deposit into well-defined protein aggregates called amyloid, in pathological conditions known as senile systemic amyloidosis, familial amyloid polyneuropathy, familial amyloid cardiomyopathy and leptomeningeal amyloidosis. At least three distinct partially folded states have been described for TTR, including the widely studied amyloidogenic state at mildly acidic pH. Here, we have used fluorescence resonance energy transfer (FRET) experiments in a monomeric variant of TTR (M-TTR) and in its W41F and W79F mutants, taking advantage of the presence of a unique, solvent-exposed, cysteine residue at position 10, that we have labelled with a coumarin derivative (DACM, acceptor), and of the two natural tryptophan residues at positions 41 and 79 (donors). Trp41 is located in an ideal position as it is one of the residues of β-strand C, whose degree of unfolding is debated. We found that the amyloidogenic state at low pH has the same FRET efficiency as the folded state at neutral pH in both M-TTR and W79F-M-TTR, indicating an unmodified Cys10-Trp41 distance. The partially folded state populated at low denaturant concentrations also has a similar FRET efficiency, but other spectroscopic probes indicate that it is distinct from the amyloidogenic state at acidic pH. By contrast, the off-pathway state accumulating transiently during refolding has a higher FRET efficiency, indicating non-native interactions that reduce the Cys10-Trp41 spatial distance, revealing a third distinct conformational state. Overall, our results clarify a negligible degree of unfolding of β-strand C in the formation of the amyloidogenic state and establish the concept that TTR is a highly plastic protein able to populate at least three distinct conformational states.
Collapse
Affiliation(s)
- Seyyed Abolghasem Ghadami
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Sezione di Scienze Biochimiche, Università degli Studi di Firenze, Viale Morgagni 50, 50134, Florence, Italy
| | - Francesco Bemporad
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Sezione di Scienze Biochimiche, Università degli Studi di Firenze, Viale Morgagni 50, 50134, Florence, Italy
| | - Benedetta Maria Sala
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milan, Italy
| | - Guido Tiana
- Center for Complexity and Biosystems, Department of Physics, Università degli Studi di Milano and INFN, via Celoria 16, 20133, Milan, Italy
| | - Stefano Ricagno
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milan, Italy
| | - Fabrizio Chiti
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Sezione di Scienze Biochimiche, Università degli Studi di Firenze, Viale Morgagni 50, 50134, Florence, Italy.
| |
Collapse
|
10
|
Lim KH, Dasari AKR, Ma R, Hung I, Gan Z, Kelly JW, Fitzgerald MC. Pathogenic Mutations Induce Partial Structural Changes in the Native β-Sheet Structure of Transthyretin and Accelerate Aggregation. Biochemistry 2017; 56:4808-4818. [PMID: 28820582 DOI: 10.1021/acs.biochem.7b00658] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amyloid formation of natively folded proteins involves global and/or local unfolding of the native state to form aggregation-prone intermediates. Here we report solid-state nuclear magnetic resonance (NMR) structural studies of amyloid derived from wild-type (WT) and more aggressive mutant forms of transthyretin (TTR) to investigate the structural changes associated with effective TTR aggregation. We employed selective 13C labeling schemes to investigate structural features of β-structured core regions in amyloid states of WT and two mutant forms (V30M and L55P) of TTR. Analyses of the 13C-13C correlation solid-state NMR spectra revealed that WT TTR aggregates contain an amyloid core consisting of nativelike CBEF and DAGH β-sheet structures, and the mutant TTR amyloids adopt a similar amyloid core structure with nativelike CBEF and AGH β-structures. However, the V30M mutant amyloid was shown to have a different DA β-structure. In addition, strand D is more disordered even in the native state of L55P TTR, indicating that the pathogenic mutations affect the DA β-structure, leading to more effective amyloid formation. The NMR results are consistent with our mass spectrometry-based thermodynamic analyses that showed the amyloidogenic precursor states of WT and mutant TTRs adopt folded structures but the mutant precursor states are less stable than that of WT TTR. Analyses of the oxidation rate of the methionine side chain also revealed that the side chain of residue Met-30 pointing between strands D and A is not protected from oxidation in the V30M mutant, while protected in the native state, supporting the possibility that the DA β-structure might be disrupted in the V30M mutant amyloid.
Collapse
Affiliation(s)
- Kwang Hun Lim
- Department of Chemistry, East Carolina University , Greenville, North Carolina 27858, United States
| | - Anvesh K R Dasari
- Department of Chemistry, East Carolina University , Greenville, North Carolina 27858, United States
| | - Renze Ma
- Department of Chemistry, Duke University , 124 Science Drive, Durham, North Carolina 27708-0346, United States
| | - Ivan Hung
- Center of Interdisciplinary Magnetic Resonance (CIMAR), National High Magnetic Field Laboratory (NHMFL) , 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Zhehong Gan
- Center of Interdisciplinary Magnetic Resonance (CIMAR), National High Magnetic Field Laboratory (NHMFL) , 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Jeffery W Kelly
- Department of Molecular and Experimental Medicine and Skaggs Institute for Chemical Biology, The Scripps Research Institute , La Jolla, California 92037, United States
| | - Michael C Fitzgerald
- Department of Chemistry, Duke University , 124 Science Drive, Durham, North Carolina 27708-0346, United States
| |
Collapse
|
11
|
Legou F, Tacher V, Damy T, Planté-Bordeneuve V, Rappeneau S, Benhaiem N, Rosso J, Itti E, Luciani A, Kobeiter H, Rahmouni A, Deux JF. Usefulness of T2 ratio in the diagnosis and prognosis of cardiac amyloidosis using cardiac MR imaging. Diagn Interv Imaging 2016; 98:125-132. [PMID: 27692958 DOI: 10.1016/j.diii.2016.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 07/08/2016] [Accepted: 08/11/2016] [Indexed: 12/31/2022]
Abstract
PURPOSE To detect if a difference of T2 ratio, defined as the signal intensity (SI) of the myocardium divided by the SI of the skeletal muscle on T2-weigthed cardiac magnetic resonance (CMR) imaging, exists between patients with systemic amyloidosis, by comparison to control subjects. To determine if a relationship exists between T2 ratio and the overall mortality. MATERIALS AND METHODS CMR imaging examinations of 73 consecutive patients (48 men, 25 women; mean age, 63 years±15[SD]) with amyloidosis and suspicion of CA and 27 control subjects were retrospectively analyzed after institutional review board approval. Final diagnosis of CA was retained in case of histological confirmation of CA, typical pattern of CA on imaging and/or positivity of 99Technetium-hydroxymethylene diphosphonate scintigraphy. Patients were divided in 2 groups according to the presence or the absence of CA. T2 ratios were calculated in patients with and those without CA and in control subjects with using analysis of variance. Prognostic value of T2 ratio was studied with a Kaplan-Meier curve. RESULTS Thirty-five patients (51%) had CA and 33 (49%) were free from CA. T2 ratio was lower in patients with CA (1.18±0.29) than in patients without cardiac involvement (1.37±0.35) (P=0.03) and control subjects (1.45±0.24) (P=0.004). A T2 ratio of 1.36 was the best threshold value for predicting CA with a sensitivity of 63% and a specificity of 73%. Kaplan-Meier analysis showed a significant relationship between a shortened overall survival and a T2 ratio<1.36. CONCLUSION Patients with CA exhibit lower T2 ratio on CMR imaging by comparison with patients free of CA and control subjects.
Collapse
Affiliation(s)
- F Legou
- Radiology Department, Henri-Mondor Hospital, Paris Est Créteil University, Assistance publique-Hôpitaux de Paris, 94010 Créteil, France
| | - V Tacher
- Radiology Department, Henri-Mondor Hospital, Paris Est Créteil University, Assistance publique-Hôpitaux de Paris, 94010 Créteil, France
| | - T Damy
- Amyloid Network, Henri-Mondor Hospital, Paris Est Créteil University, 94010 Créteil, France; Cardiology Department, Henri-Mondor Hospital, Paris Est Créteil University, Assistance publique-Hôpitaux de Paris, 94010 Créteil, France
| | - V Planté-Bordeneuve
- Amyloid Network, Henri-Mondor Hospital, Paris Est Créteil University, 94010 Créteil, France; Neurology department, Henri-Mondor Hospital, Paris Est Créteil University, Assistance publique-Hôpitaux de Paris, 94010 Créteil, France
| | - S Rappeneau
- Nuclear Medecine department, Henri-Mondor Hospital, Paris Est Créteil University, Assistance publique-Hôpitaux de Paris, 94010 Créteil, France
| | - N Benhaiem
- Pathology department, Henri-Mondor Hospital, Paris Est Créteil University, Assistance publique-Hôpitaux de Paris, 94010 Créteil, France
| | - J Rosso
- Nuclear Medecine department, Henri-Mondor Hospital, Paris Est Créteil University, Assistance publique-Hôpitaux de Paris, 94010 Créteil, France
| | - E Itti
- Nuclear Medecine department, Henri-Mondor Hospital, Paris Est Créteil University, Assistance publique-Hôpitaux de Paris, 94010 Créteil, France
| | - A Luciani
- Radiology Department, Henri-Mondor Hospital, Paris Est Créteil University, Assistance publique-Hôpitaux de Paris, 94010 Créteil, France
| | - H Kobeiter
- Radiology Department, Henri-Mondor Hospital, Paris Est Créteil University, Assistance publique-Hôpitaux de Paris, 94010 Créteil, France
| | - A Rahmouni
- Radiology Department, Henri-Mondor Hospital, Paris Est Créteil University, Assistance publique-Hôpitaux de Paris, 94010 Créteil, France
| | - J-F Deux
- Radiology Department, Henri-Mondor Hospital, Paris Est Créteil University, Assistance publique-Hôpitaux de Paris, 94010 Créteil, France; Amyloid Network, Henri-Mondor Hospital, Paris Est Créteil University, 94010 Créteil, France.
| |
Collapse
|
12
|
Groenning M, Campos RI, Hirschberg D, Hammarström P, Vestergaard B. Considerably Unfolded Transthyretin Monomers Preceed and Exchange with Dynamically Structured Amyloid Protofibrils. Sci Rep 2015; 5:11443. [PMID: 26108284 PMCID: PMC4480009 DOI: 10.1038/srep11443] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/23/2015] [Indexed: 11/09/2022] Open
Abstract
Despite numerous studies, a detailed description of the transthyretin (TTR) self-assembly mechanism and fibril structure in TTR amyloidoses remains unresolved. Here, using a combination of primarily small -angle X-ray scattering (SAXS) and hydrogen exchange mass spectrometry (HXMS) analysis, we describe an unexpectedly dynamic TTR protofibril structure which exchanges protomers with highly unfolded monomers in solution. The protofibrils only grow to an approximate final size of 2,900 kDa and a length of 70 nm and a comparative HXMS analysis of native and aggregated samples revealed a much higher average solvent exposure of TTR upon fibrillation. With SAXS, we reveal the continuous presence of a considerably unfolded TTR monomer throughout the fibrillation process, and show that a considerable fraction of the fibrillating protein remains in solution even at a late maturation state. Together, these data reveal that the fibrillar state interchanges with the solution state. Accordingly, we suggest that TTR fibrillation proceeds via addition of considerably unfolded monomers, and the continuous presence of amyloidogenic structures near the protofibril surface offers a plausible explanation for secondary nucleation. We argue that the presence of such dynamic structural equilibria must impact future therapeutic development strategies.
Collapse
Affiliation(s)
- Minna Groenning
- Department of Pharmacy and Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- IFM – Department of Chemistry, Linköping University, Linköping, Sweden
| | - Raul I. Campos
- IFM – Department of Chemistry, Linköping University, Linköping, Sweden
| | - Daniel Hirschberg
- IFM – Department of Chemistry, Linköping University, Linköping, Sweden
| | - Per Hammarström
- IFM – Department of Chemistry, Linköping University, Linköping, Sweden
| | - Bente Vestergaard
- Department of Pharmacy and Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Molecular Dynamics Studies on Amyloidogenic Proteins. COMPUTATIONAL METHODS TO STUDY THE STRUCTURE AND DYNAMICS OF BIOMOLECULES AND BIOMOLECULAR PROCESSES 2014. [DOI: 10.1007/978-3-642-28554-7_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Lim KH, Dyson HJ, Kelly JW, Wright PE. Localized structural fluctuations promote amyloidogenic conformations in transthyretin. J Mol Biol 2013; 425:977-88. [PMID: 23318953 DOI: 10.1016/j.jmb.2013.01.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 12/21/2012] [Accepted: 01/07/2013] [Indexed: 11/24/2022]
Abstract
The process of transthyretin (TTR) misfolding and aggregation, including amyloid formation, appears to cause a number of degenerative diseases. During amyloid formation, the native protein undergoes a tetramer-to-folded monomer transition, followed by local unfolding of the monomer to an assembly-competent amyloidogenic intermediate. Here we use NMR relaxation dispersion to probe conformational exchange at physiological pH between native monomeric TTR (the F87M/L110M variant) and a small population of a transiently formed amyloidogenic intermediate. The dispersion experiments show that a majority of the residues in the β-sheet containing β-strands D, A, G, and H undergo conformational fluctuations on microsecond-to-millisecond timescales. Exchange broadening is greatest for residues in the outer β-strand H, which hydrogen bonds to β-strand H' of a neighboring subunit in the tetramer, but the associated structural fluctuations propagate across the entire β-sheet. Fluctuations in the other β-sheet are limited to the outer β-strand F, which packs against strand F' in the tetramer, while the B, C, and E β-strands of this sheet remain stable. The structural changes were also investigated under more forcing amyloidogenic conditions (pH6.4-3.7), where β-strand D and regions of the D-E and E-F loops were additionally destabilized, increasing the population of the amyloidogenic intermediate and accelerating amyloid formation. Strands B, C, and E appear to maintain native-like conformations in the partially unfolded, amyloidogenic state of wild-type TTR. In the case of the protective mutant T119M, the conformational fluctuations are suppressed under both physiological and mildly acidic conditions, indicating that the dynamic properties of TTR correlate well with its aggregation propensity.
Collapse
Affiliation(s)
- Kwang Hun Lim
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA.
| | | | | | | |
Collapse
|
15
|
Lee YH, Goto Y. Kinetic intermediates of amyloid fibrillation studied by hydrogen exchange methods with nuclear magnetic resonance. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:1307-23. [DOI: 10.1016/j.bbapap.2012.07.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 07/24/2012] [Accepted: 07/26/2012] [Indexed: 01/28/2023]
|
16
|
Johnson SM, Connelly S, Fearns C, Powers ET, Kelly JW. The transthyretin amyloidoses: from delineating the molecular mechanism of aggregation linked to pathology to a regulatory-agency-approved drug. J Mol Biol 2012; 421:185-203. [PMID: 22244854 PMCID: PMC3350832 DOI: 10.1016/j.jmb.2011.12.060] [Citation(s) in RCA: 244] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 12/22/2011] [Accepted: 12/29/2011] [Indexed: 12/31/2022]
Abstract
Transthyretin (TTR) is one of the many proteins that are known to misfold and aggregate (i.e., undergo amyloidogenesis) in vivo. The process of TTR amyloidogenesis causes nervous system and/or heart pathology. While several of these maladies are associated with mutations that destabilize the native TTR quaternary and/or tertiary structure, wild-type TTR amyloidogenesis also leads to the degeneration of postmitotic tissue. Over the past 20 years, much has been learned about the factors that influence the propensity of TTR to aggregate. This biophysical information led to the development of a therapeutic strategy, termed "kinetic stabilization," to prevent TTR amyloidogenesis. This strategy afforded the drug tafamidis which was recently approved by the European Medicines Agency for the treatment of TTR familial amyloid polyneuropathy, the most common familial TTR amyloid disease. Tafamidis is the first and currently the only medication approved to treat TTR familial amyloid polyneuropathy. Here we review the biophysical basis for the kinetic stabilization strategy and the structure-based drug design effort that led to this first-in-class pharmacologic agent.
Collapse
Affiliation(s)
- Steven M. Johnson
- Department of Chemistry and The Skaggs Institute for Chemical Biology, La Jolla, California 92037, USA
| | - Stephen Connelly
- Department of Molecular Biology, La Jolla, California 92037, USA
| | - Colleen Fearns
- Department of Chemistry and The Skaggs Institute for Chemical Biology, La Jolla, California 92037, USA
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Evan T. Powers
- Department of Chemistry and The Skaggs Institute for Chemical Biology, La Jolla, California 92037, USA
| | - Jeffery W. Kelly
- Department of Chemistry and The Skaggs Institute for Chemical Biology, La Jolla, California 92037, USA
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
17
|
Yokoyama T, Mizuguchi M, Nabeshima Y, Kusaka K, Yamada T, Hosoya T, Ohhara T, Kurihara K, Tomoyori K, Tanaka I, Niimura N. Hydrogen-bond network and pH sensitivity in transthyretin: Neutron crystal structure of human transthyretin. J Struct Biol 2012; 177:283-90. [PMID: 22248451 DOI: 10.1016/j.jsb.2011.12.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 12/14/2011] [Accepted: 12/15/2011] [Indexed: 10/14/2022]
Abstract
Transthyretin (TTR) is a tetrameric protein associated with human amyloidosis. In vitro, the formation of amyloid fibrils by TTR is known to be promoted by low pH. Here we show the neutron structure of TTR, focusing on the hydrogen bonds, protonation states and pH sensitivities. A large crystal was prepared at pD 7.4 for neutron protein crystallography. Neutron diffraction studies were conducted using the IBARAKI Biological Crystal Diffractometer with the time-of-flight method. The neutron structure solved at 2.0Å resolution revealed the protonation states of His88 and the detailed hydrogen-bond network depending on the protonation states of His88. This hydrogen-bond network is composed of Thr75, Trp79, His88, Ser112, Pro113, Thr118-B and four water molecules, and is involved in both monomer-monomer and dimer-dimer interactions, suggesting that the double protonation of His88 by acidification breaks the hydrogen-bond network and causes the destabilization of the TTR tetramer. In addition, the comparison with X-ray structure at pH 4.0 indicated that the protonation occurred to Asp74, His88 and Glu89 at pH 4.0. Our neutron model provides insights into the molecular stability of TTR related to the hydrogen-bond network, the pH sensitivity and the CH···O weak hydrogen bond.
Collapse
Affiliation(s)
- Takeshi Yokoyama
- Frontier Research Center for Applied Atomic Sciences, Ibaraki University, 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Alford JR, Fowler AC, Wuttke DS, Kerwin BA, Latypov RF, Carpenter JF, Randolph TW. Effect of benzyl alcohol on recombinant human interleukin-1 receptor antagonist structure and hydrogen-deuterium exchange. J Pharm Sci 2011; 100:4215-24. [PMID: 21557223 DOI: 10.1002/jps.22601] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 03/22/2011] [Accepted: 04/18/2011] [Indexed: 11/10/2022]
Abstract
Benzyl alcohol, a preservative commonly added to multidose therapeutic protein formulations, can accelerate aggregation of recombinant human interleukin-1 receptor antagonist (rhIL-1ra). To investigate the interactions between benzyl alcohol and rhIL-1ra, we used nuclear magnetic resonance to observe the effect of benzyl alcohol on the chemical shifts of amide resonances of rhIL-1ra and to measure hydrogen-deuterium exchange rates of individual rhIL-1ra residues. Addition of 0.9% benzyl alcohol caused significant chemical shifts of amide resonances for residues 90-97, suggesting that these solvent-exposed residues participate in the binding of benzyl alcohol. In contrast, little perturbation of exchange rates was observed in the presence of either sucrose or benzyl alcohol.
Collapse
Affiliation(s)
- John R Alford
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309
| | | | | | | | | | | | | |
Collapse
|
19
|
Trapping of palindromic ligands within native transthyretin prevents amyloid formation. Proc Natl Acad Sci U S A 2010; 107:20483-8. [PMID: 21059958 DOI: 10.1073/pnas.1008255107] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transthyretin (TTR) amyloidosis is a fatal disease for which new therapeutic approaches are urgently needed. We have designed two palindromic ligands, 2,2'-(4,4'-(heptane-1,7-diylbis(oxy))bis(3,5-dichloro-4,1-phenylene)) bis(azanediyl)dibenzoic acid (mds84) and 2,2'-(4,4'-(undecane-1,11-diylbis(oxy))bis(3,5-dichloro-4,1-phenylene)) bis(azanediyl)dibenzoic acid (4ajm15), that are rapidly bound by native wild-type TTR in whole serum and even more avidly by amyloidogenic TTR variants. One to one stoichiometry, demonstrable in solution and by MS, was confirmed by X-ray crystallographic analysis showing simultaneous occupation of both T4 binding sites in each tetrameric TTR molecule by the pair of ligand head groups. Ligand binding by native TTR was irreversible under physiological conditions, and it stabilized the tetrameric assembly and inhibited amyloidogenic aggregation more potently than other known ligands. These superstabilizers are orally bioavailable and exhibit low inhibitory activity against cyclooxygenase (COX). They offer a promising platform for development of drugs to treat and prevent TTR amyloidosis.
Collapse
|
20
|
Du J, Murphy RM. Characterization of the interaction of β-amyloid with transthyretin monomers and tetramers. Biochemistry 2010; 49:8276-89. [PMID: 20795734 DOI: 10.1021/bi101280t] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
β-Amyloid (Aβ) is the main protein component of the amyloid plaques associated with Alzheimer's disease. Transthyretin (TTR) is a homotetramer that circulates in both blood and cerebrospinal fluid. Wild-type (wt) TTR amyloid deposits are linked to senile systemic amyloidosis, a common disease of aging, while several TTR mutants are linked to familial amyloid polyneuropathy. Several recent studies provide support for the hypothesis that these two amyloidogenic proteins interact, and that this interaction is biologically relevant. For example, upregulation of TTR expression in Tg2576 mice was linked to protection from the toxic effects of Aβ deposition [Stein, T. D., and Johnson, J. A. (2002) J. Neurosci. 22, 7380-7388]. We examined the interaction of Aβ with wt TTR as well as two mutants: F87M/L110M, engineered to be a stable monomer, and T119M, a naturally occurring mutant with a tetrameric stability higher than that of the wild type. On the basis of enzyme-linked immunoassays as well as cross-linking experiments, we conclude that Aβ monomers bind more to TTR monomers than to TTR tetramers. The data further suggest that TTR tetramers interact preferably with Aβ aggregates rather than Aβ monomers. Through tandem mass spectrometry analysis of cross-linked TTR-Aβ fragments, we identified the A strand, in the inner β-sheet of TTR, as well as the EF helix, as regions of TTR that are involved with Aβ association. Light scattering and electron microscopy studies demonstrate that the outcome of the TTR-Aβ interaction strongly depends on TTR quaternary structure. While TTR tetramers may modestly enhance aggregation, TTR monomers decidedly arrest Aβ aggregate growth. These data provide important new insights into the nature of TTR-Aβ interactions. Such interactions may regulate TTR-mediated protection against Aβ toxicity.
Collapse
Affiliation(s)
- Jiali Du
- Department of Chemical and Biological Engineering, University of Wisconsin, 1415 Engineering Drive, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
21
|
de C. Palmieri L, Lima LMTR, Freire JBB, Bleicher L, Polikarpov I, Almeida FCL, Foguel D. Novel Zn2+-binding sites in human transthyretin: implications for amyloidogenesis and retinol-binding protein recognition. J Biol Chem 2010; 285:31731-41. [PMID: 20659897 PMCID: PMC2951245 DOI: 10.1074/jbc.m110.157206] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Indexed: 11/06/2022] Open
Abstract
Human transthyretin (TTR) is a homotetrameric protein involved in several amyloidoses. Zn(2+) enhances TTR aggregation in vitro, and is a component of ex vivo TTR amyloid fibrils. We report the first crystal structure of human TTR in complex with Zn(2+) at pH 4.6-7.5. All four structures reveal three tetra-coordinated Zn(2+)-binding sites (ZBS 1-3) per monomer, plus a fourth site (ZBS 4) involving amino acid residues from a symmetry-related tetramer that is not visible in solution by NMR. Zn(2+) binding perturbs loop E-α-helix-loop F, the region involved in holo-retinol-binding protein (holo-RBP) recognition, mainly at acidic pH; TTR affinity for holo-RBP decreases ∼5-fold in the presence of Zn(2+). Interestingly, this same region is disrupted in the crystal structure of the amyloidogenic intermediate of TTR formed at acidic pH in the absence of Zn(2+). HNCO and HNCA experiments performed in solution at pH 7.5 revealed that upon Zn(2+) binding, although the α-helix persists, there are perturbations in the resonances of the residues that flank this region, suggesting an increase in structural flexibility. While stability of the monomer of TTR decreases in the presence of Zn(2+), which is consistent with the tertiary structural perturbation provoked by Zn(2+) binding, tetramer stability is only marginally affected by Zn(2+). These data highlight structural and functional roles of Zn(2+) in TTR-related amyloidoses, as well as in holo-RBP recognition and vitamin A homeostasis.
Collapse
Affiliation(s)
| | | | | | - Lucas Bleicher
- the Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo 13560-970, Brazil
| | - Igor Polikarpov
- the Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo 13560-970, Brazil
| | - Fabio C. L. Almeida
- From the Instituto de Bioquimica Medica, Programa de Biologia Estrutural
- Centro Nacional de Ressonância Magnética Nuclear de Macromoléculas Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil and
| | - Debora Foguel
- From the Instituto de Bioquimica Medica, Programa de Biologia Estrutural
| |
Collapse
|
22
|
Rodrigues JR, Simões CJV, Silva CG, Brito RMM. Potentially amyloidogenic conformational intermediates populate the unfolding landscape of transthyretin: insights from molecular dynamics simulations. Protein Sci 2010; 19:202-19. [PMID: 19937650 DOI: 10.1002/pro.289] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Protein aggregation into insoluble fibrillar structures known as amyloid characterizes several neurodegenerative diseases, including Alzheimer's, Huntington's and Creutzfeldt-Jakob. Transthyretin (TTR), a homotetrameric plasma protein, is known to be the causative agent of amyloid pathologies such as FAP (familial amyloid polyneuropathy), FAC (familial amyloid cardiomiopathy) and SSA (senile systemic amyloidosis). It is generally accepted that TTR tetramer dissociation and monomer partial unfolding precedes amyloid fibril formation. To explore the TTR unfolding landscape and to identify potential intermediate conformations with high tendency for amyloid formation, we have performed molecular dynamics unfolding simulations of WT-TTR and L55P-TTR, a highly amyloidogenic TTR variant. Our simulations in explicit water allow the identification of events that clearly discriminate the unfolding behavior of WT and L55P-TTR. Analysis of the simulation trajectories show that (i) the L55P monomers unfold earlier and to a larger extent than the WT; (ii) the single alpha-helix in the TTR monomer completely unfolds in most of the L55P simulations while remain folded in WT simulations; (iii) L55P forms, early in the simulations, aggregation-prone conformations characterized by full displacement of strands C and D from the main beta-sandwich core of the monomer; (iv) L55P shows, late in the simulations, severe loss of the H-bond network and consequent destabilization of the CBEF beta-sheet of the beta-sandwich; (v) WT forms aggregation-compatible conformations only late in the simulations and upon extensive unfolding of the monomer. These results clearly show that, in comparison with WT, L55P-TTR does present a much higher probability of forming transient conformations compatible with aggregation and amyloid formation.
Collapse
Affiliation(s)
- J Rui Rodrigues
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | | | | | | |
Collapse
|
23
|
Trivella DBB, Bleicher L, Palmieri LDC, Wiggers HJ, Montanari CA, Kelly JW, Lima LMTR, Foguel D, Polikarpov I. Conformational differences between the wild type and V30M mutant transthyretin modulate its binding to genistein: implications to tetramer stability and ligand-binding. J Struct Biol 2010; 170:522-31. [PMID: 20211733 DOI: 10.1016/j.jsb.2010.03.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 02/27/2010] [Accepted: 03/02/2010] [Indexed: 11/26/2022]
Abstract
Transthyretin (TTR) is a tetrameric beta-sheet-rich transporter protein directly involved in human amyloid diseases. It was recently found that the isoflavone genistein (GEN) potently inhibits TTR amyloid fibril formation (Green et al., 2005) and is therefore a promising candidate for TTR amyloidosis treatment. Here we used structural and biophysical approaches to characterize genistein binding to the wild type (TTRwt) and to its most frequent amyloidogenic variant, the V30M mutant. In a dose-dependent manner, genistein elicited considerable increases in both mutant and TTRwt stability as demonstrated by high hydrostatic pressure (HHP) and acid-mediated dissociation/denaturation assays. TTR:GEN crystal complexes and isothermal titration calorimetry (ITC) experiments showed that the binding mechanisms of genistein to the TTRwt and to V30M are different and are dependent on apoTTR structure conformations. Furthermore, we could also identify potential allosteric movements caused by genistein binding to the wild type TTR that explains, at least in part, the frequently observed negatively cooperative process between the two sites of TTRwt when binding ligands. These findings show that TTR mutants may present different ligand recognition and therefore are of value in ligand design for inhibiting TTR amyloidosis.
Collapse
Affiliation(s)
- Daniela B B Trivella
- Instituto de Física de São Carlos, Universidade de São Paulo, P.O. Box 369, 13560-970 São Carlos, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Miyata M, Sato T, Mizuguchi M, Nakamura T, Ikemizu S, Nabeshima Y, Susuki S, Suwa Y, Morioka H, Ando Y, Suico MA, Shuto T, Koga T, Yamagata Y, Kai H. Role of the Glutamic Acid 54 Residue in Transthyretin Stability and Thyroxine Binding,. Biochemistry 2009; 49:114-23. [DOI: 10.1021/bi901677z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Masanori Miyata
- Departments of Molecular Medicine, Global COE Cell Fate Regulation Research and Education Unit
| | - Takashi Sato
- Departments of Molecular Medicine, Global COE Cell Fate Regulation Research and Education Unit
| | - Mineyuki Mizuguchi
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0914, Japan
| | | | | | - Yuko Nabeshima
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0914, Japan
| | - Seiko Susuki
- Departments of Molecular Medicine, Global COE Cell Fate Regulation Research and Education Unit
| | | | | | - Yukio Ando
- Department of Diagnostic Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-0811, Japan
| | - Mary Ann Suico
- Departments of Molecular Medicine, Global COE Cell Fate Regulation Research and Education Unit
| | - Tsuyoshi Shuto
- Departments of Molecular Medicine, Global COE Cell Fate Regulation Research and Education Unit
| | - Tomoaki Koga
- Departments of Molecular Medicine, Global COE Cell Fate Regulation Research and Education Unit
| | | | - Hirofumi Kai
- Departments of Molecular Medicine, Global COE Cell Fate Regulation Research and Education Unit
| |
Collapse
|
25
|
Hosszu LLP, Trevitt CR, Jones S, Batchelor M, Scott DJ, Jackson GS, Collinge J, Waltho JP, Clarke AR. Conformational properties of beta-PrP. J Biol Chem 2009; 284:21981-21990. [PMID: 19369250 PMCID: PMC2755922 DOI: 10.1074/jbc.m809173200] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 03/19/2009] [Indexed: 11/06/2022] Open
Abstract
Prion propagation involves a conformational transition of the cellular form of prion protein (PrPC) to a disease-specific isomer (PrPSc), shifting from a predominantly alpha-helical conformation to one dominated by beta-sheet structure. This conformational transition is of critical importance in understanding the molecular basis for prion disease. Here, we elucidate the conformational properties of a disulfide-reduced fragment of human PrP spanning residues 91-231 under acidic conditions, using a combination of heteronuclear NMR, analytical ultracentrifugation, and circular dichroism. We find that this form of the protein, which similarly to PrPSc, is a potent inhibitor of the 26 S proteasome, assembles into soluble oligomers that have significant beta-sheet content. The monomeric precursor to these oligomers exhibits many of the characteristics of a molten globule intermediate with some helical character in regions that form helices I and III in the PrPC conformation, whereas helix II exhibits little evidence for adopting a helical conformation, suggesting that this region is a likely source of interaction within the initial phases of the transformation to a beta-rich conformation. This precursor state is almost as compact as the folded PrPC structure and, as it assembles, only residues 126-227 are immobilized within the oligomeric structure, leaving the remainder in a mobile, random-coil state.
Collapse
Affiliation(s)
- Laszlo L. P. Hosszu
- From the MRC Prion Unit, Department of Neurodegenerative Disease, Institute of Neurology, Queen Square, London WC1N 3BG
- the Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, and
| | - Clare R. Trevitt
- From the MRC Prion Unit, Department of Neurodegenerative Disease, Institute of Neurology, Queen Square, London WC1N 3BG
| | - Samantha Jones
- From the MRC Prion Unit, Department of Neurodegenerative Disease, Institute of Neurology, Queen Square, London WC1N 3BG
| | - Mark Batchelor
- From the MRC Prion Unit, Department of Neurodegenerative Disease, Institute of Neurology, Queen Square, London WC1N 3BG
| | - David J. Scott
- the National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, United Kingdom
| | - Graham S. Jackson
- From the MRC Prion Unit, Department of Neurodegenerative Disease, Institute of Neurology, Queen Square, London WC1N 3BG
| | - John Collinge
- From the MRC Prion Unit, Department of Neurodegenerative Disease, Institute of Neurology, Queen Square, London WC1N 3BG
| | - Jonathan P. Waltho
- the Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, and
| | - Anthony R. Clarke
- From the MRC Prion Unit, Department of Neurodegenerative Disease, Institute of Neurology, Queen Square, London WC1N 3BG
| |
Collapse
|
26
|
Abstract
The conversion of proteins from their soluble states into well-organized fibrillar aggregates is associated with a wide range of pathological conditions, including neurodegenerative diseases and systemic amyloidoses. In this review, we discuss the mechanism of aggregation of globular proteins under conditions in which they are initially folded. Although a conformational change of the native state is generally necessary to initiate aggregation, we show that a transition across the major energy barrier for unfolding is not essential and that aggregation may well be initiated from locally unfolded states that become accessible, for example, via thermal fluctuations occurring under physiological conditions. We review recent evidence on this topic and discuss its significance for understanding the onset and potential inhibition of protein aggregation in the context of diseases.
Collapse
Affiliation(s)
- Fabrizio Chiti
- Dipartimento di Scienze Biochimiche, Università degli Studi di Firenze, Viale Morgagni 50, I-50134 Firenze, Italy.
| | | |
Collapse
|
27
|
Sörgjerd K, Klingstedt T, Lindgren M, Kågedal K, Hammarström P. Prefibrillar transthyretin oligomers and cold stored native tetrameric transthyretin are cytotoxic in cell culture. Biochem Biophys Res Commun 2008; 377:1072-8. [DOI: 10.1016/j.bbrc.2008.10.121] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 10/18/2008] [Indexed: 10/21/2022]
|
28
|
Wang H, Tang Y, Lei M. Models for binding cooperativities of inhibitors with transthyretin. Arch Biochem Biophys 2007; 466:85-97. [PMID: 17767913 DOI: 10.1016/j.abb.2007.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 07/09/2007] [Accepted: 07/11/2007] [Indexed: 11/19/2022]
Abstract
Here, molecular dynamics (MD) simulations are performed to study the differences of binding channel shapes of TTR with two inhibitors, flufenamic acid (FLU) and one kind of N-phenyl phenoxazine (BPD). The asymmetries of global structure including the central binding channel are found to be intrinsic. Moreover, the conformational changes of the binding channel are responsible for negative cooperativity (NC) or independent cooperativity (IC) of ligands. The results suggested a possible binding mechanism addressing NC of FLU and IC of BPD. For FLU, when the first ligand binds with TTR, it leads to expansion of the second binding site which may weaken the interaction of the second FLU with TTR. But for BPD, the first ligand's binding changes the second site's shape slightly, the second ligand has similar binding ability with TTR in the second site like the first binding event.
Collapse
Affiliation(s)
- Houfang Wang
- Institute of Materia Medica/Department of Chemistry, School of Science, Beijing University of Chemical Technology, Beijing 100029, PR China
| | | | | |
Collapse
|
29
|
Jahn TR, Radford SE. Folding versus aggregation: polypeptide conformations on competing pathways. Arch Biochem Biophys 2007; 469:100-17. [PMID: 17588526 PMCID: PMC2706318 DOI: 10.1016/j.abb.2007.05.015] [Citation(s) in RCA: 298] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 05/16/2007] [Accepted: 05/21/2007] [Indexed: 12/19/2022]
Abstract
Protein aggregation has now become recognised as an important and generic aspect of protein energy landscapes. Since the discovery that numerous human diseases are caused by protein aggregation, the biophysical characterisation of misfolded states and their aggregation mechanisms has received increased attention. Utilising experimental techniques and computational approaches established for the analysis of protein folding reactions has ensured rapid advances in the study of pathways leading to amyloid fibrils and amyloid-related aggregates. Here we describe recent experimental and theoretical advances in the elucidation of the conformational properties of dynamic, heterogeneous and/or insoluble protein ensembles populated on complex, multidimensional protein energy landscapes. We discuss current understanding of aggregation mechanisms in this context and describe how the synergy between biochemical, biophysical and cell-biological experiments are beginning to provide detailed insights into the partitioning of non-native species between protein folding and aggregation pathways.
Collapse
|
30
|
Abstract
The role of amino acid side chain oxidation in the formation of amyloid assemblies has been investigated. Chemical oxidation of amino acid side chains has been used as a facile method of introducing mutations on protein structures. Oxidation promotes changes within tertiary contacts that enable identification of residues and interactions critical in stabilizing protein structures. Transthyretin (TTR) is a soluble human plasma protein. The wild-type (WT) and several of its variants are prone to fibril formation, which leads to amyloidosis associated with many clinical syndromes. The effects of amino acid side chain oxidations were investigated by comparing the kinetics of fibril formation of oxidized and unoxidized proteins. The WT and V30M TTR mutant (valine 30 substituted with methionine) were allowed to react over a time range of 10 min to 12 h with hydroxy radical and other reactive oxygen species. In these timescales, up to five oxygen atoms were incorporated into WT and V30M TTR proteins. Oxidized proteins retained their tetrameric structures, as determined by cross-linking experiments. Side chain modification of methionine residues at position 13 and 30 (the latter for V30M TTR only) were dominant oxidative products. Mono-oxidized and dioxidized methionine residues were identified by radical probe mass spectometry employing a footprinting type approach. Oxidation inhibited the initial rates and extent of fibril formation for both the WT and V30M TTR proteins. In the case of WT TTR, oxidation inhibited fibril growth by approximately 76%, and for the V30M TTR by nearly 90%. These inhibiting effects of oxidation on fibril growth suggest that domains neighboring the methionine residues are critical in stabilizing the tetrameric and folded monomer structures.
Collapse
Affiliation(s)
- Simin D Maleknia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia.
| | | | | |
Collapse
|
31
|
Takeuchi M, Mizuguchi M, Kouno T, Shinohara Y, Aizawa T, Demura M, Mori Y, Shinoda H, Kawano K. Destabilization of transthyretin by pathogenic mutations in the DE loop. Proteins 2006; 66:716-25. [PMID: 17143887 DOI: 10.1002/prot.21252] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transthyretin single-amino-acid variants are responsible for familial amyloidotic polyneuropathy, in which transthyretin variants accumulate extracellularly in the form of fibrillar aggregates. We studied the structural stabilities of four transthyretin variants (L58H, L58R, T59K, and E61K), in which a positively charged amino acid is introduced in a loop region between the D- and E-strands. In addition to being located in the DE-loop, L58 and T59 are involved in the core of the transthyretin monomer. The L58H, L58R, and T59K substitutions destabilized transthyretin more than the E61K mutation did, indicating that transthyretin is substantially destabilized by the substitution of residues located in both the DE-loop and the monomer core. By utilizing hydrogen-deuterium exchange and nuclear magnetic resonance, we demonstrated that residues in the G-strand and the loop between the A- and B-strands were destabilized by these pathogenic mutations in the DE loop. At the quaternary structural level, the DE-loop mutations destabilized the dimer-dimer contact area, which may lead to transient dissociation into a dimer. Our results suggest that the destabilization of the dimer-dimer interface and the monomer core is important for the amyloidogenesis of transthyretin.
Collapse
Affiliation(s)
- Makoto Takeuchi
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Milner-White JE, Watson JD, Qi G, Hayward S. Amyloid Formation May Involve α- to β Sheet Interconversion via Peptide Plane Flipping. Structure 2006; 14:1369-76. [PMID: 16962968 DOI: 10.1016/j.str.2006.06.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 06/28/2006] [Accepted: 06/28/2006] [Indexed: 11/23/2022]
Abstract
The toxic component of amyloid is not the mature fiber but a soluble prefibrillar intermediate. It has been proposed, from molecular dynamics simulations, that the precursor is composed of alpha sheet, which converts into the beta sheet of mature amyloid via peptide plane flipping. alpha sheet, not seen in proteins, occurs as isolated stretches of polypeptide. We show that the alpha- to beta sheet transition can occur by the flipping of alternate peptide planes. The flip can be described as alphaRalphaL<-->betabeta. A search conducted within sets of closely related protein crystal structures revealed that these flips are common, occurring in 8.5% of protein families. The average "alphaL" conformation found is in an adjacent and less populated region of the Ramachandran plot, as expected if the flanking peptide planes, being hydrogen bonded, are restricted in their movements. This work provides evidence for flips allowing direct alpha- to beta sheet interconversion.
Collapse
Affiliation(s)
- James E Milner-White
- Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom.
| | | | | | | |
Collapse
|
33
|
Bergström J, Engström U, Yamashita T, Ando Y, Westermark P. Surface exposed epitopes and structural heterogeneity of in vivo formed transthyretin amyloid fibrils. Biochem Biophys Res Commun 2006; 348:532-9. [PMID: 16893521 DOI: 10.1016/j.bbrc.2006.07.140] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Accepted: 07/17/2006] [Indexed: 10/24/2022]
Abstract
We have investigated the structure of in vivo formed transthyretin (TTR) amyloid deposits by using antisera raised against short linear sequences of the TTR molecule. In immunohistochemistry, antisera anti-TTR41-50 and anti-TTR115-124-a reacted specifically with both wildtype ATTR and ATTR V30M material, whereas only anti-TTR41-50 recognized ATTR Y114C material. Similar results were obtained by ELISA analysis of ATTR V30M and ATTR Y114C vitreous amyloid, where the anti-TTR115-124-a antiserum failed to react with ATTR Y114C material. Moreover, neither of the antisera recognized natively structured TTR present in pancreatic alpha cells. Our results strongly indicate that the TTR molecule undergoes structural changes during fibrillogenesis in vivo. The finding of a structural difference between wildtype ATTR and ATTR V30M material on one hand and ATTR Y114C material on the other suggests that the fibril formation pathway of these ATTR variants may differ in vivo.
Collapse
Affiliation(s)
- Joakim Bergström
- Department of Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
34
|
Cordeiro Y, Kraineva J, Suarez MC, Tempesta AG, Kelly JW, Silva JL, Winter R, Foguel D. Fourier transform infrared spectroscopy provides a fingerprint for the tetramer and for the aggregates of transthyretin. Biophys J 2006; 91:957-67. [PMID: 16698785 PMCID: PMC1563765 DOI: 10.1529/biophysj.106.085928] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transthyretin (TTR) is an amyloidogenic protein whose aggregation is responsible for several familial amyloid diseases. Here, we use FTIR to describe the secondary structural changes that take place when wt TTR undergoes heat- or high-pressure-induced denaturation, as well as fibril formation. Upon thermal denaturation, TTR loses part of its intramolecular beta-sheet structure followed by an increase in nonnative, probably antiparallel beta-sheet contacts (bands at 1,616 and 1,686 cm(-1)) and in the light scattering, suggesting its aggregation. Pressure-induced denaturation studies show that even at very elevated pressures (12 kbar), TTR loses only part of its beta-sheet structure, suggesting that pressure leads to a partially unfolded species. On comparing the FTIR spectrum of the TTR amyloid fibril produced at atmospheric pressure upon acidification (pH 4.4) with the one presented by the native tetramer, we find that the content of beta-sheets does not change much upon fibrillization; however, the alignment of beta-sheets is altered, resulting in the formation of distinct beta-sheet contacts (band at 1,625 cm(-1)). The random-coil content also decreases in going from tetramers to fibrils. This means that, although part of the tertiary- and secondary-structure content of the TTR monomers has to be lost before fibril formation, as previously suggested, there must be a subsequent reorganization of part of the random-coil structure into a well-organized structure compatible with the amyloid fibril, as well as a readjustment of the alignment of the beta-sheets. Interestingly, the infrared spectrum of the protein recovered from a cycle of compression-decompression at pD 5, 37 degrees C, is quite similar to that of fibrils produced at atmospheric pressure (pH 4.4), which suggests that high hydrostatic pressure converts the tetramers of TTR into an amyloidogenic conformation.
Collapse
Affiliation(s)
- Yraima Cordeiro
- Instituto de Bioquímica Médica, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, RJ 21941-590, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Yang M, Lei M, Yordanov B, Huo S. Peptide Plane Can Flip in Two Opposite Directions: Implication in Amyloid Formation of Transthyretin. J Phys Chem B 2006; 110:5829-33. [PMID: 16553385 DOI: 10.1021/jp0570420] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transthyretin (TTR) is one of the known 20 or so human proteins that form fibrils in vivo, which is a hallmark of amyloid diseases. Recently, molecular dynamics simulations using ENCAD force field have revealed that under low pH conditions, the peptide planes of several amyloidogenic proteins can flip in one direction to form an alpha-pleated structure which may be a common conformational transition in the fibril formation. We performed molecular dynamics simulations with AMBER force fields on a recently engineered double mutant TTR, which was shown experimentally to form amyloid fibrils even under close to physiological conditions. Our simulations have demonstrated that peptide-plane flipping can occur even under neutral pH and room temperature for this amyloidogenic TTR variant. Unlike previously reported peptide-plane flipping of TTR using ENCAD force field, we have found two-way flipping using AMBER force field. We propose a new mechanism of amyloid formation based on the two-way flipping, which gives a better explanation of various experimental and computational results. In principle, the residual dipolar and hydrogen-bond scalar coupling techniques can be applied to the wild-type TTR and the variant to study the peptide-plane flipping of amyloidogenic proteins.
Collapse
|
36
|
Green NS, Foss TR, Kelly JW. Genistein, a natural product from soy, is a potent inhibitor of transthyretin amyloidosis. Proc Natl Acad Sci U S A 2005; 102:14545-50. [PMID: 16195386 PMCID: PMC1253540 DOI: 10.1073/pnas.0501609102] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Accepted: 08/24/2005] [Indexed: 11/18/2022] Open
Abstract
The misfolding of transthyretin (TTR), including rate-limiting tetramer dissociation and partial monomer denaturation, is sufficient for TTR misassembly into amyloid and other abnormal quaternary structures associated with three amyloid diseases: senile systemic amyloidosis, familial amyloid polyneuropathy, and familial amyloid cardiomyopathy. Small molecules can bind to one or both of the unoccupied TTR thyroid hormone-binding sites, stabilizing the native tetramer more than the dissociative transition state, thereby raising the kinetic barrier for tetramer dissociation. Herein we demonstrate that genistein, the major isoflavone natural product in soy, works in this fashion and is an excellent inhibitor of transthyretin tetramer dissociation and amyloidogenesis, reducing acid-mediated fibril formation to <10% of that exhibited by TTR alone. Genistein also inhibits the amyloidogenesis of the most common familial amyloid polyneuropathy and familial amyloid cardiomyopathy mutations in TTR: V30M and V122I, respectively. Genistein additionally inhibits tetramer dissociation under physiological conditions thought to lead to slow amyloidogenesis in humans. Furthermore, this natural product exhibits highly selective binding to TTR in plasma over all of the other plasma proteins. Isothermal titration calorimetry shows that genistein binds to TTR with negative cooperativity (K(d1) = 40 nM, K(d2) = 1.4 microM). The benefits of using a nutraceutical such as genistein to treat orphan diseases such as the TTR amyloidoses include known oral bioavailability and safety data. It is conceivable that some patients could benefit from simply increasing their intake of soy products or supplements.
Collapse
Affiliation(s)
- Nora S Green
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, BCC265, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
37
|
Bergström J, Gustavsson A, Hellman U, Sletten K, Murphy CL, Weiss DT, Solomon A, Olofsson BO, Westermark P. Amyloid deposits in transthyretin-derived amyloidosis: cleaved transthyretin is associated with distinct amyloid morphology. J Pathol 2005; 206:224-32. [PMID: 15810051 DOI: 10.1002/path.1759] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The pathological fibrillar deposits found in the heart and other organs of patients with senile systemic amyloidosis (SSA) and Swedish familial amyloidotic polyneuropathy (FAP) contain wild-type (wt) and a mutant form of transthyretin (TTR), respectively. Previously, it was reported that these two forms of amyloid have different molecular features and it was thus postulated that the mechanism responsible for TTR fibrillogenesis in SSA and FAP may differ. To document further the nature of the amyloid in these entities, detailed morphological, histochemical, immunological, and structural analyses of specimens obtained from 14 individuals with SSA and 11 Swedish FAP patients have been performed. Two distinct patterns of amyloid deposition (designated A and B) were evident. In pattern A, found in all SSA and five of 11 FAP cases, the amyloid had a homogeneous but patchy distribution within the sub-endocardium, sub-epicardium, and myocardium; exhibited weak congophilia and green birefringence; and was composed of tightly packed, short, unorientated fibrils. This material contained mainly approximately 79-residue C-terminal fragments of the amyloidogenic precursor protein. In pattern B, seen in the six other FAP patients, the amyloid appeared as thin streaks throughout the cardiac tissue; often surrounded individual muscle cells; was strongly congophilic and birefringent; had long fibrils arranged in parallel bundles, often penetrating into myocytes; and was composed of virtually intact TTR molecules. These findings provide substantive evidence for the morphological and structural heterogeneity of TTR fibrils and suggest that the two types of deposition may reflect fundamental differences in the pathogenesis of the TTR-associated amyloidoses.
Collapse
Affiliation(s)
- Joakim Bergström
- Department of Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Lei M, Yang M, Huo S. Intrinsic versus mutation dependent instability/flexibility: a comparative analysis of the structure and dynamics of wild-type transthyretin and its pathogenic variants. J Struct Biol 2005; 148:153-68. [PMID: 15477096 DOI: 10.1016/j.jsb.2004.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Indexed: 11/25/2022]
Abstract
Transthyretin (TTR) is one of the about 20 known human proteins associated with amyloidosis which is characterized by the accumulation of amyloid fibrils in tissues or extracellular matrix surrounding vital organs. Unlike Alzheimer's fibrils that comprise a fragment of a large precursor protein, TTR amyloid fibrils are composed of both full-length protein and fragments of the molecule. The native state of TTR is a homotetramer with eight beta-strands organized into a beta-sandwich in each monomer. To elucidate the structural reorganization mechanisms preceding amyloid formation, it is important to characterize the dynamic features of the wild-type native state as well as to reveal the influence of disease-associated mutations on the structure and dynamics. Molecular dynamics (MD) simulations complement X-ray crystallography and D-H exchange to capture the intrinsically unstable/flexible sites of the wild-type as well as the mutation dependent unstable sites of the pathogenic variants. Our results of MD simulations have shown that the Leu55-->Pro (L55P) mutation occurs in an intrinsically unstable site, leading to substantial local and global structural changes. This observation supports the early speculation that the C-strand-loop-D-strand rearrangement leads to the formation of amyloidogenic intermediates. In addition to the D strand, the alpha-helical region and the strands at the monomer-monomer interface are also intrinsically unstable. The central channel of L55P-TTR undergoes opening and closing fluctuations, which may provide an explanation for the fact that while the mutation is far from the channel, the mutant shows a substantial low binding affinity of thyroxine.
Collapse
Affiliation(s)
- Ming Lei
- Gustaf H. Carlson school of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, MA 01610, USA
| | | | | |
Collapse
|
39
|
Yang M, Lei M, Bruschweiler R, Huo S. Initial conformational changes of human transthyretin under partially denaturing conditions. Biophys J 2005; 89:433-43. [PMID: 15821170 PMCID: PMC1366544 DOI: 10.1529/biophysj.105.059642] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human transthyretin (TTR) is an amyloidogenic protein. The pathway of TTR amyloid formation has been proposed based on lines of evidence: TTR tetramer first dissociates into native monomers, which is shown to be a rate-limiting step in the formation of fibrils. Subsequently, the monomeric species partially unfold to form the aggregation intermediates. Once such intermediates are formed, the following self-assembly process is a downhill polymerization. Hence, tertiary structural changes within the monomers after the dissociation are essential for the amyloid formation. These tertiary structural changes can be facilitated by partial denaturation. To probe the conformational changes under the partially denaturing conditions, five independent trajectories were collected for the wild-type (WT) and its pathogenic variants at 300 and 350 K, resulting in simulations that totaled 59 ns. Under these conditions, L55P variant is more labile than the wild-type and V30M variant. We have observed that the D strand of WT-TTR is trapped in two local minima: the native conformation and the amyloidogenic fold that resembles the surface loop of residues 54-55 of L55P variant. In the tetrameric state, the F strand is bent with large separations at the F-F' interface. This strand becomes flatter in the monomeric state, which may facilitate the formation of new F-F' interface with possible prolonged hydrogen bonds and/or shift in beta-strand register in the fibril state. During the unfolding process, the anticorrelated motion between the strands H and G as well as the strands H and A pulls the H strand out of the inner sheet plane, leading to a more twisted inner sheet. Our simulation has provided important detailed structural information about the partially unfolded state of TTR that may be related to the amyloidogenic intermediates.
Collapse
Affiliation(s)
- Mingfeng Yang
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, Worcester, Massachusetts 01610, USA
| | | | | | | |
Collapse
|
40
|
Armen RS, Alonso DOV, Daggett V. Anatomy of an amyloidogenic intermediate: conversion of beta-sheet to alpha-sheet structure in transthyretin at acidic pH. Structure 2005; 12:1847-63. [PMID: 15458633 DOI: 10.1016/j.str.2004.08.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Revised: 07/23/2004] [Accepted: 08/12/2004] [Indexed: 11/23/2022]
Abstract
The homotetramer of transthyretin (TTR) dissociates into a monomeric amyloidogenic intermediate that self-assembles into amyloid fibrils at low pH. We have performed molecular dynamics simulations of monomeric TTR at neutral and low pH at physiological (310 K) and very elevated temperature (498 K). In the low-pH simulations at both temperatures, one of the two beta-sheets (strands CBEF) becomes disrupted, and alpha-sheet structure forms in the other sheet (strands DAGH). alpha-sheet is formed by alternating alphaL and alphaR residues, and it was first proposed by Pauling and Corey. Overall, the simulations are in agreement with the available experimental observations, including solid-state NMR results for a TTR-peptide amyloid. In addition, they provide a unique explanation for the results of hydrogen exchange experiments of the amyloidogenic intermediate-results that are difficult to explain with beta-structure. We propose that alpha-sheet may represent a key pathological conformation during amyloidogenesis.
Collapse
Affiliation(s)
- Roger S Armen
- Department of Medicinal Chemistry, Box 357610, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
41
|
Purkey HE, Palaninathan SK, Kent KC, Smith C, Safe SH, Sacchettini JC, Kelly JW. Hydroxylated Polychlorinated Biphenyls Selectively Bind Transthyretin in Blood and Inhibit Amyloidogenesis: Rationalizing Rodent PCB Toxicity. ACTA ACUST UNITED AC 2004; 11:1719-28. [PMID: 15610856 DOI: 10.1016/j.chembiol.2004.10.009] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Revised: 10/12/2004] [Accepted: 10/13/2004] [Indexed: 12/29/2022]
Abstract
Polychlorinated biphenyls (PCBs) and their hydroxylated metabolites (OH-PCBs) are known to bind to transthyretin (TTR) in vitro, possibly explaining their bioaccumulation, rodent toxicity, and presumed human toxicity. Herein, we show that several OH-PCBs bind selectively to TTR in blood plasma; however, only one of the PCBs tested binds TTR in plasma. Some of the OH-PCBs displace thyroid hormone (T4) from TTR, rationalizing the toxicity observed in rodents, where TTR is the major T4 transporter. Thyroid binding globulin and albumin are the major T4 carriers in humans, making it unlikely that enough T4 could be displaced from TTR to be toxic. OH-PCBs are excellent TTR amyloidogenesis inhibitors in vitro because they bind to the TTR tetramer, imparting kinetic stability under amyloidogenic denaturing conditions. Four OH-PCB/TTR cocrystal structures provide further insight into inhibitor binding interactions.
Collapse
Affiliation(s)
- Hans E Purkey
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Hörnberg A, Olofsson A, Eneqvist T, Lundgren E, Sauer-Eriksson AE. The β-strand D of transthyretin trapped in two discrete conformations. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1700:93-104. [PMID: 15210129 DOI: 10.1016/j.bbapap.2004.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Revised: 03/30/2004] [Accepted: 04/06/2004] [Indexed: 11/15/2022]
Abstract
Conformational changes in native and variant forms of the human plasma protein transthyretin (TTR) induce several types of amyloid diseases. Biochemical and structural studies have mapped the initiation site of amyloid formation onto residues at the outer C and D beta-strands and their connecting loop. In this study, we characterise an engineered variant of transthyretin, Ala108Tyr/Leu110Glu, which is kinetically and thermodynamically more stable than wild-type transthyretin, and as a consequence less amyloidogenic. Crystal structures of the mutant were determined in two space groups, P2(1)2(1)2 and C2, from crystals grown in the same crystallisation set-up. The structures are identical with the exception for residues Leu55-Leu58, situated at beta-strand D and the following DE loop. In particular, residues Leu55-His56 display large shifts in the C2 structure. There the direct hydrogen bonding between beta-strands D and A has been disrupted and is absent, whereas the beta-strand D is present in the P2(1)2(1)2 structure. This difference shows that from a mixture of metastable TTR molecules, only the molecules with an intact beta-strand D are selected for crystal growth in space group P2(1)2(1)2. The packing of TTR molecules in the C2 crystal form and in the previously determined amyloid TTR (ATTR) Leu55Pro crystal structure is close-to-identical. This packing arrangement is therefore not unique in amyloidogenic mutants of TTR.
Collapse
Affiliation(s)
- Andreas Hörnberg
- Umeå Centre for Molecular Pathogenesis, Umeå University, SE-901 87 Umeå, Sweden
| | | | | | | | | |
Collapse
|
43
|
Hua QX, Weiss MA. Mechanism of insulin fibrillation: the structure of insulin under amyloidogenic conditions resembles a protein-folding intermediate. J Biol Chem 2004; 279:21449-60. [PMID: 14988398 DOI: 10.1074/jbc.m314141200] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin undergoes aggregation-coupled misfolding to form a cross-beta assembly. Such fibrillation has long complicated its manufacture and use in the therapy of diabetes mellitus. Of interest as a model for disease-associated amyloids, insulin fibrillation is proposed to occur via partial unfolding of a monomeric intermediate. Here, we describe the solution structure of human insulin under amyloidogenic conditions (pH 2.4 and 60 degrees C). Use of an enhanced sensitivity cryogenic probe at high magnetic field avoids onset of fibrillation during spectral acquisition. A novel partial fold is observed in which the N-terminal segments of the A- and B-chains detach from the core. Unfolding of the N-terminal alpha-helix of the A-chain exposes a hydrophobic surface formed by native-like packing of the remaining alpha-helices. The C-terminal segment of the B-chain, although not well ordered, remains tethered to this partial helical core. We propose that detachment of N-terminal segments makes possible aberrant protein-protein interactions in an amyloidogenic nucleus. Non-cooperative unfolding of the N-terminal A-chain alpha-helix resembles that observed in models of proinsulin folding intermediates and foreshadows the extensive alpha --> beta transition characteristic of mature fibrils.
Collapse
Affiliation(s)
- Qing-xin Hua
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44016-4935
| | | |
Collapse
|
44
|
Olofsson A, Ippel JH, Wijmenga SS, Lundgren E, Ohman A. Probing Solvent Accessibility of Transthyretin Amyloid by Solution NMR Spectroscopy. J Biol Chem 2004; 279:5699-707. [PMID: 14604984 DOI: 10.1074/jbc.m310605200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human plasma protein transthyretin (TTR) may form fibrillar protein deposits that are associated with both inherited and idiopathic amyloidosis. The present study utilizes solution nuclear magnetic resonance spectroscopy, in combination with hydrogen/deuterium exchange, to determine residue-specific solvent protection factors within the fibrillar structure of the clinically relevant variant, TTRY114C. This novel approach suggests a fibril core comprised of the six beta-strands, A-B-E-F-G-H, which retains a native-like conformation. Strands C and D are dislocated from their native edge region and become solvent-exposed, leaving a new interface involving strands A and B open for intermolecular interactions. Our results further support a native-like intermolecular association between strands F-F' and H-H' with a prolongation of these beta-strands and, interestingly, with a possible shift in beta-strand register of the subunit assembly. This finding may explain previous observations of a monomeric intermediate preceding fibril formation. A structural model based on our results is presented.
Collapse
Affiliation(s)
- Anders Olofsson
- Department of Molecular Biology, Umeå University, Umeå SE-901 87, Sweden
| | | | | | | | | |
Collapse
|
45
|
Luque I, Leavitt SA, Freire E. The linkage between protein folding and functional cooperativity: two sides of the same coin? ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2002; 31:235-56. [PMID: 11988469 DOI: 10.1146/annurev.biophys.31.082901.134215] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During the course of their biological function, proteins undergo different types of structural rearrangements ranging from local to large-scale conformational changes. These changes are usually triggered by their interactions with small-molecular-weight ligands or other macromolecules. Because binding interactions occur at specific sites and involve only a small number of residues, a chain of cooperative interactions is necessary for the propagation of binding signals to distal locations within the protein structure. This process requires an uneven structural distribution of protein stability and cooperativity as revealed by NMR-detected hydrogen/deuterium exchange experiments under native conditions. The distribution of stabilizing interactions does not only provide the architectural foundation to the three-dimensional structure of a protein, but it also provides the required framework for functional cooperativity. In this review, the statistical thermodynamic linkage between protein stability, functional cooperativity, and ligand binding is discussed.
Collapse
Affiliation(s)
- Irene Luque
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | |
Collapse
|
46
|
Liu K, Kelly JW, Wemmer DE. Native state hydrogen exchange study of suppressor and pathogenic variants of transthyretin. J Mol Biol 2002; 320:821-32. [PMID: 12095258 DOI: 10.1016/s0022-2836(02)00471-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transthyretin (TTR) is an amyloidogenic protein whose aggregation is responsible for numerous familial amyloid diseases, the exact phenotype being dependent on the sequence deposited. Many familial disease variants display decreased stability in vitro, and early onset pathology in vivo. Only subtle structural differences were observed upon crystallographic comparison of the disease-associated variants to the T119M interallelic trans-suppressor. Herein three human TTR single amino acid variant homotetramers including two familial amyloidotic polyneuropathy (FAP) causing variants (V30M and L55P), and a suppressor variant T119M (known to protect V30M carriers from disease by trans-suppression) were investigated in a residue-specific fashion by monitoring (2)H-(1)H exchange employing NMR spectroscopy. The measured protection factors for slowly exchanging amide hydrogen atoms reveal destabilization of the protein core in the FAP variants, the core consisting of strands A, B, E and G and the loop between strands A and B. The same core exhibits much slower exchange in the suppressor variant. Accelerated exchange rates were observed for residues at the subunit interfaces in L55P, but not in the T119M or V30M TTR. The correlation between destabilization of the TTR core strands and the tendency for amyloid formation supports the view that these strands are involved in amyloidogenicity, consistent with previous (2)H-(1)H exchange analysis of the WT-TTR amyloidogenic intermediate.
Collapse
Affiliation(s)
- Kai Liu
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, BCC260, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
47
|
Niraula TN, Haraoka K, Ando Y, Li H, Yamada H, Akasaka K. Decreased thermodynamic stability as a crucial factor for familial amyloidotic polyneuropathy. J Mol Biol 2002; 320:333-42. [PMID: 12079390 DOI: 10.1016/s0022-2836(02)00425-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A single mutation in the wild-type transthyretin (WT TTR) such as V30M causes a familial amyloidotic polyneuropathy disease. Comparison of the three-dimensional crystal structures of WT and V30M does not tell much about the reason. High-pressure NMR revealed that at neutral pH both WT and V30M exist as equilibrium between the native tetramer and the dissociated/unfolded monomer. The native tetramer is highly stable in WT (deltaG(0)=104 kJ/mol at 37 degrees C, pH 7.1), but the stability is significantly reduced in V30M (deltadeltaG(0)=-18 kJ/mol), increasing the fraction of the unfolded monomer by a 1000-fold. Significant reduction of thermodynamic stability of WT TTR by mutation could be a crucial factor for familial amyloidotic polyneuropathy.
Collapse
Affiliation(s)
- Tara Nath Niraula
- Graduate School of Science and Technology, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Ippel JH, Olofsson A, Schleucher J, Lundgren E, Wijmenga SS. Probing solvent accessibility of amyloid fibrils by solution NMR spectroscopy. Proc Natl Acad Sci U S A 2002; 99:8648-53. [PMID: 12072564 PMCID: PMC124346 DOI: 10.1073/pnas.132098999] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Amyloid is the result of an anomalous protein and peptide aggregation, leading to the formation of insoluble fibril deposits. At present, 18 human diseases have been associated with amyloid deposits-e.g., Alzheimer's disease and Prion-transmissible Spongiform Encephalopathies. The molecular structure of amyloid is to a large extent unknown, because of lack of high-resolution structural information within the amyloid state. However, from other experimental data it has been established that amyloid fibrils predominantly consist of beta-strands arranged perpendicular to the fibril axis. Identification of residues involved in these secondary structural elements is therefore of vital importance to rationally designing appropriate inhibitors. We have designed a hydrogen/deuterium exchange NMR experiment that can be applied on mature amyloid to enable identification of the residues located inside the fibril core. Using a highly amyloidogenic peptide, corresponding to residues 25-35 within the Alzheimer Abeta(1-43) peptide, we could establish that residues 28-35 constitute the amyloid core, with residues 31 and 32 being the most protected. In addition, quantitative values for the solvent accessibility for each involved residue could be obtained. Based on our data, two models of peptide assembly are proposed. The method provides a general way to identify the core of amyloid structures and thereby pinpoint areas suitable for design of inhibitors.
Collapse
Affiliation(s)
- Johannes H Ippel
- Department of Medical Biosciences, Umeå University, 90 187 Umeå, Sweden
| | | | | | | | | |
Collapse
|
49
|
Abstract
Amyloid diseases are a large group of a much larger family of misfolding diseases. This group includes pathologies as diverse as Alzheimer's disease, immunoglobulin-light-chain disease, reactive amyloid disease and the familial amyloid polyneuropathies. These diseases are generally incurable at present, although some drugs are known to transiently slow the progression of Alzheimer's disease. As we increase our understanding of the causative mechanisms of these disorders, the likelihood of success for a given therapeutic strategy will become clearer. This review will look at small-molecule and macromolecular approaches for intervention in amyloid diseases other than Alzheimer's disease, although select examples from Alzheimer's disease will be discussed.
Collapse
Affiliation(s)
- James C Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas 77843-2128, USA.
| | | |
Collapse
|
50
|
Olofsson A, Ippel HJ, Baranov V, Hörstedt P, Wijmenga S, Lundgren E. Capture of a dimeric intermediate during transthyretin amyloid formation. J Biol Chem 2001; 276:39592-9. [PMID: 11518707 DOI: 10.1074/jbc.m103599200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Point mutations in the human plasma protein transthyretin are associated with the neurological disorder familial amyloidosis with polyneuropathy type 1. The disease is characterized by amyloid fibril deposits causing damage at the site of deposition. Substitution of two amino acids in the hydrophobic core of transthyretin lead to a mutant that was very prone to form amyloid. In addition, this mutant has also been shown to induce a toxic response on a neuroblastoma cell line. Renaturation of the transthyretin mutant at low temperature facilitated the isolation of an amyloid-forming intermediate state having the apparent size of a dimer. Increasing the temperature effectively enhanced the rate of interconversion from a partly denatured protein to mature amyloid. Using circular dichroism the beta-sheet content of the formed mature fibrils was significantly lower than that of the native fold of transthyretin. Morphology studies using electron microscopy also indicated a temperature-dependent transformation from amorphous aggregates toward mature amyloid fibrils. In addition, 1-anilino-8-naphtalenesulfonate fluorescence studies suggested the loss of the thyroxin-binding channel within both the isolated intermediate and the mature fibrils.
Collapse
Affiliation(s)
- A Olofsson
- Departments of Cell and Molecular Biology, Umeå University, Umeå S-901 87, Sweden
| | | | | | | | | | | |
Collapse
|