1
|
Nishima W, Girodat D, Holm M, Rundlet EJ, Alejo JL, Fischer K, Blanchard SC, Sanbonmatsu KY. Hyper-swivel head domain motions are required for complete mRNA-tRNA translocation and ribosome resetting. Nucleic Acids Res 2022; 50:8302-8320. [PMID: 35808938 DOI: 10.1093/nar/gkac597] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 06/15/2022] [Accepted: 07/05/2022] [Indexed: 11/14/2022] Open
Abstract
Translocation of messenger RNA (mRNA) and transfer RNA (tRNA) substrates through the ribosome during protein synthesis, an exemplar of directional molecular movement in biology, entails a complex interplay of conformational, compositional, and chemical changes. The molecular determinants of early translocation steps have been investigated rigorously. However, the elements enabling the ribosome to complete translocation and reset for subsequent protein synthesis reactions remain poorly understood. Here, we have combined molecular simulations with single-molecule fluorescence resonance energy transfer imaging to gain insights into the rate-limiting events of the translocation mechanism. We find that diffusive motions of the ribosomal small subunit head domain to hyper-swivelled positions, governed by universally conserved rRNA, can maneuver the mRNA and tRNAs to their fully translocated positions. Subsequent engagement of peptidyl-tRNA and disengagement of deacyl-tRNA from mRNA, within their respective small subunit binding sites, facilitate the ribosome resetting mechanism after translocation has occurred to enable protein synthesis to resume.
Collapse
Affiliation(s)
- Wataru Nishima
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- New Mexico Consortium, Los Alamos, NM 87544, USA
| | - Dylan Girodat
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- New Mexico Consortium, Los Alamos, NM 87544, USA
| | - Mikael Holm
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Emily J Rundlet
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jose L Alejo
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kara Fischer
- New Mexico Consortium, Los Alamos, NM 87544, USA
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Karissa Y Sanbonmatsu
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- New Mexico Consortium, Los Alamos, NM 87544, USA
| |
Collapse
|
2
|
Javan GT, Finley SJ, Smith T, Miller J, Wilkinson JE. Cadaver Thanatomicrobiome Signatures: The Ubiquitous Nature of Clostridium Species in Human Decomposition. Front Microbiol 2017; 8:2096. [PMID: 29163394 PMCID: PMC5670113 DOI: 10.3389/fmicb.2017.02096] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/12/2017] [Indexed: 01/21/2023] Open
Abstract
Human thanatomicrobiome studies have established that an abundant number of putrefactive bacteria within internal organs of decaying bodies are obligate anaerobes, Clostridium spp. These microorganisms have been implicated as etiological agents in potentially life-threatening infections; notwithstanding, the scale and trajectory of these microbes after death have not been elucidated. We performed phylogenetic surveys of thanatomicrobiome signatures of cadavers' internal organs to compare the microbial diversity between the 16S rRNA gene V4 hypervariable region and V3-4 conjoined regions from livers and spleens of 45 cadavers undergoing forensic microbiological studies. Phylogenetic analyses of 16S rRNA gene sequences revealed that the V4 region had a significantly higher mean Chao1 richness within the total microbiome data. Permutational multivariate analysis of variance statistical tests, based on unweighted UniFrac distances, demonstrated that taxa compositions were significantly different between V4 and V3-4 hypervariable regions (p < 0.001). Of note, we present the first study, using the largest cohort of criminal cases to date, that two hypervariable regions show discriminatory power for human postmortem microbial diversity. In conclusion, here we propose the impact of hypervariable region selection for the 16S rRNA gene in differentiating thanatomicrobiomic profiles to provide empirical data to explain a unique concept, the Postmortem Clostridium Effect.
Collapse
Affiliation(s)
- Gulnaz T. Javan
- Forensic Science Program, Physical Sciences Department, Alabama State University, Montgomery, AL, United States
| | - Sheree J. Finley
- Physical Sciences Department, Alabama State University, Montgomery, AL, United States
| | - Tasia Smith
- Forensic Science Program, Physical Sciences Department, Alabama State University, Montgomery, AL, United States
| | - Joselyn Miller
- Forensic Science Program, Physical Sciences Department, Alabama State University, Montgomery, AL, United States
| | | |
Collapse
|
3
|
Baker KA, Lamichhane R, Lamichhane T, Rueda D, Cunningham PR. Protein-RNA Dynamics in the Central Junction Control 30S Ribosome Assembly. J Mol Biol 2016; 428:3615-31. [PMID: 27192112 DOI: 10.1016/j.jmb.2016.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/02/2016] [Accepted: 05/07/2016] [Indexed: 11/18/2022]
Abstract
Interactions between ribosomal proteins (rproteins) and ribosomal RNA (rRNA) facilitate the formation of functional ribosomes. S15 is a central domain primary binding protein that has been shown to trigger a cascade of conformational changes in 16S rRNA, forming the functional structure of the central domain. Previous biochemical and structural studies in vitro have revealed that S15 binds a three-way junction of helices 20, 21, and 22, including nucleotides 652-654 and 752-754. All junction nucleotides except 653 are highly conserved among the Bacteria. To identify functionally important motifs within the junction, we subjected nucleotides 652-654 and 752-754 to saturation mutagenesis and selected and analyzed functional mutants. Only 64 mutants with greater than 10% ribosome function in vivo were isolated. S15 overexpression complemented mutations in the junction loop in each of the partially active mutants, although mutations that produced inactive ribosomes were not complemented by overexpression of S15. Single-molecule Förster or fluorescence resonance energy transfer (smFRET) was used to study the Mg(2+)- and S15-induced conformational dynamics of selected junction mutants. Comparison of the structural dynamics of these mutants with the wild type in the presence and absence of S15 revealed specific sequence and structural motifs in the central junction that are important in ribosome function.
Collapse
MESH Headings
- DNA Mutational Analysis
- Escherichia coli/chemistry
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Fluorescence Resonance Energy Transfer
- Genetic Complementation Test
- Macromolecular Substances/metabolism
- Magnesium/metabolism
- Models, Biological
- Models, Molecular
- Protein Binding
- Protein Conformation
- Protein Interaction Maps
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Ribosomal Proteins/metabolism
- Ribosome Subunits, Small, Bacterial/metabolism
Collapse
Affiliation(s)
- Kris Ann Baker
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Rajan Lamichhane
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | - Tek Lamichhane
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA; Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | - David Rueda
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA; Section of Virology, Department of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK; Single Molecule Imaging Group, MRC Clinical Sciences Centre (CSC), Du Cane Road, London W12 0NN, UK.
| | - Philip R Cunningham
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
4
|
Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis. BMC Bioinformatics 2016; 17:135. [PMID: 27000765 PMCID: PMC4802574 DOI: 10.1186/s12859-016-0992-y] [Citation(s) in RCA: 290] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 03/17/2016] [Indexed: 11/10/2022] Open
Abstract
Background Prokaryotic 16S ribosomal RNA (rRNA) sequences are widely used in environmental microbiology and molecular evolution as reliable markers for the taxonomic classification and phylogenetic analysis of microbes. Restricted by current sequencing techniques, the massive sequencing of 16S rRNA gene amplicons encompassing the full length of genes is not yet feasible. Thus, the selection of the most efficient hypervariable regions for phylogenetic analysis and taxonomic classification is still debated. In the present study, several bioinformatics tools were integrated to build an in silico pipeline to evaluate the phylogenetic sensitivity of the hypervariable regions compared with the corresponding full-length sequences. Results The correlation of seven sub-regions was inferred from the geodesic distance, a parameter that is applied to quantitatively compare the topology of different phylogenetic trees constructed using the sequences from different sub-regions. The relationship between different sub-regions based on the geodesic distance indicated that V4-V6 were the most reliable regions for representing the full-length 16S rRNA sequences in the phylogenetic analysis of most bacterial phyla, while V2 and V8 were the least reliable regions. Conclusions Our results suggest that V4-V6 might be optimal sub-regions for the design of universal primers with superior phylogenetic resolution for bacterial phyla. A potential relationship between function and the evolution of 16S rRNA is also discussed. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-0992-y) contains supplementary material, which is available to authorized users.
Collapse
|
5
|
Gottstein-Schmidtke SR, Duchardt-Ferner E, Groher F, Weigand JE, Gottstein D, Suess B, Wöhnert J. Building a stable RNA U-turn with a protonated cytidine. RNA (NEW YORK, N.Y.) 2014; 20:1163-72. [PMID: 24951555 PMCID: PMC4105743 DOI: 10.1261/rna.043083.113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 05/16/2014] [Indexed: 05/28/2023]
Abstract
The U-turn is a classical three-dimensional RNA folding motif first identified in the anticodon and T-loops of tRNAs. It also occurs frequently as a building block in other functional RNA structures in many different sequence and structural contexts. U-turns induce sharp changes in the direction of the RNA backbone and often conform to the 3-nt consensus sequence 5'-UNR-3' (N = any nucleotide, R = purine). The canonical U-turn motif is stabilized by a hydrogen bond between the N3 imino group of the U residue and the 3' phosphate group of the R residue as well as a hydrogen bond between the 2'-hydroxyl group of the uridine and the N7 nitrogen of the R residue. Here, we demonstrate that a protonated cytidine can functionally and structurally replace the uridine at the first position of the canonical U-turn motif in the apical loop of the neomycin riboswitch. Using NMR spectroscopy, we directly show that the N3 imino group of the protonated cytidine forms a hydrogen bond with the backbone phosphate 3' from the third nucleotide of the U-turn analogously to the imino group of the uridine in the canonical motif. In addition, we compare the stability of the hydrogen bonds in the mutant U-turn motif to the wild type and describe the NMR signature of the C+-phosphate interaction. Our results have implications for the prediction of RNA structural motifs and suggest simple approaches for the experimental identification of hydrogen bonds between protonated C-imino groups and the phosphate backbone.
Collapse
Affiliation(s)
- Sina R Gottstein-Schmidtke
- Institute of Molecular Biosciences, Johann-Wolfgang-Goethe-University Frankfurt/M., 60438 Frankfurt, Germany Center for Biomolecular Magnetic Resonance (BMRZ), Johann-Wolfgang-Goethe-University Frankfurt/M., 60438 Frankfurt, Germany
| | - Elke Duchardt-Ferner
- Institute of Molecular Biosciences, Johann-Wolfgang-Goethe-University Frankfurt/M., 60438 Frankfurt, Germany Center for Biomolecular Magnetic Resonance (BMRZ), Johann-Wolfgang-Goethe-University Frankfurt/M., 60438 Frankfurt, Germany
| | - Florian Groher
- Department of Biology, Technical University Darmstadt, 64287 Darmstadt, Germany
| | - Julia E Weigand
- Department of Biology, Technical University Darmstadt, 64287 Darmstadt, Germany
| | - Daniel Gottstein
- Institute for Biophysical Chemistry, Johann-Wolfgang-Goethe-University Frankfurt/M., 60438 Frankfurt, Germany
| | - Beatrix Suess
- Department of Biology, Technical University Darmstadt, 64287 Darmstadt, Germany
| | - Jens Wöhnert
- Institute of Molecular Biosciences, Johann-Wolfgang-Goethe-University Frankfurt/M., 60438 Frankfurt, Germany Center for Biomolecular Magnetic Resonance (BMRZ), Johann-Wolfgang-Goethe-University Frankfurt/M., 60438 Frankfurt, Germany
| |
Collapse
|
6
|
Caisová L, Marin B, Melkonian M. A close-up view on ITS2 evolution and speciation - a case study in the Ulvophyceae (Chlorophyta, Viridiplantae). BMC Evol Biol 2011; 11:262. [PMID: 21933414 PMCID: PMC3225284 DOI: 10.1186/1471-2148-11-262] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 09/20/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The second Internal Transcriber Spacer (ITS2) is a fast evolving part of the nuclear-encoded rRNA operon located between the 5.8S and 28S rRNA genes. Based on crossing experiments it has been proposed that even a single Compensatory Base Change (CBC) in helices 2 and 3 of the ITS2 indicates sexual incompatibility and thus separates biological species. Taxa without any CBC in these ITS2 regions were designated as a 'CBC clade'. However, in depth comparative analyses of ITS2 secondary structures, ITS2 phylogeny, the origin of CBCs, and their relationship to biological species have rarely been performed. To gain 'close-up' insights into ITS2 evolution, (1) 86 sequences of ITS2 including secondary structures have been investigated in the green algal order Ulvales (Chlorophyta, Viridiplantae), (2) after recording all existing substitutions, CBCs and hemi-CBCs (hCBCs) were mapped upon the ITS2 phylogeny, rather than merely comparing ITS2 characters among pairs of taxa, and (3) the relation between CBCs, hCBCs, CBC clades, and the taxonomic level of organisms was investigated in detail. RESULTS High sequence and length conservation allowed the generation of an ITS2 consensus secondary structure, and introduction of a novel numbering system of ITS2 nucleotides and base pairs. Alignments and analyses were based on this structural information, leading to the following results: (1) in the Ulvales, the presence of a CBC is not linked to any particular taxonomic level, (2) most CBC 'clades' sensu Coleman are paraphyletic, and should rather be termed CBC grades. (3) the phenetic approach of pairwise comparison of sequences can be misleading, and thus, CBCs/hCBCs must be investigated in their evolutionary context, including homoplasy events (4) CBCs and hCBCs in ITS2 helices evolved independently, and we found no evidence for a CBC that originated via a two-fold hCBC substitution. CONCLUSIONS Our case study revealed several discrepancies between ITS2 evolution in the Ulvales and generally accepted assumptions underlying ITS2 evolution as e.g. the CBC clade concept. Therefore, we developed a suite of methods providing a critical 'close-up' view into ITS2 evolution by directly tracing the evolutionary history of individual positions, and we caution against a non-critical use of the ITS2 CBC clade concept for species delimitation.
Collapse
Affiliation(s)
- Lenka Caisová
- Universität zu Köln, Biozentrum Köln, Botanisches Institut, Zülpicher Str. 47b, 50674 Köln, Germany.
| | | | | |
Collapse
|
7
|
Saraiya AA, Lamichhane TN, Chow CS, SantaLucia J, Cunningham PR. Identification and role of functionally important motifs in the 970 loop of Escherichia coli 16S ribosomal RNA. J Mol Biol 2007; 376:645-57. [PMID: 18177894 DOI: 10.1016/j.jmb.2007.11.102] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 11/26/2007] [Accepted: 11/30/2007] [Indexed: 10/22/2022]
Abstract
The 970 loop (helix 31) of Escherichia coli 16S ribosomal RNA contains two modified nucleotides, m(2)G966 and m(5)C967. Positions A964, A969, and C970 are conserved among the Bacteria, Archaea, and Eukarya. The nucleotides present at positions 965, 966, 967, 968, and 971, however, are only conserved and unique within each domain. All organisms contain a modified nucleoside at position 966, but the type of the modification is domain specific. Biochemical and structure studies have placed this loop near the P site and have shown it to be involved in the decoding process and in binding the antibiotic tetracycline. To identify the functional components of this ribosomal RNA hairpin, the eight nucleotides of the 970 loop of helix 31 were subjected to saturation mutagenesis and 107 unique functional mutants were isolated and analyzed. Nonrandom nucleotide distributions were observed at each mutated position among the functional isolates. Nucleotide identity at positions 966 and 969 significantly affects ribosome function. Ribosomes with single mutations of m(2)G966 or m(5)C967 produce more protein in vivo than do wild-type ribosomes. Overexpression of initiation factor 3 specifically restored wild-type levels of protein synthesis to the 966 and 967 mutants, suggesting that modification of these residues is important for initiation factor 3 binding and for the proper initiation of protein synthesis.
Collapse
Affiliation(s)
- Ashesh A Saraiya
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | | | | | | | |
Collapse
|
8
|
Abstract
The ribosome is responsible for protein synthesis, the translation of the genetic code, in all living organisms. Ribosomes are composed of RNA (ribosomal RNA) and protein (ribosomal protein). Soluble protein factors bind to the ribosome and facilitate different phases of translation. Genetic approaches have proved useful for the identification and characterization of the structural and functional roles of specific nucleotides in ribosomal RNA and of specific amino acids in ribosomal proteins and in ribosomal factors. This chapter summarizes examples of mutations identified in ribosomal RNA, ribosomal proteins, and ribosomal factors.
Collapse
MESH Headings
- Animals
- Base Sequence
- DNA Mutational Analysis
- Humans
- Mutation
- Nucleic Acid Conformation
- Peptide Elongation Factors/genetics
- Peptide Initiation Factors/genetics
- Peptide Termination Factors/genetics
- Protein Subunits/genetics
- RNA, Ribosomal, 16S/analysis
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/physiology
- RNA, Ribosomal, 23S/analysis
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/physiology
- Ribosomal Proteins/genetics
- Ribosomes/genetics
- Sequence Analysis, RNA
Collapse
Affiliation(s)
- Kathleen L Triman
- Department of Biology, Franklin and Marshall College, Lancaster, PA 17604, USA
| |
Collapse
|
9
|
|
10
|
Gagnon MG, Mukhopadhyay A, Steinberg SV. Close Packing of Helices 3 and 12 of 16 S rRNA Is Required for the Normal Ribosome Function. J Biol Chem 2006; 281:39349-57. [PMID: 17060325 DOI: 10.1074/jbc.m607725200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The along-groove packing motif is a quasi-reciprocal arrangement of two RNA double helices in which a backbone of each helix is closely packed within the minor groove of the other helix. At the center of the inter-helix contact, a GU base pair in one helix packs against a Watson-Crick base pair in the other helix. Here, based on in vivo selection from a combinatorial gene library of 16 S rRNA and on functional characterization of the selected clones, we demonstrate that the normal ribosome performance requires that helices 3 and 12 be closely packed. In some clones the Watson-Crick and GU base pairs exchange in their positions between the two helices, which affects neither the quality of the helix packing, nor the ribosome function. On the other hand, perturbations in the close packing usually lead to a substantial drop in the ribosome activity. The functionality of the clones containing such perturbations may depend on the presence of particular elements in the vicinity of the area of contact between helices 3 and 12. Such cases do not exist in natural 16 S rRNA, and their selection enriches our knowledge of the constraints imposed on the structure of ribosomal RNA in functional ribosomes.
Collapse
Affiliation(s)
- Matthieu G Gagnon
- Département de Biochimie, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | | | | |
Collapse
|
11
|
Rackham O, Wang K, Chin JW. Functional epitopes at the ribosome subunit interface. Nat Chem Biol 2006; 2:254-8. [PMID: 16582919 DOI: 10.1038/nchembio783] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Accepted: 03/14/2006] [Indexed: 11/09/2022]
Abstract
The ribosome is a 2.5-MDa molecular machine that synthesizes cellular proteins encoded in mRNAs. The 30S and 50S subunits of the ribosome associate through structurally defined intersubunit bridges burying 6,000 A(2), 80% of which is buried in conserved RNA-RNA interactions. Intersubunit bridges bind translation factors, may coordinate peptide bond formation and translocation and may be actively remodeled in the post-termination complex, but the functional importance of numerous 30S bridge nucleotides had been unknown. We carried out large-scale combinatorial mutagenesis and in vivo selections on 30S nucleotides that form RNA-RNA intersubunit bridges in the Escherichia coli ribosome. We determined the covariation and functional importance of bridge nucleotides, allowing comparison of the structural interface and phylogenetic data to the functional epitope. Our results reveal how information for ribosome function is partitioned across bridges, and suggest a subset of nucleotides that may have measurable effects on individual steps of the translational cycle.
Collapse
Affiliation(s)
- Oliver Rackham
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, England, UK
| | | | | |
Collapse
|
12
|
Bélanger F, Théberge-Julien G, Cunningham PR, Brakier-Gingras L. A functional relationship between helix 1 and the 900 tetraloop of 16S ribosomal RNA within the bacterial ribosome. RNA (NEW YORK, N.Y.) 2005; 11:906-13. [PMID: 15872184 PMCID: PMC1370775 DOI: 10.1261/rna.2160405] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The conserved 900 tetraloop that caps helix 27 of 16S ribosomal RNA (rRNA) interacts with helix 24 of 16S rRNA and also with helix 67 of 23S rRNA, forming the intersubunit bridge B2c, proximal to the decoding center. In previous studies, we investigated how the interaction between the 900 tetraloop and helix 24 participates in subunit association and translational fidelity. In the present study, we investigated whether the 900 tetraloop is involved in other undetected interactions with different regions of the Escherichia coli 16S rRNA. Using a genetic complementation approach, we selected mutations in 16S rRNA that compensate for a 900 tetraloop mutation, A900G, which severely impairs subunit association and translational fidelity. Mutations were randomly introduced in 16S rRNA, using either a mutagenic XL1-Red E. coli strain or an error-prone PCR strategy. Gain-offunction mutations were selected in vivo with a specialized ribosome system. Two mutations, the deletion of U12 and the U12C substitution, were thus independently selected in helix 1 of 16S rRNA. This helix is located in the vicinity of helix 27, but does not directly contact the 900 tetraloop in the crystal structures of the ribosome. Both mutations correct the subunit association and translational fidelity defects caused by the A900G mutation, revealing an unanticipated functional interaction between these two regions of 16S rRNA.
Collapse
MESH Headings
- Base Sequence
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Molecular Sequence Data
- Mutation
- Nucleic Acid Conformation
- Peptide Chain Initiation, Translational/genetics
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Ribosomes/metabolism
Collapse
|
13
|
Laios E, Waddington M, Saraiya AA, Baker KA, O'Connor E, Pamarathy D, Cunningham PR. Combinatorial Genetic Technology for the Development of New Anti-infectives. Arch Pathol Lab Med 2004; 128:1351-9. [PMID: 15578878 DOI: 10.5858/2004-128-1351-cgtftd] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Context.—We previously developed a novel technology known as instant evolution for high-throughput analysis of mutations in Escherichia coli ribosomal RNA.
Objective.—To develop a genetic platform for the isolation of new classes of antiinfectives that are not susceptible to drug resistance based on the instant evolution system.
Design.—Mutation libraries were constructed in the 16S rRNA gene of E coli and analyzed. In addition, the rRNA genes from a number of pathogenic bacteria were cloned and expressed in E coli. The 16S rRNA genes were incorporated into the instant-evolution system in E coli.
Setting.—The Department of Biological Sciences, Wayne State University, Detroit, Mich.
Main Outcome Measures.—Ribosome function was assayed by measuring the amount of green fluorescent protein produced by ribosomes containing mutant or foreign RNA in vivo.
Results.—We have developed a new combinatorial genetic technology (CGT) platform that allows high-throughput in vivo isolation and analysis of rRNA mutations that might lead to drug resistance. This information is being used to develop anti-infectives that recognize the wild type and all viable mutants of the drug target. CGT also provides a novel mechanism for identifying new drug targets.
Conclusions.—Antimicrobials produced using CGT will provide new therapies for the treatment of infections caused by human pathogens that are resistant to current antibiotics. The new therapeutics will be less susceptible to de novo resistance because CGT identifies all mutations of the target that might lead to resistance during the earliest stages of the drug discovery process.
Collapse
Affiliation(s)
- Eleftheria Laios
- First Department of Pediatrics, University of Athens, St Sophia Children's Hospital, Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
14
|
Léger M, Sidani S, Brakier-Gingras L. A reassessment of the response of the bacterial ribosome to the frameshift stimulatory signal of the human immunodeficiency virus type 1. RNA (NEW YORK, N.Y.) 2004; 10:1225-35. [PMID: 15247429 PMCID: PMC1370612 DOI: 10.1261/rna.7670704] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Accepted: 05/12/2004] [Indexed: 05/18/2023]
Abstract
HIV-1 uses a programmed -1 ribosomal frameshift to produce the precursor of its enzymes. This frameshift occurs at a specific slippery sequence followed by a stimulatory signal, which was recently shown to be a two-stem helix, for which a three-purine bulge separates the upper and lower stems. In the present study, we investigated the response of the bacterial ribosome to this signal, using a translation system specialized for the expression of a firefly luciferase reporter. The HIV-1 frameshift region was inserted at the beginning of the coding sequence of the luciferase gene, such that its expression requires a -1 frameshift. Mutations that disrupt the upper or the lower stem of the frameshift stimulatory signal or replace the purine bulge with pyrimidines decreased the frameshift efficiency, whereas compensatory mutations that re-form both stems restored the frame-shift efficiency to near wild-type level. These mutations had the same effect in a eukaryotic translation system, which shows that the bacterial ribosome responds like the eukaryote ribosome to the HIV-1 frameshift stimulatory signal. Also, we observed, in contrast to a previous report, that a stop codon immediately 3' to the slippery sequence does not decrease the frameshift efficiency, ruling out a proposal that the frameshift involves the deacylated-tRNA and the peptidyl-tRNA in the E and P sites of the ribosome, rather than the peptidyl-tRNA and the aminoacyl-tRNA in the P and A sites, as commonly assumed. Finally, mutations in 16S ribosomal RNA that facilitate the accommodation of the incoming aminoacyl-tRNA in the A site decreased the frameshift efficiency, which supports a previous suggestion that the frameshift occurs when the aminoacyl-tRNA occupies the A/T entry site.
Collapse
Affiliation(s)
- Mélissa Léger
- Département de Biochimie, Université de Montréal, 2900, boul. Edouard-Montpetit, D-353, Québec, H3T 1J4, Canada
| | | | | |
Collapse
|
15
|
Bélanger F, Gagnon MG, Steinberg SV, Cunningham PR, Brakier-Gingras L. Study of the Functional Interaction of the 900 Tetraloop of 16S Ribosomal RNA with Helix 24 within the Bacterial Ribosome. J Mol Biol 2004; 338:683-93. [PMID: 15099737 DOI: 10.1016/j.jmb.2004.03.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 03/08/2004] [Accepted: 03/10/2004] [Indexed: 10/26/2022]
Abstract
The 900 tetraloop that caps helix 27 of 16S ribosomal RNA (rRNA) is amongst the most conserved regions of rRNA. This tetraloop forms a GNRA motif that docks into the minor groove of three base-pairs at the bottom of helix 24 of 16S rRNA in the 30S subunit. Both the tetraloop and its receptor in helix 24 contact the 23S rRNA, forming the intersubunit bridge B2c. Here, we investigated the interaction between the 900 tetraloop and its receptor by genetic complementation. We used a specialized ribosome system in combination with an in vivo instant evolution approach to select mutations in helix 24 compensating for a mutation in the 900 tetraloop (A900G) that severely decreases ribosomal activity, impairing subunit association and translational fidelity. We selected two mutants where the G769-C810 base-pair of helix 24 was substituted with either U-A or C x A. When these mutations in helix 24 were investigated in the context of a wild-type 900 tetraloop, the C x A but not the U-A mutation severely impaired ribosome activity, interfering with subunit association and decreasing translational fidelity. In the presence of the A900G mutation, both mutations in helix 24 increased the ribosome activity to the same extent. Subunit association and translational fidelity were increased to the same level. Computer modeling was used to analyze the effect of the mutations in helix 24 on the interaction between the tetraloop and its receptor. This study demonstrates the functional importance of the interaction between the 900 tetraloop and helix 24.
Collapse
Affiliation(s)
- François Bélanger
- Département de Biochimie, Université de Montréal, Montréal, Qué., Canada H3T 1J4
| | | | | | | | | |
Collapse
|
16
|
Abstract
Yeast ribosomal protein S14 (rpS14) binds to two different RNA molecules: (1). helix 23 of 18S rRNA during its assembly into 40S ribosomal subunits and (2). a stem-loop structure in RPS14B pre-mRNA to repress expression of the RPS14B gene. We used the three-dimensional structure of Thermus thermophilus ribosomal protein S11, a bacterial homologue of rpS14, as a guide to identify conserved, surface-exposed amino acid residues that are likely to contact RNA. Eight residues that met these criteria were mutated to alanine. Most of these mutations affected interaction of rpS14 with either helix 23 or the RPS14B stem-loop RNA or both. Assembly of 40S ribosomal subunits and repression of RPS14B were also affected. S11 contains an extended carboxy-terminal domain rich in basic amino acids, which interacts with rRNA. We systematically evaluated the importance of each of the last ten amino acid residues in the basic, carboxy-terminal tail of yeast rpS14 for binding to RNA, by mutating each to alanine. Mutations in nine of these residues decreased binding of rpS14 to one or both of its RNA ligands. In addition, we examined the importance of four structural motifs in helix 23 of 18S rRNA for binding to rpS14. Mutations that altered either the terminal loop, the G-U base-pair closing the terminal loop, or the internal loop affected binding of rpS14 to helix 23.
Collapse
Affiliation(s)
- Pamela Antúnez de Mayolo
- Department of Biological Sciences, Carnegie Mellon University, 616 Mellon Institute, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
17
|
Mears JA, Cannone JJ, Stagg SM, Gutell RR, Agrawal RK, Harvey SC. Modeling a minimal ribosome based on comparative sequence analysis. J Mol Biol 2002; 321:215-34. [PMID: 12144780 DOI: 10.1016/s0022-2836(02)00568-5] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have determined the three-dimensional organization of ribosomal RNAs and proteins essential for minimal ribosome function. Comparative sequence analysis identifies regions of the ribosome that have been evolutionarily conserved, and the spatial organization of conserved domains is determined by mapping these onto structures of the 30S and 50S subunits determined by X-ray crystallography. Several functional domains of the ribosome are conserved in their three-dimensional organization in the Archaea, Bacteria, Eucaryotic nuclear, mitochondria and chloroplast ribosomes. In contrast, other regions from both subunits have shifted their position in three-dimensional space during evolution, including the L11 binding domain and the alpha-sarcin-ricin loop (SRL). We examined conserved bridge interactions between the two ribosomal subunits, giving an indication of which contacts are more significant. The tRNA contacts that are conserved were also determined, highlighting functional interactions as the tRNA moves through the ribosome during protein synthesis. To augment these studies of a large collection of comparative structural models sampled from all major branches on the phylogenetic tree, Caenorhabditis elegans mitochondrial rRNA is considered individually because it is among the smallest rRNA sequences known. The C.elegans model supports the large collection of comparative structure models while providing insight into the evolution of mitochondrial ribosomes.
Collapse
Affiliation(s)
- Jason A Mears
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35295-0005, USA
| | | | | | | | | | | |
Collapse
|
18
|
Bélanger F, Léger M, Saraiya AA, Cunningham PR, Brakier-Gingras L. Functional studies of the 900 tetraloop capping helix 27 of 16S ribosomal RNA. J Mol Biol 2002; 320:979-89. [PMID: 12126619 DOI: 10.1016/s0022-2836(02)00550-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The 900 tetraloop (positions 898-901) of Escherichia coli 16S rRNA caps helix 27, which is involved in a conformational switch crucial for the decoding function of the ribosome. This tetraloop forms a GNRA motif involved in intramolecular RNA-RNA interactions with its receptor in helix 24 of 16S rRNA. It is involved also in an intersubunit bridge, via an interaction with helix 67 in domain IV of 23S rRNA. Using a specialized ribosome system and an instant-evolution procedure, the four nucleotides of this loop were randomized and 15 functional mutants were selected in vivo. Positions 899 and 900, responsible for most of the tetraloop/receptor interactions, were found to be the most critical for ribosome activity. Functional studies showed that mutations in the 900 tetraloop impair subunit association and decrease translational fidelity. Computer modeling of the mutations allows correlation of the effect of mutations with perturbations of the tetraloop/receptor interactions.
Collapse
Affiliation(s)
- François Bélanger
- Département de Biochimie, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
19
|
Abstract
A series of DNA heptadecamers containing the DNA analogues of RNA E-like 5'-d(GXA)/(AYG)-5' motifs (X/Y is complementary T/A, A/T, C/G, or G/C pair) were studied using nuclear magnetic resonance (NMR) methodology and distance geometry (DG)/molecular dynamics (MD) approaches. Such oligomers reveal excellent resolution in NMR spectra and exhibit many unusual nuclear Overhauser effects (NOEs) that allow for good characterization of an unusual zipper-like conformation with zipper-like Watson-Crick base-pairs; the potential canonical X.Y H-bonding is not present, and the central X/Y pairs are transformed instead into inter-strand stacks that are bracketed by sheared G.A base-pairs. Such phenomenal structural change is brought about mainly through two backbone torsional angle adjustments, i.e. delta from C2'-endo to C3'-endo for the sugar puckers of unpaired residues and gamma from gauche(+) to trans for the following 3'-adenosine residues. Such motifs are analogous to the previously studied (GGA)(2) motif presumably present in the human centromeric (TGGAA)(n) tandem repeat sequence. The novel zipper-like motifs are only 4-7 deg. C less stable than the (GGA)(2) motif, suggesting that inter-strand base stacking plays an important role in stabilizing unusual nucleic acid structures. The discovery that canonical Watson-Crick G.C or A.T hydrogen-bonded pairs can be transformed into stacking pairs greatly increases the repertoire for unusual nucleic acid structural motifs.
Collapse
Affiliation(s)
- S H Chou
- Institute of Biochemistry, National Chung-Hsing University, Taichung 40227, Taiwan.
| | | |
Collapse
|
20
|
Morosyuk SV, Cunningham PR, SantaLucia J. Structure and function of the conserved 690 hairpin in Escherichia coli 16 S ribosomal RNA. II. NMR solution structure. J Mol Biol 2001; 307:197-211. [PMID: 11243814 DOI: 10.1006/jmbi.2000.4431] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The solution structure of the conserved 690 hairpin from Escherichia coli 16 S rRNA was determined by NMR spectroscopy. The 690 loop is located at the surface of the 30 S subunit in the platform region and has been implicated in interactions with P-site bound tRNA, E-site mRNA, S11 binding, IF3 binding, and in RNA-RNA interactions with the 790 loop of 16 S rRNA and domain IV of 23 S rRNA. The structure reveals a novel sheared type G690.U697 base-pair with a single hydrogen bond from the G690 amino to U697-04. G691 and A696 also form a sheared pair and U692 forms a U-turn with an H-bond to the A695 non-bridging phosphate oxygen. The sheared pairs and U-turn result in the continuous single-stranded stacking of five residues from 6693 to U697 with their Watson-Crick functional groups exposed in the minor groove. The overall fold of the 690 hairpin is similar to the anticodon loop of tRNA. The structure provides an explanation for chemical protection patterns in the loop upon interaction with tRNA, the 50 S subunit, and S11. In vivo genetic studies demonstrate the functional importance of the motifs observed in the solution structure of the 690 hairpin.
Collapse
Affiliation(s)
- S V Morosyuk
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | | | | |
Collapse
|