1
|
Melnik TN, Majorina MA, Vorobeva DE, Nagibina GS, Veselova VR, Glukhova KA, Pak MA, Ivankov DN, Uversky VN, Melnik BS. Design of stable circular permutants of the GroEL chaperone apical domain. Cell Commun Signal 2024; 22:90. [PMID: 38303060 PMCID: PMC10836027 DOI: 10.1186/s12964-023-01426-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/08/2023] [Indexed: 02/03/2024] Open
Abstract
Enhancing protein stability holds paramount significance in biotechnology, therapeutics, and the food industry. Circular permutations offer a distinctive avenue for manipulating protein stability while keeping intra-protein interactions intact. Amidst the creation of circular permutants, determining the optimal placement of the new N- and C-termini stands as a pivotal, albeit largely unexplored, endeavor. In this study, we employed PONDR-FIT's predictions of disorder propensity to guide the design of circular permutants for the GroEL apical domain (residues 191-345). Our underlying hypothesis posited that a higher predicted disorder value would correspond to reduced stability in the circular permutants, owing to the increased likelihood of fluctuations in the novel N- and C-termini. To substantiate this hypothesis, we engineered six circular permutants, positioning glycines within the loops as locations for the new N- and C-termini. We demonstrated the validity of our hypothesis along the set of the designed circular permutants, as supported by measurements of melting temperatures by circular dichroism and differential scanning microcalorimetry. Consequently, we propose a novel computational methodology that rationalizes the design of circular permutants with projected stability. Video Abstract.
Collapse
Affiliation(s)
- Tatiana N Melnik
- Institute of Protein Research, Russian Academy of Sciences, Institutskaja Str. 4, Pushchino, Moscow Region, 142290, Russia
| | - Maria A Majorina
- Institute of Protein Research, Russian Academy of Sciences, Institutskaja Str. 4, Pushchino, Moscow Region, 142290, Russia
| | - Daria E Vorobeva
- Institute of Protein Research, Russian Academy of Sciences, Institutskaja Str. 4, Pushchino, Moscow Region, 142290, Russia
| | - Galina S Nagibina
- Institute of Protein Research, Russian Academy of Sciences, Institutskaja Str. 4, Pushchino, Moscow Region, 142290, Russia
| | - Victoria R Veselova
- Institute of Protein Research, Russian Academy of Sciences, Institutskaja Str. 4, Pushchino, Moscow Region, 142290, Russia
| | - Ksenia A Glukhova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaja Str. 3, Puschino, Moscow Region, 142290, Russia
| | - Marina A Pak
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, Moscow, 121205, Russia
| | - Dmitry N Ivankov
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, Moscow, 121205, Russia
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Center and Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| | - Bogdan S Melnik
- Institute of Protein Research, Russian Academy of Sciences, Institutskaja Str. 4, Pushchino, Moscow Region, 142290, Russia.
- Pushchino Branch, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki 6, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
2
|
Liebermann DG, Jungwirth J, Riven I, Barak Y, Levy D, Horovitz A, Haran G. From Microstates to Macrostates in the Conformational Dynamics of GroEL: A Single-Molecule Förster Resonance Energy Transfer Study. J Phys Chem Lett 2023:6513-6521. [PMID: 37440608 PMCID: PMC10388350 DOI: 10.1021/acs.jpclett.3c01281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
The chaperonin GroEL is a multisubunit molecular machine that assists in protein folding in the Escherichia coli cytosol. Past studies have shown that GroEL undergoes large allosteric conformational changes during its reaction cycle. Here, we report single-molecule Förster resonance energy transfer measurements that directly probe the conformational transitions of one subunit within GroEL and its single-ring variant under equilibrium conditions. We find that four microstates span the conformational manifold of the protein and interconvert on the submillisecond time scale. A unique set of relative populations of these microstates, termed a macrostate, is obtained by varying solution conditions, e.g., adding different nucleotides or the cochaperone GroES. Strikingly, ATP titration studies demonstrate that the partition between the apo and ATP-ligated conformational macrostates traces a sigmoidal response with a Hill coefficient similar to that obtained in bulk experiments of ATP hydrolysis. These coinciding results from bulk measurements for an entire ring and single-molecule measurements for a single subunit provide new evidence for the concerted allosteric transition of all seven subunits.
Collapse
|
3
|
GroEL—A Versatile Chaperone for Engineering and a Plethora of Applications. Biomolecules 2022; 12:biom12050607. [PMID: 35625535 PMCID: PMC9138447 DOI: 10.3390/biom12050607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/16/2022] Open
Abstract
Chaperones play a vital role in the life of cells by facilitating the correct folding of other proteins and maintaining them in a functional state, being themselves, as a rule, more stable than the rest of cell proteins. Their functional properties naturally tempt investigators to actively adapt them for biotechnology needs. This review will mostly focus on the applications found for the bacterial chaperonin GroE and its counterparts from other organisms, in biotechnology or for research purposes, both in their engineered or intact versions.
Collapse
|
4
|
Jain N, Knowles TJ, Lund PA, Chaudhuri TK. Minichaperone (GroEL191-345) mediated folding of MalZ proceeds by binding and release of native and functional intermediates. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:941-951. [PMID: 29864530 DOI: 10.1016/j.bbapap.2018.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/02/2018] [Accepted: 05/28/2018] [Indexed: 10/14/2022]
Abstract
The isolated apical domain of GroEL consisting of residues 191-345 (known as "minichaperone") binds and assists the folding of a wide variety of client proteins without GroES and ATP, but the mechanism of its action is still unknown. In order to probe into the matter, we have examined minichaperone-mediated folding of a large aggregation prone protein Maltodextrin-glucosidase (MalZ). The key objective was to identify whether MalZ exists free in solution, or remains bound to, or cycling on and off the minichaperone during the refolding process. When GroES was introduced during refolding process, production of the native MalZ was inhibited. We also observed the same findings with a trap mutant of GroEL, which stably captures a predominantly non-native MalZ released from minichaperone during refolding process, but does not release it. Tryptophan and ANS fluorescence measurements indicated that refolded MalZ has the same structure as the native MalZ, but that its structure when bound to minichaperone is different. Surface plasmon resonance measurements provide an estimate for the equilibrium dissociation constant KD for the MalZ-minichaperone complex of 0.21 ± 0.04 μM, which are significantly higher than for most GroEL clients. This showed that minichaperone interacts loosely with MalZ to allow the protein to change its conformation and fold while bound during the refolding process. These observations suggest that the minichaperone works by carrying out repeated cycles of binding aggregation-prone protein MalZ in a relatively compact conformation and in a partially folded but active state, and releasing them to attempt to fold in solution.
Collapse
Affiliation(s)
- Neha Jain
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, India; Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, UK
| | - Timothy J Knowles
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, UK
| | - Peter A Lund
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, UK.
| | - Tapan K Chaudhuri
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, India.
| |
Collapse
|
5
|
Takenaka T, Nakamura T, Yanaka S, Yagi-Utsumi M, Chandak MS, Takahashi K, Paul S, Makabe K, Arai M, Kato K, Kuwajima K. Formation of the chaperonin complex studied by 2D NMR spectroscopy. PLoS One 2017; 12:e0187022. [PMID: 29059240 PMCID: PMC5653362 DOI: 10.1371/journal.pone.0187022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/11/2017] [Indexed: 11/21/2022] Open
Abstract
We studied the interaction between GroES and a single-ring mutant (SR1) of GroEL by the NMR titration of 15N-labeled GroES with SR1 at three different temperatures (20, 25 and 30°C) in the presence of 3 mM ADP in 100 mM KCl and 10 mM MgCl2 at pH 7.5. We used SR1 instead of wild-type double-ring GroEL to precisely control the stoichiometry of the GroES binding to be 1:1 ([SR1]:[GroES]). Native heptameric GroES was very flexible, showing well resolved cross peaks of the residues in a mobile loop segment (residue 17–34) and at the top of a roof hairpin (Asn51) in the heteronuclear single quantum coherence spectra. The binding of SR1 to GroES caused the cross peaks to disappear simultaneously, and hence it occurred in a single-step cooperative manner with significant immobilization of the whole GroES structure. The binding was thus entropic with a positive entropy change (219 J/mol/K) and a positive enthalpy change (35 kJ/mol), and the binding constant was estimated at 1.9×105 M−1 at 25°C. The NMR titration in 3 mM ATP also indicated that the binding constant between GroES and SR1 increased more than tenfold as compared with the binding constant in 3 mM ADP. These results will be discussed in relation to the structure and mechanisms of the chaperonin GroEL/GroES complex.
Collapse
Affiliation(s)
- Toshio Takenaka
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan
| | - Takashi Nakamura
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan
| | - Saeko Yanaka
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan
| | - Maho Yagi-Utsumi
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan
- Department of Functional Molecular Science, School of Physical Sciences, the Graduate University for Advanced Studies (Sokendai), Myodaiji, Okazaki, Aichi, Japan
| | - Mahesh S. Chandak
- Department of Functional Molecular Science, School of Physical Sciences, the Graduate University for Advanced Studies (Sokendai), Myodaiji, Okazaki, Aichi, Japan
| | - Kazunobu Takahashi
- Department of Physics, Graduate School of Science, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Subhankar Paul
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan
| | - Koki Makabe
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan
- Department of Functional Molecular Science, School of Physical Sciences, the Graduate University for Advanced Studies (Sokendai), Myodaiji, Okazaki, Aichi, Japan
- Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata, Japan
| | - Munehito Arai
- Department of Life Sciences, Graduate School of Arts and Sciences, the University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Koichi Kato
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan
- Department of Functional Molecular Science, School of Physical Sciences, the Graduate University for Advanced Studies (Sokendai), Myodaiji, Okazaki, Aichi, Japan
| | - Kunihiro Kuwajima
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan
- Department of Functional Molecular Science, School of Physical Sciences, the Graduate University for Advanced Studies (Sokendai), Myodaiji, Okazaki, Aichi, Japan
- Department of Physics, Graduate School of Science, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
- School of Computational Sciences, Korea Institute for Advanced Study (KIAS), Dongdaemun-gu, Seoul, Korea
- * E-mail: ,
| |
Collapse
|
6
|
Creating the Functional Single-Ring GroEL-GroES Chaperonin Systems via Modulating GroEL-GroES Interaction. Sci Rep 2017; 7:9710. [PMID: 28852160 PMCID: PMC5575113 DOI: 10.1038/s41598-017-10499-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/09/2017] [Indexed: 11/08/2022] Open
Abstract
Chaperonin and cochaperonin, represented by E. coli GroEL and GroES, are essential molecular chaperones for protein folding. The double-ring assembly of GroEL is required to function with GroES, and a single-ring GroEL variant GroELSR forms a stable complex with GroES, arresting the chaperoning reaction cycle. GroES I25 interacts with GroEL; however, mutations of I25 abolish GroES-GroEL interaction due to the seven-fold mutational amplification in heptameric GroES. To weaken GroELSR-GroES interaction in a controlled manner, we used groES 7, a gene linking seven copies of groES, to incorporate I25 mutations in selected GroES modules in GroES7. We generated GroES7 variants with different numbers of GroESI25A or GroESI25D modules and different arrangements of the mutated modules, and biochemically characterized their interactions with GroELSR. GroES7 variants with two mutated modules participated in GroELSR-mediated protein folding in vitro. GroES7 variants with two or three mutated modules collaborated with GroELSR to perform chaperone function in vivo: three GroES7 variants functioned with GroELSR under both normal and heat-shock conditions. Our studies on functional single-ring bacterial chaperonin systems are informative to the single-ring human mitochondrial chaperonin mtHsp60-mtHsp10, and will provide insights into how the double-ring bacterial system has evolved to the single-ring mtHsp60-mtHsp10.
Collapse
|
7
|
New GroEL-like chaperonin of bacteriophage OBP Pseudomonas fluorescens suppresses thermal protein aggregation in an ATP-dependent manner. Biochem J 2016; 473:2383-93. [DOI: 10.1042/bcj20160367] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 05/31/2016] [Indexed: 11/17/2022]
Abstract
Recently, we discovered and studied the first virus-encoded chaperonin of bacteriophage EL Pseudomonas aeruginosa, gene product (gp) 146. In the present study, we performed bioinformatics analysis of currently predicted GroEL-like proteins encoded by phage genomes in comparison with cellular and mitochondrial chaperonins. Putative phage chaperonins share a low similarity and do not form a monophyletic group; nevertheless, they are closer to bacterial chaperonins in the phylogenetic tree. Experimental investigation of putative GroEL-like chaperonin proteins has been continued by physicochemical and functional characterization of gp246 encoded by the genome of Pseudomonas fluorescens bacteriophage OBP. Unlike the more usual double-ring architecture of chaperonins, including the EL gp146, the recombinant gp246 produced by Escherichia coli cells has been purified as a single heptameric ring. It possesses ATPase activity and does not require a co-chaperonin for its function. In vitro experiments demonstrated that gp246 is able to suppress the thermal protein inactivation and aggregation in an ATP-dependent manner, thus indicating chaperonin function. Single-particle electron microscopy analysis revealed the different conformational states of OBP chaperonin, depending on the bound nucleotide.
Collapse
|
8
|
GroEL2 of Mycobacterium tuberculosis Reveals the Importance of Structural Pliability in Chaperonin Function. J Bacteriol 2015; 198:486-97. [PMID: 26553853 DOI: 10.1128/jb.00844-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/05/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Intracellular protein folding is mediated by molecular chaperones, the best studied among which are the chaperonins GroEL and GroES. Conformational changes and allosteric transitions between different metastable states are hallmarks of the chaperonin mechanism. These conformational transitions between three structural domains of GroEL are anchored at two hinges. Although hinges are known to be critical for mediating the communication between different domains of GroEL, the relative importance of hinges on GroEL oligomeric assembly, ATPase activity, conformational changes, and functional activity is not fully characterized. We have exploited the inability of Mycobacterium tuberculosis GroEL2 to functionally complement an Escherichia coli groEL mutant to address the importance of hinge residues in the GroEL mechanism. Various chimeras of M. tuberculosis GroEL2 and E. coli GroEL allowed us to understand the role of hinges and dissect the consequences of oligomerization and substrate binding capability on conformational transitions. The present study explains the concomitant conformational changes observed with GroEL hinge variants and is best supported by the normal mode analysis. IMPORTANCE Conformational changes and allosteric transitions are hallmarks of the chaperonin mechanism. We have exploited the inability of M. tuberculosis GroEL2 to functionally complement a strain of E. coli in which groEL expression is repressed to address the importance of hinges. The significance of conservation at the hinge regions stands out as a prominent feature of the GroEL mechanism in binding to GroES and substrate polypeptides. The hinge residues play a significant role in the chaperonin activity in vivo and in vitro.
Collapse
|
9
|
Illingworth M, Salisbury J, Li W, Lin D, Chen L. Effective ATPase activity and moderate chaperonin-cochaperonin interaction are important for the functional single-ring chaperonin system. Biochem Biophys Res Commun 2015; 466:15-20. [PMID: 26271593 DOI: 10.1016/j.bbrc.2015.08.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 08/09/2015] [Indexed: 11/16/2022]
Abstract
Escherichia coli chaperonin GroEL and its cochaperonin GroES are essential for cell growth as they assist folding of cellular proteins. The double-ring assembly of GroEL is required for the chaperone function, and a single-ring variant GroEL(SR) is inactive with GroES. Mutations in GroEL(SR) (A92T, D115N, E191G, and A399T) have been shown to render GroEL(SR)-GroES functional, but the molecular mechanism of activation is unclear. Here we examined various biochemical properties of these functional GroEL(SR)-GroES variants, including ATP hydrolysis rate, chaperonin-cochaperonin interaction, and in vitro protein folding activity. We found that, unlike the diminished ATPase activity of the inactive GroEL(SR)-GroES, all four single-ring variants hydrolyzed ATP at a level comparable to that of the double-ring GroEL-GroES. The chaperonin-cochaperonin interaction in these single-ring systems was weaker, by at least a 50-fold reduction, than the highly stable inactive GroEL(SR)-GroES. Strikingly, only GroEL(SR)D115N-GroES and GroEL(SR)A399T-GroES assisted folding of malate dehydrogenase (MDH), a commonly used folding substrate. These in vitro results are interesting considering that all four of the single-ring systems were able to substitute GroEL-GroES to support cell growth, suggesting that the precise action of chaperonin on MDH folding may not represent that on the intrinsic cellular substrates. Our findings that both effective ATP hydrolysis rate and moderate chaperonin-cochaperonin interaction are important factors for functional single-ring GroEL(SR)-GroES are reminiscent of the naturally occurring single-ring human mitochondrial chaperonin mtHsp60-mtHsp10. Differences in biochemical properties between the single- and double-ring chaperonin systems may be exploited in designing molecules for selective targeting.
Collapse
Affiliation(s)
- Melissa Illingworth
- Department of Molecular and Cellular Biochemistry, 212 S. Hawthorne Dr., Simon Hall 305B, Indiana University, Bloomington, IN 47405, USA
| | - Jared Salisbury
- Department of Molecular and Cellular Biochemistry, 212 S. Hawthorne Dr., Simon Hall 305B, Indiana University, Bloomington, IN 47405, USA
| | - Wenqian Li
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, China
| | - Donghai Lin
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, China
| | - Lingling Chen
- Department of Molecular and Cellular Biochemistry, 212 S. Hawthorne Dr., Simon Hall 305B, Indiana University, Bloomington, IN 47405, USA; Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
10
|
Ryabova N, Marchenkov V, Kotova N, Semisotnov G. Chaperonin GroEL reassembly: an effect of protein ligands and solvent composition. Biomolecules 2014; 4:458-73. [PMID: 24970225 PMCID: PMC4101492 DOI: 10.3390/biom4020458] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 03/28/2014] [Accepted: 04/02/2014] [Indexed: 01/13/2023] Open
Abstract
Chaperonin GroEL is a complex oligomeric heat shock protein (Hsp60) assisting the correct folding and assembly of other proteins in the cell. An intriguing question is how GroEL folds itself. According to the literature, GroEL reassembly is dependent on chaperonin ligands and solvent composition. Here we demonstrate dependence of GroEL reassembly efficiency on concentrations of the essential factors (Mg2+, ADP, ATP, GroES, ammonium sulfate, NaCl and glycerol). Besides, kinetics of GroEL oligomerization in various conditions was monitored by the light scattering technique and proved to be two-exponential, which suggested accumulation of a certain oligomeric intermediate. This intermediate was resolved as a heptamer by nondenaturing blue electrophoresis of GroEL monomers during their assembly in the presence of both Mg-ATP and co-chaperonin GroES. Presumably, this intermediate heptamer plays a key role in formation of the GroEL tetradecameric particle. The role of co-chaperonin GroES (Hsp10) in GroEL assembly is also discussed.
Collapse
Affiliation(s)
- Nataliya Ryabova
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya Street 4, Pushchino 142290, Russia.
| | - Victor Marchenkov
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya Street 4, Pushchino 142290, Russia.
| | - Nina Kotova
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya Street 4, Pushchino 142290, Russia.
| | - Gennady Semisotnov
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya Street 4, Pushchino 142290, Russia.
| |
Collapse
|
11
|
Mizuta T, Ando K, Uemura T, Kawata Y, Mizobata T. Probing the dynamic process of encapsulation in Escherichia coli GroEL. PLoS One 2013; 8:e78135. [PMID: 24205127 PMCID: PMC3813556 DOI: 10.1371/journal.pone.0078135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 09/16/2013] [Indexed: 11/24/2022] Open
Abstract
Kinetic analyses of GroE-assisted folding provide a dynamic sequence of molecular events that underlie chaperonin function. We used stopped-flow analysis of various fluorescent GroEL mutants to obtain details regarding the sequence of events that transpire immediately after ATP binding to GroEL and GroEL with prebound unfolded proteins. Characterization of GroEL CP86, a circularly permuted GroEL with the polypeptide ends relocated to the vicinity of the ATP binding site, showed that GroES binding and protection of unfolded protein from solution is achieved surprisingly early in the functional cycle, and in spite of greatly reduced apical domain movement. Analysis of fluorescent GroEL SR-1 and GroEL D398A variants suggested that among other factors, the presence of two GroEL rings and a specific conformational rearrangement of Helix M in GroEL contribute significantly to the rapid release of unfolded protein from the GroEL apical domain.
Collapse
Affiliation(s)
- Toshifumi Mizuta
- Department of Biotechnology, Graduate School of Engineering, Tottori, Japan
| | - Kasumi Ando
- Department of Biotechnology, Graduate School of Engineering, Tottori, Japan
| | - Tatsuya Uemura
- Department of Biomedical Science, Graduate School of Medical Sciences, Tottori University, Tottori, Japan
| | - Yasushi Kawata
- Department of Biotechnology, Graduate School of Engineering, Tottori, Japan
- Department of Biomedical Science, Graduate School of Medical Sciences, Tottori University, Tottori, Japan
| | - Tomohiro Mizobata
- Department of Biotechnology, Graduate School of Engineering, Tottori, Japan
- Department of Biomedical Science, Graduate School of Medical Sciences, Tottori University, Tottori, Japan
- * E-mail:
| |
Collapse
|
12
|
Illingworth M, Ramsey A, Zheng Z, Chen L. Stimulating the substrate folding activity of a single ring GroEL variant by modulating the cochaperonin GroES. J Biol Chem 2011; 286:30401-30408. [PMID: 21757689 DOI: 10.1074/jbc.m111.255935] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In mediating protein folding, chaperonin GroEL and cochaperonin GroES form an enclosed chamber for substrate proteins in an ATP-dependent manner. The essential role of the double ring assembly of GroEL is demonstrated by the functional deficiency of the single ring GroEL(SR). The GroEL(SR)-GroES is highly stable with minimal ATPase activity. To restore the ATP cycle and the turnover of the folding chamber, we sought to weaken the GroEL(SR)-GroES interaction systematically by concatenating seven copies of groES to generate groES(7). GroES Ile-25, Val-26, and Leu-27, residues on the GroEL-GroES interface, were substituted with Asp on different groES modules of groES(7). GroES(7) variants activate ATP activity of GroEL(SR), but only some restore the substrate folding function of GroEL(SR), indicating a direct role of GroES in facilitating substrate folding through its dynamics with GroEL. Active GroEL(SR)-GroES(7) systems may resemble mammalian mitochondrial chaperonin systems.
Collapse
Affiliation(s)
- Melissa Illingworth
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405
| | - Andrew Ramsey
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405
| | - Zhida Zheng
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405
| | - Lingling Chen
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405.
| |
Collapse
|
13
|
Kovács E, Sun Z, Liu H, Scott DJ, Karsisiotis AI, Clarke AR, Burston SG, Lund PA. Characterisation of a GroEL single-ring mutant that supports growth of Escherichia coli and has GroES-dependent ATPase activity. J Mol Biol 2009; 396:1271-83. [PMID: 20006619 DOI: 10.1016/j.jmb.2009.11.074] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 11/26/2009] [Accepted: 11/30/2009] [Indexed: 11/30/2022]
Abstract
Binding and folding of substrate proteins by the molecular chaperone GroEL alternates between its two seven-membered rings in an ATP-regulated manner. The association of ATP and GroES to a polypeptide-bound ring of GroEL encapsulates the folding proteins in the central cavity of that ring (cis ring) and allows it to fold in a protected environment where the risk of aggregation is reduced. ATP hydrolysis in the cis ring changes the potentials within the system such that ATP binding to the opposite (trans) ring triggers the release of all ligands from the cis ring of GroEL through a complex network of allosteric communication between the rings. Inter-ring allosteric communication thus appears indispensable for the function of GroEL, and an engineered single-ring version (SR1) cannot substitute for GroEL in vivo. We describe here the isolation and characterisation of an active single-ring form of the GroEL protein (SR-A92T), which has an exceptionally low ATPase activity that is strongly stimulated by the addition of GroES. Dissection of the kinetic pathway of the ATP-induced structural changes in this active single ring can be explained by the fact that the mutation effectively blocks progression through the full allosteric pathway of the GroEL reaction cycle, thus trapping an early allosteric intermediate. Addition of GroES is able to overcome this block by binding this intermediate and pulling the allosteric pathway to completion via mass action, explaining how bacterial cells expressing this protein as their only chaperonin are viable.
Collapse
Affiliation(s)
- Eszter Kovács
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Kumar CMS, Khare G, Srikanth CV, Tyagi AK, Sardesai AA, Mande SC. Facilitated oligomerization of mycobacterial GroEL: evidence for phosphorylation-mediated oligomerization. J Bacteriol 2009; 191:6525-38. [PMID: 19717599 PMCID: PMC2795288 DOI: 10.1128/jb.00652-09] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 08/21/2009] [Indexed: 11/20/2022] Open
Abstract
The distinctive feature of the GroES-GroEL chaperonin system in mediating protein folding lies in its ability to exist in a tetradecameric state, form a central cavity, and encapsulate the substrate via the GroES lid. However, recombinant GroELs of Mycobacterium tuberculosis are unable to act as effective molecular chaperones when expressed in Escherichia coli. We demonstrate here that the inability of M. tuberculosis GroEL1 to act as a functional chaperone in E. coli can be alleviated by facilitated oligomerization. The results of directed evolution involving random DNA shuffling of the genes encoding M. tuberculosis GroEL homologues followed by selection for functional entities suggested that the loss of chaperoning ability of the recombinant mycobacterial GroEL1 and GroEL2 in E. coli might be due to their inability to form canonical tetradecamers. This was confirmed by the results of domain-swapping experiments that generated M. tuberculosis-E. coli chimeras bearing mutually exchanged equatorial domains, which revealed that E. coli GroEL loses its chaperonin activity due to alteration of its oligomerization capabilities and vice versa for M. tuberculosis GroEL1. Furthermore, studying the oligomerization status of native GroEL1 from cell lysates of M. tuberculosis revealed that it exists in multiple oligomeric forms, including single-ring and double-ring variants. Immunochemical and mass spectrometric studies of the native M. tuberculosis GroEL1 revealed that the tetradecameric form is phosphorylated on serine-393, while the heptameric form is not, indicating that the switch between the single- and double-ring variants is mediated by phosphorylation.
Collapse
Affiliation(s)
- C. M. Santosh Kumar
- Laboratory of Structural Biology, Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500001, India, Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| | - Garima Khare
- Laboratory of Structural Biology, Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500001, India, Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| | - C. V. Srikanth
- Laboratory of Structural Biology, Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500001, India, Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| | - Anil K. Tyagi
- Laboratory of Structural Biology, Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500001, India, Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| | - Abhijit A. Sardesai
- Laboratory of Structural Biology, Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500001, India, Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| | - Shekhar C. Mande
- Laboratory of Structural Biology, Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500001, India, Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| |
Collapse
|
15
|
Liu H, Kovács E, Lund PA. Characterisation of mutations in GroES that allow GroEL to function as a single ring. FEBS Lett 2009; 583:2365-71. [PMID: 19545569 DOI: 10.1016/j.febslet.2009.06.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 06/05/2009] [Accepted: 06/15/2009] [Indexed: 11/27/2022]
Affiliation(s)
- Han Liu
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | | |
Collapse
|
16
|
GroEL-assisted protein folding: does it occur within the chaperonin inner cavity? Int J Mol Sci 2009; 10:2066-2083. [PMID: 19564940 PMCID: PMC2695268 DOI: 10.3390/ijms10052066] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 05/08/2009] [Accepted: 05/11/2009] [Indexed: 11/22/2022] Open
Abstract
The folding of protein molecules in the GroEL inner cavity under the co-chaperonin GroES lid is widely accepted as a crucial event of GroEL-assisted protein folding. This review is focused on the data showing that GroEL-assisted protein folding may proceed out of the complex with the chaperonin. The models of GroEL-assisted protein folding assuming ligand-controlled dissociation of nonnative proteins from the GroEL surface and their folding in the bulk solution are also discussed.
Collapse
|
17
|
Zahrl D, Wagner A, Tscherner M, Koraimann G. GroEL plays a central role in stress-induced negative regulation of bacterial conjugation by promoting proteolytic degradation of the activator protein TraJ. J Bacteriol 2007; 189:5885-94. [PMID: 17586648 PMCID: PMC1952051 DOI: 10.1128/jb.00005-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription of DNA transfer genes is a prerequisite for conjugative DNA transfer of F-like plasmids. Transfer gene expression is sensed by the donor cell and is regulated by a complex network of plasmid- and host-encoded factors. In this study we analyzed the effect of induction of the heat shock regulon on transfer gene expression and DNA transfer in Escherichia coli. Raising the growth temperature from 22 degrees C to 43 degrees C transiently reduced transfer gene expression to undetectable levels and reduced conjugative transfer by 2 to 3 orders of magnitude. In contrast, when host cells carried the temperature-sensitive groEL44 allele, heat shock-mediated repression was alleviated. These data implied that the chaperonin GroEL was involved in negative regulation after heat shock. Investigation of the role of GroEL in this regulatory process revealed that, in groEL(Ts) cells, TraJ, the plasmid-encoded master activator of type IV secretion (T4S) system genes, was less susceptible to proteolysis and had a prolonged half-life compared to isogenic wild-type E. coli cells. This result suggested a direct role for GroEL in proteolysis of TraJ, down-regulation of T4S system gene expression, and conjugation after heat shock. Strong support for this novel role for GroEL in regulation of bacterial conjugation was the finding that GroEL specifically interacted with TraJ in vivo. Our results further suggested that in wild-type cells this interaction was followed by rapid degradation of TraJ whereas in groEL(Ts) cells TraJ remained trapped in the temperature-sensitive GroEL protein and thus was not amenable to proteolysis.
Collapse
Affiliation(s)
- Doris Zahrl
- Institut für Molekulare Biowissenschaften, Karl-Franzens-Universität Graz, Universitätsplatz 2, A-8010 Graz, Austria
| | | | | | | |
Collapse
|
18
|
Panda M, Horowitz PM. Activation parameters for the spontaneous and pressure-induced phases of the dissociation of single-ring GroEL (SR1) chaperonin. Protein J 2004; 23:85-94. [PMID: 15115186 DOI: 10.1023/b:jopc.0000016262.27420.3a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We investigated the dissociation of single-ring heptameric GroEL (SR1) by high hydrostatic pressure in the range 0.5-3.0 kbar. The kinetics were studied as a function of temperature in the range 15-35 degrees C. The dissociation processes at each pressure and temperature showed biphasic behavior. The slower rate (k1,obs) was confirmed to be the self-dissociation of SR1 at any specific temperature at atmospheric pressure. This dissociation was pressure independent and followed concentration-dependent first-order kinetics. The self-dissociation rates followed normal Eyring plots (In k1,obs/T vs. 1/T) from which the free energy of activation (deltaG++ = 22 +/- 0.3 kcal mol(-1)), enthalpy of activation (deltaH++ = 18 +/- 0.5 kcal mol(-1)), and entropy of activation (deltaS++ = -15 +/- 1 kcal mol(-1)) were evaluated. The effect of pressure on the dissociation rates resulted in nonlinear behavior (ln k2,obs vs. pressure) at all the temperatures studied indicating that the activation volumes were pressure dependent. Activation volumes at zero pressure (V++o) and compressibility factors (beta++) for the dissociation rates at the specific temperatures were calculated. This is the first systematic study where the self-dissociation of an oligomeric chaperonin as well as its activation parameters are reported.
Collapse
Affiliation(s)
- Markandeswar Panda
- Department of Biochemistry, Mail Code 7760, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | | |
Collapse
|
19
|
Ogino H, Wachi M, Ishii A, Iwai N, Nishida T, Yamada S, Nagai K, Sugai M. FtsZ-dependent localization of GroEL protein at possible division sites. Genes Cells 2004; 9:765-71. [PMID: 15330853 DOI: 10.1111/j.1365-2443.2004.00770.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
When Escherichia coli is treated with penicillin, the envelopes bulge at the centre of the cells and the cells then lyse. The bulges expand into vesicle-like structures termed penicillin-induced vesicles. We have developed a method to isolate these structures and have shown that they contain mainly membrane proteins plus a high concentration of a 60 kDa protein. The N-terminal amino acid sequence of the protein is identical to that of GroEL protein. Western blotting analysis using anti-GroEL antibody showed that GroEL is indeed concentrated in the vesicles. Indirect immuno-fluorescence microscopy showed that GroEL protein is localized at the centre of the cells at the site of formation of FtsZ-rings. Localization of GroEL is dependent on FtsZ but not other Fts proteins. GroEL mutants formed elongated cells having no or asymmetrically localized FtsZ-rings at the restrictive temperature. These findings suggest a possible role of the GroEL protein in cell division.
Collapse
Affiliation(s)
- Hidetaka Ogino
- Department of Bioengineering, Tokyo Institute of Technology, 4259-B-38 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Sun Z, Scott DJ, Lund PA. Isolation and characterisation of mutants of GroEL that are fully functional as single rings. J Mol Biol 2003; 332:715-28. [PMID: 12963378 DOI: 10.1016/s0022-2836(03)00830-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A key aspect of the reaction mechanism for the molecular chaperone GroEL is the transmission of an allosteric signal between the two rings of the GroEL complex. Thus, the single-ring mutant SR1 is unable to act as a chaperone as it cannot release bound substrate or GroES. We used a simple selection procedure to identify mutants of SR1 that restored chaperone activity in vivo. A large number of single amino acid changes, mapping at diverse positions throughout the protein, enabled SR1 to regain its ability to act as a chaperone while remaining as a single ring. In vivo assays were used to identify the proteins that had regained maximal activity. In some cases, no difference could be detected between strains expressing wild-type GroEL and those expressing the mutated proteins. Three of the most active proteins where the mutations were in distinct parts of the protein were purified to homogeneity and characterised in vitro. All were capable of acting efficiently as chaperones for two different GroES-dependent substrates. All three proteins bound nucleotide as effectively as did GroEL, but the binding of GroES in the presence of ATP or ADP was reduced significantly relative to the wild-type. These active single rings should provide a useful tool for studying the nature of the allosteric changes that occur in the GroEL reaction cycle.
Collapse
Affiliation(s)
- Zhe Sun
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | | |
Collapse
|
21
|
Gozu M, Hoshino M, Higurashi T, Kato H, Goto Y. The interaction of beta(2)-glycoprotein I domain V with chaperonin GroEL: the similarity with the domain V and membrane interaction. Protein Sci 2002; 11:2792-803. [PMID: 12441378 PMCID: PMC2373745 DOI: 10.1110/ps.0216602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To clarify the mechanism of interaction between chaperonin GroEL and substrate proteins, we studied the conformational changes; of the fifth domain of human beta(2)-glycoprotein I upon binding to GroEL. The fifth domain has a large flexible loop, containing several hydrophobic residues surrounded by positively charged residues, which has been proposed to be responsible for the binding of beta(2)-glycoprotein I to negatively charged phospholipid membranes. The reduction by dithiothreitol of the three intramolecular disulfide bonds of the fifth domain was accelerated in the presence of stoichiometric amounts of GroEL, indicating that the fifth domain was destabilized upon interaction with GroEL. To clarify the GroEL-induced destabilization at the atomic level, we performed H/(2)H exchange of amide protons using heteronuclear NMR spectroscopy. The presence of GroEL promoted the H/(2)H exchange of most of the protected amide protons, suggesting that, although the flexible loop of the fifth domain is likely to be responsible for the initiation of binding to GroEL, the interaction with GroEL destabilizes the overall conformation of the fifth domain.
Collapse
Affiliation(s)
- Masayo Gozu
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Japan
| | | | | | | | | |
Collapse
|
22
|
Abstract
Type I chaperonins play an essential role in the folding of newly translated and stress-denatured proteins in eubacteria, mitochondria and chloroplasts. Since their discovery, the bacterial chaperonins have provided an excellent model system for investigating the mechanism by which chaperonins mediate protein folding. Due to the high conservation of the primary sequence among Type I chaperonins, it is generally accepted that organellar chaperonins function similar to the bacterial ones. However, recent studies indicate that the chloroplast and mitochondrial chaperonins possess unique structural and functional properties that distinguish them from their bacterial homologs. This review focuses on the unique properties of organellar chaperonins.
Collapse
Affiliation(s)
- Galit Levy-Rimler
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69778, Tel Aviv, Israel
| | | | | | | |
Collapse
|
23
|
Ashcroft AE, Brinker A, Coyle JE, Weber F, Kaiser M, Moroder L, Parsons MR, Jager J, Hartl UF, Hayer-Hartl M, Radford SE. Structural plasticity and noncovalent substrate binding in the GroEL apical domain. A study using electrospay ionization mass spectrometry and fluorescence binding studies. J Biol Chem 2002; 277:33115-26. [PMID: 12065585 DOI: 10.1074/jbc.m203398200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Advances in understanding how GroEL binds to non-native proteins are reported. Conformational flexibility in the GroEL apical domain, which could account for the variety of substrates that GroEL binds, is illustrated by comparison of several independent crystallographic structures of apical domain constructs that show conformational plasticity in helices H and I. Additionally, ESI-MS indicates that apical domain constructs have co-populated conformations at neutral pH. To assess the ability of different apical domain conformers to bind co-chaperone and substrate, model peptides corresponding to the mobile loop of GroES and to helix D from rhodanese were studied. Analysis of apical domain-peptide complexes by ESI-MS indicates that only the folded or partially folded apical domain conformations form complexes that survive gas phase conditions. Fluorescence binding studies show that the apical domain can fully bind both peptides independently. No competition for binding was observed, suggesting the peptides have distinct apical domain-binding sites. Blocking the GroES-apical domain-binding site in GroEL rendered the chaperonin inactive in binding GroES and in assisting the folding of denatured rhodanese, but still capable of binding non-native proteins, supporting the conclusion that GroES and substrate proteins have, at least partially, distinct binding sites even in the intact GroEL tetradecamer.
Collapse
Affiliation(s)
- Alison E Ashcroft
- Astbury Centre for Structural Molecular Biology & School of Biochemistry & Molecular Biology, The University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
HSP60 is an essential gene in Saccharomyces cerevisiae. The protein forms homotetradecameric double toroid complexes. The flexible C-terminal end of each subunit, which is hydrophobic in nature, protrudes inside the central cavity where protein folding occurs. In order to study the functional role of the C-terminus of Hsp60, we generated and characterized yeast strains expressing mutants of Hsp60 proteins. Most of the yeast strains expressing Hsp60 with C-terminal deletions grew normally, unless the deletion impaired the interaction between neighboring subunits. The cells carrying Hsp60 mutants with an epitope of influenza hemagglutinin (HA) and T7 alone in the C-terminal region grew normally, but the mutant containing both HA and T7 was unable to grow in nonfermentable carbon sources. In vitro biochemical assays were performed using purified Hsp60 proteins. All the mutants examined remained capable of interacting with Hsp10 in a nucleotide-dependent manner. However, binding and/or refolding of denatured rhodanese became defective in most of the hsp60 mutants. Therefore, the hydrophobic C-terminal tail of Hsp60 plays an important role in the refolding of protein substrates, although it is flexible in structure.
Collapse
Affiliation(s)
- Yi-Chien Fang
- Institute of Genetics, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan, ROC
| | | |
Collapse
|
25
|
Guhr P, Neuhofen S, Coan C, Wise JG, Vogel PD. New aspects on the mechanism of GroEL-assisted protein folding. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1596:326-35. [PMID: 12007612 DOI: 10.1016/s0167-4838(02)00219-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The mechanism of assisted protein folding by the chaperonin GroEL alone or in complex with the co-chaperonin GroES and in the presence or absence of nucleotides has been subject to extensive investigations during the last years. In this paper we present data where we have inactivated GroEL by stepwise blocking the nucleotide binding sites using the non-hydrolyzable ATP analogue, (Cr(H2O)4)3+ATP. We correlated the amount of accessible nucleotide binding sites with the residual ATP hydrolysis activity of GroEL as well as the residual refolding activity for two different model substrates. Under the conditions used, folding of the substrate proteins and ATP hydrolysis were directly proportional to the residual, accessible nucleotide binding sites. In the presence of GroES, 50% of the nucleotide binding sites were protected from inactivation by CrATP and the resulting protein retains 50% of both ATPase and refolding activity. The results strongly suggest that under the conditions used in our experiments, the nucleotide binding sites are additive in character and that by blocking of a certain number of binding sites a proportional amount of ATP hydrolysis and refolding activities are inactivated. The experiments including GroES suggest that full catalytic activity of GroEL requires both rings of the chaperonin. Blocking of the nucleotide binding sites of one ring still allows function of the second ring.
Collapse
Affiliation(s)
- Petra Guhr
- Fachbereich Chemie der Universität Kaiserslautern, Erwin Schrödinger Strasse, 67663, Kaiserslautern, Germany
| | | | | | | | | |
Collapse
|
26
|
Abstract
During the past two years, a large amount of biochemical, biophysical and low- to high-resolution structural data have provided mechanistic insights into the machinery of protein folding and unfolding. It has emerged that dual functionality in terms of folding and unfolding might exist for some systems. The majority of folding/unfolding machines adopt oligomeric ring structures in a cooperative fashion and utilise the conformational changes induced by ATP binding/hydrolysis for their specific functions.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Centre for Structural Biology, Department of Biological Sciences, Imperial College of Science, Technology and Medicine, Flowers Building, South Kensington, SW7 2AZ, London, UK.
| | | | | |
Collapse
|
27
|
Lemire BD, Oyedotun KS. The Saccharomyces cerevisiae mitochondrial succinate:ubiquinone oxidoreductase. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1553:102-16. [PMID: 11803020 DOI: 10.1016/s0005-2728(01)00229-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The Saccharomyces cerevisiae succinate dehydrogenase (SDH) provides an excellent model system for studying the assembly, structure, and function of a mitochondrial succinate:quinone oxidoreductase. The powerful combination of genetic and biochemical approaches is better developed in yeast than in other eukaryotes. The yeast protein is strikingly similar to other family members in the structural and catalytic properties of its subunits. However, the membrane domain and particularly the role of the single heme in combination with two ubiquinone-binding sites need further investigation. The assembly of subunits and cofactors that occurs to produce new holoenzyme molecules is a complex process that relies on molecular chaperones. The yeast SDH provides the best opportunity for understanding the biogenesis of this family of iron-sulfur flavoproteins.
Collapse
Affiliation(s)
- Bernard D Lemire
- Canadian Institutes of Health Research Group in the Molecular Biology of Membrane Proteins, Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | | |
Collapse
|
28
|
Kovács E, van der Vies SM, Glatz A, Török Z, Varvasovszki V, Horváth I, Vígh L. The chaperonins of Synechocystis PCC 6803 differ in heat inducibility and chaperone activity. Biochem Biophys Res Commun 2001; 289:908-15. [PMID: 11735133 DOI: 10.1006/bbrc.2001.6083] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The chaperonins GroEL and Cpn60 were isolated from the cyanobacterium Synechocystis PCC 6803 and characterized. In cells grown under optimal conditions their ratio was about one to one. However, the amount of GroEL increased considerably more than that of Cpn60 in response to heat stress. The labile chaperonin oligomer required stabilization by MgATP or glycerol during isolation. Use of the E. coli mutant strain, groEL44 revealed that the functional properties of the two cyanobacterial chaperonins are strikingly different. Overexpression of cyanobacterial GroEL in the E. coli mutant strain allowed growth at elevated temperature, the formation of mature bacteriophage T4, and active Rubisco enzyme assembly. In contrast, Cpn60 partially complemented the temperature-sensitive phenotype, the Rubisco assembly defect and did not promote the growth of the bacteriophage T4. The difference in chaperone activity of the two cyanobacterial chaperonins very probably reflects the unique chaperonin properties required during the life of Synechocystis PCC 6803.
Collapse
Affiliation(s)
- E Kovács
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, H-6701, Hungary
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Chaperonins mediate protein folding in an ATP-dependent manner. ATP binding and hydrolysis by chaperonins are subject to both homotropic and heterotropic allosteric regulation. In the case of GroEL and CCT, homotropic regulation by ATP is manifested in nested cooperativity, which involves positive intra-ring cooperativity and negative inter-ring cooperativity in ATP binding. Both types of cooperativity are modulated by various heterotropic allosteric effectors, which include nonfolded proteins, ADP, Mg2+, monovalent ions such as K+, and cochaperonins in the case of type I chaperonins such as GroEL. Here, the allosteric properties of chaperonins are reviewed and new results of ours are presented with regard to allosteric effects of ADP. The role of allostery in the reaction cycle and folding function of chaperonins is discussed.
Collapse
Affiliation(s)
- A Horovitz
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | | | | | | |
Collapse
|
30
|
Chatellier J, Hill F, Fersht AR. From minichaperone to GroEL 2: importance of avidity of the multisite ring structure. J Mol Biol 2000; 304:883-96. [PMID: 11124034 DOI: 10.1006/jmbi.2000.4277] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Structural studies on minichaperones and GroEL imply a continuous ring of binding sites around the neck of GroEL. To investigate the importance of this ring, we constructed an artificial heptameric assembly of minichaperones to mimic their arrangement in GroEL. The heptameric Gp31 co-chaperonin from bacteriophage T4, an analogue of GroES, was used as a scaffold to display the GroEL minichaperones. A fusion protein, MC(7), was generated by replacing a part of the highly mobile loop of Gp31 (residues 23-44) with the sequence of the minichaperone (residues 191-376 of GroEL). The purified recombinant protein assembled into a heptameric ring composed of seven 30.6 kDa subunits. Although single minichaperones (residues 193-335 to 191-376 of GroEL) have certain chaperone activities in vitro and in vivo, they cannot refold heat and dithiothreitol-denatured mitochondrial malate dehydrogenase (mtMDH), a reaction that normally requires GroEL, its co-chaperonin GroES and ATP. But, MC(7) refolded MDH in vitro. The expression of MC(7) complements in vivo two temperature-sensitive Escherichia coli alleles, groEL44 and groEL673, at 43 degrees C. Although MC(7) could not compensate for the complete absence of GroEL in vivo, it enhanced the colony-forming ability of cells containing limiting amounts of wild-type GroEL at 37 degrees C. MC(7 )also reduces aggregate formation and cell death in mammalian cell models of Huntington's disease. The assembly of seven minichaperone subunits on a heptameric ring significantly improves their activity, demonstrating the importance of avidity in GroEL function.
Collapse
Affiliation(s)
- J Chatellier
- Cambridge Centre for Protein Engineering and Cambridge University Chemical Laboratory, MRC Centre, Hills Road, Cambridge, CB2 2QH, UK
| | | | | |
Collapse
|