Feng Y, Liu D, Wang J. Native-like partially folded conformations and folding process revealed in the N-terminal large fragments of staphylococcal nuclease: a study by NMR spectroscopy.
J Mol Biol 2003;
330:821-37. [PMID:
12850150 DOI:
10.1016/s0022-2836(03)00660-0]
[Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The N-terminal large fragments of staphylococcal nuclease (SNase), SNase110 (1-110 residues), SNase121 (1-121 residues), and SNase135 (1-135 residues), and the fragment mutants G88W110, G88W121, V66W110 and V66W121 were studied by heteronuclear multidimensional NMR spectroscopy. Ensembles of co-existent native-like partially folded and unfolded states were observed for fragments. The persistent native-like tertiary interaction drives fragments to be in partially folded states, which reveal native-like beta-barrel conformations. G88W and V66W mutations modulate the extent of inherent native-like tertiary interaction in fragment molecules, and in consequence, fragment mutants fold into native-like beta-subdomain conformations. In cooperation with the inherent tertiary interaction, 2 M TMAO (trimethylamine N-oxide) can promote the folding reaction of fragments through the changes of unfolding free energy, and a native-like beta-subdomain conformation is observed when the chain length contains 135 residues. Heterogeneous partially folded conformations of 1-121 and 1-135 fragments due to cis and trans X-prolyl bond of Lys116-Pro117 make a non-unique folding pathway of fragments. The folding reaction of fragments can be characterized as a hierarchical process.
Collapse