1
|
Šantak M, Matić Z. The Role of Nucleoprotein in Immunity to Human Negative-Stranded RNA Viruses—Not Just Another Brick in the Viral Nucleocapsid. Viruses 2022; 14:v14030521. [PMID: 35336928 PMCID: PMC8955406 DOI: 10.3390/v14030521] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 12/21/2022] Open
Abstract
Negative-stranded RNA viruses (NSVs) are important human pathogens, including emerging and reemerging viruses that cause respiratory, hemorrhagic and other severe illnesses. Vaccine design traditionally relies on the viral surface glycoproteins. However, surface glycoproteins rarely elicit effective long-term immunity due to high variability. Therefore, an alternative approach is to include conserved structural proteins such as nucleoprotein (NP). NP is engaged in myriad processes in the viral life cycle: coating and protection of viral RNA, regulation of transcription/replication processes and induction of immunosuppression of the host. A broad heterosubtypic T-cellular protection was ascribed very early to this protein. In contrast, the understanding of the humoral immunity to NP is very limited in spite of the high titer of non-neutralizing NP-specific antibodies raised upon natural infection or immunization. In this review, the data with important implications for the understanding of the role of NP in the immune response to human NSVs are revisited. Major implications of the elicited T-cell immune responses to NP are evaluated, and the possible multiple mechanisms of the neglected humoral response to NP are discussed. The intention of this review is to remind that NP is a very promising target for the development of future vaccines.
Collapse
|
2
|
Virus neutralisation by intracellular antibodies. Semin Cell Dev Biol 2021; 126:108-116. [PMID: 34782185 DOI: 10.1016/j.semcdb.2021.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/22/2022]
Abstract
For decades antibodies were largely thought to provide protection in extracellular spaces alone, mediating their effector functions by mechanisms such as entry-blocking, complement activation and phagocyte recruitment. However, a wealth of research has shown that antibodies are also capable of neutralising numerous viruses inside cells. Efficacy has now been demonstrated at virtually all intracellular stages of the viral life cycle. Antibodies can neutralise viruses in endosomes by blocking uncoating, fusion mechanisms, or new particle egress. Neutralisation can also occur in the cytosol via recruitment of the intracellular antibody receptor TRIM21. In addition to these direct neutralisation effects, recent research has shown that antibodies can mediate virus control indirectly by promoting MHC class I presentation and thereby increasing the CD8 T cell response. This provides valuable new insight into how non-neutralising antibodies can mediate potent protection in vivo. Overall, the importance of understanding the mechanisms of intracellular neutralisation by antibodies is highlighted by the ongoing need to develop new methods to control viruses. Using or inducing antibodies to block virus replication inside cells is now an innovative approach used by several vaccination and therapeutic strategies.
Collapse
|
3
|
Caddy S, Papa G, Borodavka A, Desselberger U. Rotavirus research: 2014-2020. Virus Res 2021; 304:198499. [PMID: 34224769 DOI: 10.1016/j.virusres.2021.198499] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 02/09/2023]
Abstract
Rotaviruses are major causes of acute gastroenteritis in infants and young children worldwide and also cause disease in the young of many other mammalian and of avian species. During the recent 5-6 years rotavirus research has benefitted in a major way from the establishment of plasmid only-based reverse genetics systems, the creation of human and other mammalian intestinal enteroids, and from the wide application of structural biology (cryo-electron microscopy, cryo-EM tomography) and complementary biophysical approaches. All of these have permitted to gain new insights into structure-function relationships of rotaviruses and their interactions with the host. This review follows different stages of the viral replication cycle and summarizes highlights of structure-function studies of rotavirus-encoded proteins (both structural and non-structural), molecular mechanisms of viral replication including involvement of cellular proteins and lipids, the spectrum of viral genomic and antigenic diversity, progress in understanding of innate and acquired immune responses, and further developments of prevention of rotavirus-associated disease.
Collapse
Affiliation(s)
- Sarah Caddy
- Cambridge Institute for Therapeutic Immunology and Infectious Disease Jeffery Cheah Biomedical Centre, Cambridge, CB2 0AW, UK.
| | - Guido Papa
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Alexander Borodavka
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK.
| | - Ulrich Desselberger
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| |
Collapse
|
4
|
Afchangi A, Latifi T, Jalilvand S, Marashi SM, Shoja Z. Combined use of lactic-acid-producing bacteria as probiotics and rotavirus vaccine candidates expressing virus-specific proteins. Arch Virol 2021; 166:995-1006. [PMID: 33533975 DOI: 10.1007/s00705-021-04964-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/03/2020] [Indexed: 12/24/2022]
Abstract
Due to the lower efficacy of currently approved live attenuated rotavirus (RV) vaccines in developing countries, a new approach to the development of safe mucosally administered live bacterial vectors is being considered, using probiotic bacteria as an efficient delivery platform for heterologous RV antigens. Lactic acid bacteria (LAB), which are considered food-grade bacteria and normal microbiota, have been utilized throughout history as probiotics and developed since the 1990s as a delivery system for recombinant heterologous proteins. Over the last decade, LAB have frequently been used as a platform for the delivery of various RV antigens to the mucosa. Given the appropriate safety profile for neonates and providing the benefits of probiotics, recombinant LAB-based vaccines could potentially address the need for a subunit RV vaccine. The present review focuses mainly on different recombinant LAB vaccine constructs for RV and their potential as an alternative recombinant vaccine against RV disease.
Collapse
Affiliation(s)
- Atefeh Afchangi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Latifi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Jalilvand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed Mahdi Marashi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zabihollah Shoja
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
5
|
Intracellular neutralisation of rotavirus by VP6-specific IgG. PLoS Pathog 2020; 16:e1008732. [PMID: 32750093 PMCID: PMC7428215 DOI: 10.1371/journal.ppat.1008732] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 08/14/2020] [Accepted: 06/22/2020] [Indexed: 02/02/2023] Open
Abstract
Rotavirus is a major cause of gastroenteritis in children, with infection typically inducing high levels of protective antibodies. Antibodies targeting the middle capsid protein VP6 are particularly abundant, and as VP6 is only exposed inside cells, neutralisation must be post-entry. However, while a system of poly immune globulin receptor (pIgR) transcytosis has been proposed for anti-VP6 IgAs, the mechanism by which VP6-specific IgG mediates protection remains less clear. We have developed an intracellular neutralisation assay to examine how antibodies neutralise rotavirus inside cells, enabling comparison between IgG and IgA isotypes. Unexpectedly we found that neutralisation by VP6-specific IgG was much more efficient than by VP6-specific IgA. This observation was highly dependent on the activity of the cytosolic antibody receptor TRIM21 and was confirmed using an in vivo model of murine rotavirus infection. Furthermore, mice deficient in only IgG and not other antibody isotypes had a serious deficit in intracellular antibody-mediated protection. The finding that VP6-specific IgG protect mice against rotavirus infection has important implications for rotavirus vaccination. Current assays determine protection in humans predominantly by measuring rotavirus-specific IgA titres. Measurements of VP6-specific IgG may add to existing mechanistic correlates of protection.
Collapse
|
6
|
Heinimäki S, Malm M, Vesikari T, Blazevic V. Intradermal and intranasal immunizations with oligomeric middle layer rotavirus VP6 induce Th1, Th2 and Th17 T cell subsets and CD4 + T lymphocytes with cytotoxic potential. Antiviral Res 2018; 157:1-8. [DOI: 10.1016/j.antiviral.2018.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/09/2018] [Accepted: 06/19/2018] [Indexed: 12/26/2022]
|
7
|
Veesler D, Kearney BM, Johnson JE. Integration of X-ray crystallography and electron cryo-microscopy in the analysis of virus structure and function. CRYSTALLOGR REV 2015. [DOI: 10.1080/0889311x.2015.1038530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Jalilvand S, Marashi SM, Shoja Z. Rotavirus VP6 preparations as a non-replicating vaccine candidates. Vaccine 2015; 33:3281-7. [PMID: 26021725 DOI: 10.1016/j.vaccine.2015.05.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/05/2015] [Accepted: 05/13/2015] [Indexed: 01/03/2023]
Abstract
Rotavirus (RV) structural proteins VP4 and VP7, located on the surface of viral particles, elicit neutralizing antibodies (Abs) and are therefore considered to be important components of RV vaccines. However, despite inducing neutralizing Abs, limits of cross-neutralizing activity and lack of full correlation with protection limit the usefulness of these proteins as protective agents against RV disease. VP6 protein, which forms the middle layer of RV particles, is discussed as an alternative vaccine candidate since it can induce cross-protective immune responses against different RV strains although the Ab raised is not neutralizing. This report reviews different functions of VP6 that can lead to considering it as an alternative vaccine against RV disease.
Collapse
Affiliation(s)
- Somayeh Jalilvand
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed Mahdi Marashi
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
9
|
Correlates of protection against human rotavirus disease and the factors influencing protection in low-income settings. Mucosal Immunol 2015; 8:1-17. [PMID: 25465100 DOI: 10.1038/mi.2014.114] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 10/16/2014] [Indexed: 02/04/2023]
Abstract
Rotaviruses (RV) are the leading cause of gastroenteritis in infants and children worldwide and are associated with high mortality predominately in low-income settings. The virus is classified into G and P serotypes and further into P genotypes based on differences in the surface-exposed proteins VP7 and VP4, respectively. Infection results in a variable level of protection from subsequent reinfection and disease. This protection is predominantly homotypic in some settings, whereas broader heterotypic protection is reported in other cohorts. Two antigenically distinct oral RV vaccines are licensed and are being rolled out widely, including in resource-poor setting, with funding provided by the GAVI alliance. First is a monovalent vaccine derived from a live-attenuated human RV strain, whereas the second is a pentavalent bovine-human reassortment vaccine. Both vaccines are highly efficacious in high-income settings, but greatly reduced levels of protection are reported in low-income countries. Here, the current challenges facing mucosal immunologists and vaccinologists aiming to define immunological correlates and to understand the variable levels of protection conferred by these vaccines in humans is considered. Such understanding is critical to maximize the public health impact of the current vaccines and also to the development of the next generation of RV vaccines, which are needed.
Collapse
|
10
|
Abstract
ABSTRACT
Antibodies can impact pathogens in the presence or in the absence of effector cells or effector molecules such as complement, and experiments can often sort out with precision the mechanisms by which an antibody inhibits a pathogen
in vitro
. In addition,
in vivo
models, particularly those engineered to knock in or knock out effector cells or effector molecules, are excellent tools for understanding antibody functions. However, it is highly likely that multiple antibody functions occur simultaneously or sequentially in the presence of an infecting organism
in vivo
. The most critical incentive for measuring antibody functions is to provide a basis for vaccine development and for the development of therapeutic antibodies. In this respect, some functions, such as virus neutralization, serve to inhibit the acquisition of a pathogen or limit its pathogenesis. However, antibodies can also enhance replication or contribute to pathogenesis. This review emphasizes those antibody functions that are potentially beneficial to the host. In addition, this review will focus on the effects of antibodies on organisms themselves, rather than on the toxins the organisms may produce.
Collapse
|
11
|
Desselberger U, Richards J, Tchertanov L, Lepault J, Lever A, Burrone O, Cohen J. Further characterisation of rotavirus cores: Ss(+)RNAs can be packaged in vitro but packaging lacks sequence specificity. Virus Res 2013; 178:252-63. [PMID: 24091366 PMCID: PMC3854842 DOI: 10.1016/j.virusres.2013.09.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/12/2013] [Accepted: 09/23/2013] [Indexed: 12/15/2022]
Abstract
Rotavirus (RV) cores were released from double-layered particles (DLPs) by high concentrations of CaCl2, purified and 'opened' by treatment with EDTA or EGTA. Under appropriate in vitro conditions DLPs have been shown to have transcriptase and 'open cores' replicase activity. Furthermore, it has been demonstrated that transcriptase activity and infectivity of native cores can be restored by transcapsidation with VP6, VP7 and VP4. The missing link for particle reconstitution in vitro has been the manipulation of 'open cores' to become functionally active cores again. The experiments described here were undertaken with the aim of exploring packaging of RV RNAs into opened cores in vitro. Rotavirus cores were opened by approximately 200μM EGTA, leading to the release of genomic dsRNA. Conversely, RV cores were found to be stable in the presence of minimum concentrations of Ca(2+), Mg(2+), spermidine(3+) and cobalthexamine(3+) of between 40 and 300 μM. Aggregates of purified cores were resolved in the presence of 0.3mM deoxycholate (minimum concentration). Core shells opened with EGTA were reconstituted by the addition of di- or trivalent cations within 2 min of the opening procedure. Addition of purified, baculovirus recombinant-expressed VP6 to native and reconstituted cores led to the formation of DLPs or DLP-like particles, which upon transfection into MA104 cells were infectious. The rescued infectivity likely originated in part from unopened and in part from reconstituted cores. Radiolabelled RV (+) ssRNAs could be packaged into reconstituted cores and DLPs, as indicated by resistance to RNase I digestion. The packaging reaction was, however, not RV RNA sequence-specific, since unrelated ssRNAs, such as those transcribed from HIV-2 cDNAs, were also packaged. The kinetics of packaging of homologous and heterologous RNAs were similar, as evidenced by competitive packaging assays. None of the packaged in vitro engineered RNA segments has so far been rescued into infectious virus.
Collapse
Affiliation(s)
- Ulrich Desselberger
- Virologie Moléculaire et Structurale, UMR 2472 du CNRS, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette Cédex, France; Molecular Immunology Group, International Centre for Genetic Engineering, Trieste, Italy; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| | | | | | | | | | | | | |
Collapse
|
12
|
Hertel PM, Crawford SE, Bessard BC, Estes MK. Prevention of cholestasis in the murine rotavirus-induced biliary atresia model using passive immunization and nonreplicating virus-like particles. Vaccine 2013; 31:5778-84. [PMID: 23887039 DOI: 10.1016/j.vaccine.2013.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 06/28/2013] [Accepted: 07/10/2013] [Indexed: 12/11/2022]
Abstract
Biliary atresia (BA) is a neonatal cholangiopathy of unknown etiology that results in obliteration of bile ducts and is the primary indication for liver transplant in children. A murine model of BA, which involves infecting newborn mice with rhesus rotavirus (RRV) and leads to development of an obstructive cholangiopathy, has provided a model to assess measures to prevent and treat BA. We used this mouse model of RRV-induced BA to determine if passive immunization of pups using maternal immunization [injection of dams with non-replicating rotavirus (RV) virus-like particles (VLPs) or live RRV] or injection of pups with RV immune serum would protect these RRV-infected neonates from developing BA (measured using cholestasis). Parenteral immunization of mouse dams with two formulations of VLPs (containing viral proteins 2/6 or 2/6/7) resulted in a significant increase in serum RV antibody, and pups born to these immunized dams were protected from developing cholestasis following neonatal infection with RRV. Serum RV-specific antibody with titers of ≥400-800 in dams significantly protected pups from developing cholestasis, and a significant trend of increasing protection with high titers was observed (p<0.0001). Cholestatic pups had lower levels of RV serum antibody and higher serum (p<0.01) and liver (p<0.05) RV antigen compared to healthy pups. Passive transfer of low-titer (1600; p<0.05) or high-titer (25,600; p<0.01) RV immune serum to neonatal pups prior to RRV infection also protected them from developing cholestasis. Together, these findings indicate that passively acquired, neutralizing or non-neutralizing RV serum antibody attenuates viral replication and protects pups against disease in the RRV BA model. Early reduction of viral load by clearance with RV-specific antibody is likely a critical determinant of disease in this model.
Collapse
Affiliation(s)
- Paula M Hertel
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
13
|
Rotavirus mRNAS are released by transcript-specific channels in the double-layered viral capsid. Proc Natl Acad Sci U S A 2013; 110:12042-7. [PMID: 23818620 DOI: 10.1073/pnas.1220345110] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Rotaviruses are the single most common cause of fatal and severe childhood diarrheal illness worldwide (>125 million cases annually). Rotavirus shares structural and functional features with many viruses, such as the presence of segmented double-stranded RNA genomes selectively and tightly packed with a conserved number of transcription complexes in icosahedral capsids. Nascent transcripts exit the capsid through 12 channels, but it is unknown whether these channels specialize in specific transcripts or simply act as general exit conduits; a detailed description of this process is needed for understanding viral replication and genomic organization. To this end, we developed a single molecule assay for capturing and identifying transcripts extruded from transcriptionally active viral particles. Our findings support a model in which each channel specializes in extruding transcripts of a specific segment that in turn is linked to a single transcription complex. Our approach can be extended to study other viruses and transcription systems.
Collapse
|
14
|
Aiyegbo MS, Sapparapu G, Spiller BW, Eli IM, Williams DR, Kim R, Lee DE, Liu T, Li S, Woods VL, Nannemann DP, Meiler J, Stewart PL, Crowe JE. Human rotavirus VP6-specific antibodies mediate intracellular neutralization by binding to a quaternary structure in the transcriptional pore. PLoS One 2013; 8:e61101. [PMID: 23671563 PMCID: PMC3650007 DOI: 10.1371/journal.pone.0061101] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 03/05/2013] [Indexed: 11/17/2022] Open
Abstract
Several live attenuated rotavirus (RV) vaccines have been licensed, but the mechanisms of protective immunity are still poorly understood. The most frequent human B cell response is directed to the internal protein VP6 on the surface of double-layered particles, which is normally exposed only in the intracellular environment. Here, we show that the canonical VP6 antibodies secreted by humans bind to such particles and inhibit viral transcription. Polymeric IgA RV antibodies mediated an inhibitory effect against virus replication inside cells during IgA transcytosis. We defined the recognition site on VP6 as a quaternary epitope containing a high density of charged residues. RV human mAbs appear to bind to a negatively-charged patch on the surface of the Type I channel in the transcriptionally active particle, and they sterically block the channel. This unique mucosal mechanism of viral neutralization, which is not apparent from conventional immunoassays, may contribute significantly to human immunity to RV.
Collapse
Affiliation(s)
- Mohammed S Aiyegbo
- Department of Pathology, Microbiology and Immunology, Vanderbilt Medical Center, Nashville, Tennessee, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
De Lorenzo G, Eichwald C, Schraner EM, Nicolin V, Bortul R, Mano M, Burrone OR, Arnoldi F. Production of in vivo-biotinylated rotavirus particles. J Gen Virol 2012; 93:1474-1482. [DOI: 10.1099/vir.0.040089-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although inserting exogenous viral genome segments into rotavirus particles remains a hard challenge, this study describes the in vivo incorporation of a recombinant viral capsid protein (VP6) into newly assembled rotavirus particles. In vivo biotinylation technology was exploited to biotinylate a recombinant VP6 protein fused to a 15 aa biotin-acceptor peptide (BAP) by the bacterial biotin ligase BirA contextually co-expressed in mammalian cells. To avoid toxicity of VP6 overexpression, a stable HEK293 cell line was constructed with tetracycline-inducible expression of VP6–BAP and constitutive expression of BirA. Following tetracycline induction and rotavirus infection, VP6–BAP was biotinylated, recruited into viroplasms and incorporated into newly assembled virions. The biotin molecules in the capsid allowed the use of streptavidin-coated magnetic beads as a purification technique instead of CsCl gradient ultracentrifugation. Following transfection, double-layered particles attached to beads were able to induce viroplasm formation and to generate infective viral progeny.
Collapse
Affiliation(s)
- G. De Lorenzo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy
| | - C. Eichwald
- Institute of Virology, University of Zürich, Winterthurerstrasse 260, CH-8057 Zürich, Switzerland
| | - E. M. Schraner
- Institute of Veterinary Anatomy, University of Zürich, Winterthurerstrasse 260, CH-8057 Zürich, Switzerland
- Institute of Virology, University of Zürich, Winterthurerstrasse 260, CH-8057 Zürich, Switzerland
| | - V. Nicolin
- Dipartimento Universitario Clinico di Scienze Mediche, Chirurgiche e della Salute, Strada di Fiume 447, 34149 Trieste, Italy
| | - R. Bortul
- Dipartimento Universitario Clinico di Scienze Mediche, Chirurgiche e della Salute, Strada di Fiume 447, 34149 Trieste, Italy
| | - M. Mano
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy
| | - O. R. Burrone
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy
| | - F. Arnoldi
- Dipartimento Universitario Clinico di Scienze Mediche, Chirurgiche e della Salute, Strada di Fiume 447, 34149 Trieste, Italy
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy
| |
Collapse
|
16
|
Trask SD, Ogden KM, Patton JT. Interactions among capsid proteins orchestrate rotavirus particle functions. Curr Opin Virol 2012; 2:373-9. [PMID: 22595300 DOI: 10.1016/j.coviro.2012.04.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 04/23/2012] [Accepted: 04/24/2012] [Indexed: 11/16/2022]
Abstract
Rotaviruses are members of the Reoviridae family of non-enveloped viruses and important etiologic agents of acute gastroenteritis in infants and young children. In recent years, high-resolution structures of triple-layered rotavirus virions and the constituent proteins have provided valuable insights into functions. Of note, structural studies have revealed the position of the viral RNA-dependent RNA polymerase, VP1, within the inner capsid, which in turn provides clues about the location of the viral capping machinery and the route of viral transcript egress. Mechanisms by which the viral spike protein, VP4, mediates receptor binding and membrane penetration have also been aided by high-resolution structural studies. Future work may serve to fill the remaining gaps in understanding of rotavirus particle structure and function.
Collapse
Affiliation(s)
- Shane D Trask
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-8026, USA
| | | | | |
Collapse
|
17
|
Structural insights into the coupling of virion assembly and rotavirus replication. Nat Rev Microbiol 2012; 10:165-77. [PMID: 22266782 DOI: 10.1038/nrmicro2673] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Viral replication is rapid and robust, but it is far from a chaotic process. Instead, successful production of infectious progeny requires that events occur in the correct place and at the correct time. Rotaviruses (segmented double-stranded RNA viruses of the Reoviridae family) seem to govern their replication through ordered disassembly and assembly of a triple-layered icosahedral capsid. In recent years, high-resolution structural data have provided unprecedented insight into these events. In this Review, we explore the current understanding of rotavirus replication and how it compares to replication of other Reoviridae family members.
Collapse
|
18
|
Desselberger U. Towards achieving a high-resolution structure of rotavirus particles. Future Virol 2009. [DOI: 10.2217/fvl.09.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Evaluation of: Aoki ST, Settembre EC, Trask SD, Greenberg HB, Harrison SC, Dormitzer PR: Structure of rotavirus outer-layer protein VP7 bound with a neutralizing Fab. Science 324 (5993), 1444–1447 (2009). The determination of the molecular structure of the trimer of VP7, one of the outer layer proteins of rotaviruses, has significantly contributed to the knowledge of the overall structure of rotavirus particles. The molecular mechanism of rotavirus neutralization has been clarified and a topological explanation been found for the emergence of antibody escape mutants. Furthermore, translational work was enabled by engineering VP7 mutants, which form stable trimers by means of novel disulfide bridges linking the different subunits together; such a construct could become an attractive and safe vaccine candidate.
Collapse
Affiliation(s)
- Ulrich Desselberger
- University of Cambridge, Department of Medicine, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK
| |
Collapse
|
19
|
Moreira IS, Fernandes PA, Ramos MJ. Protein-protein docking dealing with the unknown. J Comput Chem 2009; 31:317-42. [DOI: 10.1002/jcc.21276] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
20
|
Kallewaard NL, McKinney BA, Gu Y, Chen A, Prasad BVV, Crowe JE. Functional Maturation of the Human Antibody Response to Rotavirus. THE JOURNAL OF IMMUNOLOGY 2008; 180:3980-9. [DOI: 10.4049/jimmunol.180.6.3980] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Geometric mismatches within the concentric layers of rotavirus particles: a potential regulatory switch of viral particle transcription activity. J Virol 2008; 82:2844-52. [PMID: 18184711 DOI: 10.1128/jvi.02268-07] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rotaviruses are prototypical double-stranded RNA viruses whose triple-layered icosahedral capsid constitutes transcriptional machinery activated by the release of the external layer. To understand the molecular basis of this activation, we studied the structural interplay between the three capsid layers by electron cryo-microscopy and digital image processing. Two viral particles and four virus-like particles containing various combinations of inner (VP2)-, middle (VP6)-, and outer (VP7)-layer proteins were studied. We observed that the absence of the VP2 layer increases the particle diameter and changes the type of quasi-equivalent icosahedral symmetry, as described by the shift in triangulation number (T) of the VP6 layer (from T = 13 to T = 19 or more). By fitting X-ray models of VP6 into each reconstruction, we determined the quasi-atomic structures of the middle layers. These models showed that the VP6 lattices, i.e., curvature and trimer contacts, are characteristic of the particle composition. The different functional states of VP6 thus appear as being characterized by trimers having similar conformations but establishing different intertrimeric contacts. Remarkably, the external protein VP7 reorients the VP6 trimers located around the fivefold axes of the icosahedral capsid, thereby shrinking the channel through which mRNA exits the transcribing rotavirus particle. We conclude that the constraints arising from the different geometries imposed by the external and internal layers of the rotavirus capsid constitute a potential switch regulating the transcription activity of the viral particles.
Collapse
|
22
|
Soler E, Parez N, Passet B, Dubuquoy C, Riffault S, Pillot M, Houdebine LM, Schwartz-Cornil I. Recombinant rotavirus inner core proteins produced in the milk of transgenic rabbits confer a high level of protection after intrarectal delivery. Vaccine 2007; 25:6373-80. [PMID: 17629366 DOI: 10.1016/j.vaccine.2007.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 05/18/2007] [Accepted: 06/06/2007] [Indexed: 11/20/2022]
Abstract
Development of a safe, cheap and efficient vaccine against rotavirus is important to reduce the morbidity and mortality associated with gastroenteritis in infants worldwide. High quantities of two inner core rotavirus-derived proteins (VP2 and a nonglycosylated mutant VP6 (VP6(NG)) from the RF81 bovine strain) were produced in the milk of transgenic rabbits. We show here that rectal administration of partially purified milk-derived VP2 and VP6(NG) proteins with the detoxified LT(R192G) adjuvant almost completely prevented fecal shedding induced by a highly infectious challenge in mice with the murine ECw strain. The vaccine generated rotavirus-specific fecal secretory IgA, systemic IgG and IgA and a rotavirus-specific Th1 response. We thus demonstrate in clinically feasible settings that mass production of viral protein in transgenic milk is a promising way to generate subunit vaccine against rotavirus.
Collapse
Affiliation(s)
- Eric Soler
- Biologie du Développement et de la Reproduction, Domaine de Vilvert, 78352 Jouy-en-Josas Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Pesavento JB, Crawford SE, Estes MK, Prasad BVV. Rotavirus proteins: structure and assembly. Curr Top Microbiol Immunol 2006; 309:189-219. [PMID: 16913048 DOI: 10.1007/3-540-30773-7_7] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Rotavirus is a major pathogen of infantile gastroenteritis. It is a large and complex virus with a multilayered capsid organization that integrates the determinants of host specificity, cell entry, and the enzymatic functions necessary for endogenous transcription of the genome that consists of 11 dsRNA segments. These segments encode six structural and six nonstructural proteins. In the last few years, there has been substantial progress in our understanding of both the structural and functional aspects of a variety of molecular processes involved in the replication of this virus. Studies leading to this progress using of a variety of structural and biochemical techniques including the recent application of RNA interference technology have uncovered several unique and intriguing features related to viral morphogenesis. This review focuses on our current understanding of the structural basis of the molecular processes that govern the replication of rotavirus.
Collapse
Affiliation(s)
- J B Pesavento
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
24
|
Law D, Hotchko M, Ten Eyck L. Progress in computation and amide hydrogen exchange for prediction of protein-protein complexes. Proteins 2006; 60:302-7. [PMID: 15981246 DOI: 10.1002/prot.20574] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The macromolecular docking problem that must be solved for experimental biologists is prediction of the structures of complexes for which the components are known or reliably modeled in the unbound state, but the structure of the complex is unknown. The current state of the art in macromolecular docking is such that solving this problem usually requires supplementary experimental chemical and/or biological information to evaluate computational predictions. Amide (1)H/(2)H exchange measured by mass spectroscopy is a promising approach for obtaining such information, because it can reveal interfacial regions of each member of the complex and identify regions of conformational flexibility in the structure. In a previous article (Anand et al., Proc Natl Acad Sci USA 2003;100:13264-13269), we used (1)H/(2)H exchange data to predict the structure of a complex between regulatory and catalytic subunits of protein kinase A. Comparison of the prediction with a recent crystal structure determination (Kim et al., Science 2005;307:690-696) showed large conformational change in the regulatory subunit on formation of the complex. Analysis of the prediction, previous CAPRI results, novel data processing methods for the (1)H/(2)H exchange data, and new fragment docking computations give grounds for cautious optimism that this method can be useful even in cases of substantial conformational change.
Collapse
Affiliation(s)
- Dennis Law
- University of California, San Diego, Department of Chemistry and Biochemistry, La Jolla, California 92093-0505, USA
| | | | | |
Collapse
|
25
|
Carter P, Lesk VI, Islam SA, Sternberg MJE. Protein-protein docking using 3D-Dock in rounds 3, 4, and 5 of CAPRI. Proteins 2006; 60:281-8. [PMID: 15981271 DOI: 10.1002/prot.20571] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In rounds 3-5 of CAPRI, the community-wide experiment on the comparative evaluation of protein-protein docking for structure prediction, we applied the 3D-Dock software package to predict the atomic structures of nine biophysical interactions. This approach starts with an initial grid-based shape complementarity search. The product of this is a large number of potential interacting conformations that are subsequently ranked by interface residue propensities and interaction energies. Refinement through detailed energetics and optimization of side-chain positions using a rotamer library is also performed. For rounds 3, 4, and 5 of the CAPRI evaluation, where possible, we clustered functional residues on the surfaces of the monomers as an indication of binding sites, using sequence based evolutionary conservations. In certain targets this provided a very useful tool for identifying the areas of interaction. During round 5, we also applied the techniques of side-chain trimming and geometrical clustering described in the literature. Of the nine target complexes in rounds 3-5, we predicted conformations that contained at least some correct contact residues for seven of these systems. For two of the targets, we submitted predictions that were considered as medium-quality. These were a nidogen-laminin complex for target 8 (T08) and a serine-threonine phosphatase bound to a targeting subunit (T14). For a further three target systems, we produced models that were rated as acceptable predictions.
Collapse
Affiliation(s)
- Phil Carter
- Department of Biological Sciences, Imperial College, London, United Kingdom
| | | | | | | |
Collapse
|
26
|
Greig SL, Berriman JA, O'Brien JA, Taylor JA, Bellamy AR, Yeager MJ, Mitra AK. Structural determinants of rotavirus subgroup specificity mapped by cryo-electron microscopy. J Mol Biol 2005; 356:209-21. [PMID: 16359700 DOI: 10.1016/j.jmb.2005.11.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 11/10/2005] [Accepted: 11/15/2005] [Indexed: 11/30/2022]
Abstract
The rotavirus double-layered particle (DLP) is a molecular machine that transcribes 11 genomic segments of double-stranded RNA into full-length mRNA segments during viral replication. DLPs from the human Wa strain of virus, belonging to subgroup II (SG II), possess a significantly reduced level of transcriptase activity compared to bovine UK DLPs that belong to subgroup I (SG I). Cryo-electron microscopy and icosahedral image analysis was used to define the structural basis for this difference in transcriptase activity and to derive three-dimensional density maps of bovine UK and human Wa DLPs at 26 angstroms and 28 angstroms resolution, respectively. The two rotavirus strains had the same diameter, T = 13 l icosahedral lattice symmetry and size of the VP6 trimers on the surface of the DLPs. However, the Wa particles displayed a remarkable absence of VP6 trimers surrounding each 5-fold vertex position. To further explore these structural differences, three-dimensional reconstructions were generated of DLPs decorated with Fab fragments derived from subgroup-specific monoclonal antibodies. The X-ray structures of VP6 and a generic Fab fragment were then docked into the cryo-electron microscopy density maps, which allowed us to propose at "pseudo-atomic" resolution the locations of the amino acid residues defining the subgroup-specific epitopes. Our results demonstrate a correlation between the structure of the VP6 layer and the transcriptase activity of the particles, and suggest that the stability of VP6 trimers, specifically those at the icosahedral 5-fold axes, may be critical for mRNA synthesis. Thus, subgroup specificity of rotavirus may reflect differences in the architecture of the double-layered particle, with resultant consequences for viral mRNA synthesis.
Collapse
Affiliation(s)
- Sarah L Greig
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
The Critical Assessment of PRedicted Interactions (CAPRI) experiment was designed in 2000 to test protein docking algorithms in blind predictions of the structure of protein-protein complexes. In four years, 17 complexes offered by crystallographers as targets prior to publication, have been subjected to structure prediction by docking their two components. Models of these complexes were submitted by predictor groups and assessed by comparing their geometry to the X-ray structure and by evaluating the quality of the prediction of the regions of interaction and of the pair wise residue contacts. Prediction was successful on 12 of the 17 targets, most of the failures being due to large conformation changes that the algorithms could not cope with. Progress in the prediction quality observed in four years indicates that the experiment is a powerful incentive to develop new procedures that allow for flexibility during docking and incorporate nonstructural information. We therefore call upon structural biologists who study protein-protein complexes to provide targets for further rounds of CAPRI predictions.
Collapse
Affiliation(s)
- Joël Janin
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, 91198-Gif-sur-Yvette, France.
| |
Collapse
|
28
|
Campagna M, Eichwald C, Vascotto F, Burrone OR. RNA interference of rotavirus segment 11 mRNA reveals the essential role of NSP5 in the virus replicative cycle. J Gen Virol 2005; 86:1481-1487. [PMID: 15831961 DOI: 10.1099/vir.0.80598-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rotavirus genomes contain 11 double-stranded (ds) RNA segments. Genome segment 11 encodes the non-structural protein NSP5 and, in some strains, also NSP6. NSP5 is produced soon after viral infection and localizes in cytoplasmic viroplasms, where virus replication takes place. RNA interference by small interfering (si) RNAs targeted to genome segment 11 mRNA of two different strains blocked production of NSP5 in a strain-specific manner, with a strong effect on the overall replicative cycle: inhibition of viroplasm formation, decreased production of other structural and non-structural proteins, synthesis of viral genomic dsRNA and production of infectious particles. These effects were shown not to be due to inhibition of NSP6. The results obtained strengthen the importance of secondary transcription/translation in rotavirus replication and demonstrate that NSP5 is essential for the assembly of viroplasms and virus replication.
Collapse
Affiliation(s)
- Michela Campagna
- International Centre for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, 34012 Trieste, Italy
| | - Catherine Eichwald
- International Centre for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, 34012 Trieste, Italy
| | - Fulvia Vascotto
- International Centre for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, 34012 Trieste, Italy
| | - Oscar R Burrone
- International Centre for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, 34012 Trieste, Italy
| |
Collapse
|
29
|
Caballero S, Abad FX, Loisy F, Le Guyader FS, Cohen J, Pintó RM, Bosch A. Rotavirus virus-like particles as surrogates in environmental persistence and inactivation studies. Appl Environ Microbiol 2004; 70:3904-9. [PMID: 15240262 PMCID: PMC444800 DOI: 10.1128/aem.70.7.3904-3909.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virus-like particles (VLPs) with the full-length VP2 and VP6 rotavirus capsid proteins, produced in the baculovirus expression system, have been evaluated as surrogates of human rotavirus in different environmental scenarios. Green fluorescent protein-labeled VLPs (GFP-VLPs) and particles enclosing a heterologous RNA (pseudoviruses), whose stability may be monitored by flow cytometry and antigen capture reverse transcription-PCR, respectively, were used. After 1 month in seawater at 20 degrees C, no significant differences were observed between the behaviors of GFP-VLPs and of infectious rotavirus, whereas pseudovirus particles showed a higher decay rate. In the presence of 1 mg of free chlorine (FC)/liter both tracers persisted longer in freshwater at 20 degrees C than infectious viruses, whereas in the presence of 0.2 mg of FC/liter no differences were observed between tracers and infectious rotavirus at short contact times. However, from 30 min of contact with FC onward, the decay of infectious rotavirus was higher than that of recombinant particles. The predicted Ct value for a 90% reduction of GFP-VLPs or pseudoviruses induces a 99.99% inactivation of infectious rotavirus. Both tracers were more resistant to UV light irradiation than infectious rotavirus in fresh and marine water. The effect of UV exposure was more pronounced on pseudovirus than in GFP-VLPs. In all types of water, the UV dose to induce a 90% reduction of pseudovirus ensures a 99.99% inactivation of infectious rotavirus. Recombinant virus surrogates open new possibilities for the systematic validation of virus removal practices in actual field situations where pathogenic agents cannot be introduced.
Collapse
Affiliation(s)
- Santiago Caballero
- Enteric Virus Laboratory, Department of Microbiology, University of Barcelona, Avda. Diagonal 645, 08028 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
30
|
Jayaram H, Estes MK, Prasad BVV. Emerging themes in rotavirus cell entry, genome organization, transcription and replication. Virus Res 2004; 101:67-81. [PMID: 15010218 DOI: 10.1016/j.virusres.2003.12.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rotaviruses, causative agents of gastroenteritis in young animals and humans, are large icosahedral viruses with a complex architecture. The double-stranded RNA (dsRNA) genome composed of 11 segments, which codes for 6 structural and 6 non-structural proteins, is enclosed within three concentric capsid layers. In addition to facilitating host-specific interactions, the design of the capsid architecture in rotaviruses as in other dsRNA viruses should also be conducive to the requirement of transcribing the enclosed genome segments repeatedly and simultaneously within the capsid interior. Several non-structural proteins facilitate the subsequent processes of genome replication and packaging. Electron cryomicroscopy studies of intact virions, recombinant virus-like particles, functional complexes, together with recent X-ray crystallographic studies on rotavirus proteins have provided structural insights into the capsid architecture, genome organization, antibody interaction, cell entry, trypsin-enhanced infectivity, endogenous transcription and replication. These studies underscore contrasting features and unifying themes between rotavirus and other dsRNA viruses.
Collapse
Affiliation(s)
- Hariharan Jayaram
- Program in Structural and Computational Biology and Molecular Biophysics, Houston, TX 77030, USA
| | | | | |
Collapse
|
31
|
Neumann E, Moser R, Snyers L, Blaas D, Hewat EA. A cellular receptor of human rhinovirus type 2, the very-low-density lipoprotein receptor, binds to two neighboring proteins of the viral capsid. J Virol 2003; 77:8504-11. [PMID: 12857919 PMCID: PMC165241 DOI: 10.1128/jvi.77.15.8504-8511.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The very-low-density lipoprotein receptor (VLDL-R) is a receptor for the minor-group human rhinoviruses (HRVs). Only two of the eight binding repeats of the VLDL-R bind to HRV2, and their footprints describe an annulus on the dome at each fivefold axis. By studying the complex formed between a selection of soluble fragments of the VLDL-R and HRV2, we demonstrate that it is the second and third repeats that bind. We also show that artificial concatemers of the same repeat can bind to HRV2 with the same footprint as that for the native receptor. In a 16-A-resolution cryoelectron microscopy map of HRV2 in complex with the VLDL-R, the individual repeats are defined. The third repeat is strongly bound to charged and polar residues of the HI and BC loops of viral protein 1 (VP1), while the second repeat is more weakly bound to the neighboring VP1. The footprint of the strongly bound third repeat extends down the north side of the canyon. Since the receptor molecule can bind to two adjacent copies of VP1, we suggest that the bound receptor "staples" the VP1s together and must be detached before release of the RNA can occur. When the receptor is bound to neighboring sites on HRV2, steric hindrance prevents binding of the second repeat.
Collapse
Affiliation(s)
- Emmanuelle Neumann
- Institut de Biologie Structurale Jean-Pierre Ebel, 38027 Grenoble, France
| | | | | | | | | |
Collapse
|
32
|
Méndez R, Leplae R, De Maria L, Wodak SJ. Assessment of blind predictions of protein-protein interactions: current status of docking methods. Proteins 2003; 52:51-67. [PMID: 12784368 DOI: 10.1002/prot.10393] [Citation(s) in RCA: 333] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The current status of docking procedures for predicting protein-protein interactions starting from their three-dimensional structure is assessed from a first major evaluation of blind predictions. This evaluation was performed as part of a communitywide experiment on Critical Assessment of PRedicted Interactions (CAPRI). Seven newly determined structures of protein-protein complexes were available as targets for this experiment. These were the complexes between a kinase and its protein substrate, between a T-cell receptor beta-chain and a superantigen, and five antigen-antibody complexes. For each target, the predictors were given the experimental structures of the free components, or of one free and one bound component in a random orientation. The structure of the complex was revealed only at the time of the evaluation. A total of 465 predictions submitted by 19 groups were evaluated. These groups used a wide range of algorithms and scoring functions, some of which were completely novel. The quality of the predicted interactions was evaluated by comparing residue-residue contacts and interface residues to those in the X-ray structures and by analyzing the fit of the ligand molecules (the smaller of the two proteins in the complex) or of interface residues only, in the predicted versus target complexes. A total of 14 groups produced predictions, ranking from acceptable to highly accurate for five of the seven targets. The use of available biochemical and biological information, and in one instance structural information, played a key role in achieving this result. It was essential for identifying the native binding modes for the five correctly predicted targets, including the kinase-substrate complex where the enzyme changes conformation on association. But it was also the cause for missing the correct solution for the two remaining unpredicted targets, which involve unexpected antigen-antibody binding modes. Overall, this analysis reveals genuine progress in docking procedures but also illustrates the remaining serious limitations and points out the need for better scoring functions and more effective ways for handling conformational flexibility.
Collapse
Affiliation(s)
- Raúl Méndez
- Service de Conformation de Macromolecules Biologiques, et Bioinformatique, Centre de Biologie Structurale et Bioinformatique, CP 263, BC6, Université Libre de Bruxelles, Bruxelles, Belgium
| | | | | | | |
Collapse
|
33
|
Abstract
The CAPRI Challenge is a blind test of protein-protein-docking algorithms that predict the complex structure from the crystal structures of the interacting proteins. We participated in both rounds of this blind test and submitted predictions for all seven targets, relying mainly on our Fast Fourier Transform based algorithm ZDOCK that combines shape complementarity, desolvation, and electrostatics. Our group made good predictions for three targets and had at least some success with three others. Implications of the treatment of prior biological information as well as contributions of manual inspection to docking predictions are also discussed.
Collapse
Affiliation(s)
- Rong Chen
- Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
34
|
Ben-Zeev E, Berchanski A, Heifetz A, Shapira B, Eisenstein M. Prediction of the unknown: inspiring experience with the CAPRI experiment. Proteins 2003; 52:41-6. [PMID: 12784366 DOI: 10.1002/prot.10392] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We submitted predictions for all seven targets in the CAPRI experiment. For four targets, our submitted models included acceptable, medium accuracy predictions of the structures of the complexes, and for a fifth target we identified the location of the binding site of one of the molecules. We used a weighted-geometric docking algorithm in which contacts involving specified parts of the surfaces of either one or both molecules were up-weighted or down-weighted. The weights were based on available structural and biochemical data or on sequence analyses. The weighted-geometric docking proved very useful for five targets, improving the complementarity scores and the ranks of the nearly correct solutions, as well as their statistical significance. In addition, the weighted-geometric docking promoted formation of clusters of similar solutions, which include more accurate predictions.
Collapse
Affiliation(s)
- Efrat Ben-Zeev
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | |
Collapse
|
35
|
Abstract
Recent large-scale studies of protein complexes in yeast have demonstrated that the wide majority of proteins exist in the cell as parts of multicomponent assemblies, mostly novel and of unknown function. The structural and functional analysis of these complexes should be a priority for structural biologists in coming years. In silico methods such as docking simulations, which may contribute to this analysis, are being tested in the CAPRI community-wide experiment, which assesses blind predictions of the structure of protein-protein complexes.
Collapse
Affiliation(s)
- Joël Janin
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, 91198 Gif-sur-Yvette, France.
| | | |
Collapse
|
36
|
Gilbert RJ, Grimes JM, Stuart DI. Hybrid vigor: hybrid methods in viral structure determination. ADVANCES IN PROTEIN CHEMISTRY 2003; 64:37-91. [PMID: 13677045 DOI: 10.1016/s0065-3233(03)01002-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Affiliation(s)
- Robert J Gilbert
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | | | | |
Collapse
|
37
|
Feng N, Lawton JA, Gilbert J, Kuklin N, Vo P, Prasad BVV, Greenberg HB. Inhibition of rotavirus replication by a non-neutralizing, rotavirus VP6-specific IgA mAb. J Clin Invest 2002; 109:1203-13. [PMID: 11994409 PMCID: PMC150959 DOI: 10.1172/jci14397] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Rotaviruses are the leading cause of severe diarrheal disease in young children. Intestinal mucosal IgA responses play a critical role in protective immunity against rotavirus reinfection. Rotaviruses consist of three concentric capsid layers surrounding a genome of 11 segments of double-stranded RNA. The outer layer proteins, VP4 and VP7, which are responsible for viral attachment and entry, are targets for protective neutralizing antibodies. However, IgA mAb's directed against the intermediate capsid protein VP6, which do not neutralize the virus, have also been shown to protect mice from rotavirus infection and clear chronic infection in SCID mice. We investigated whether the anti-VP6 IgA (7D9) mAb could inhibit rotavirus replication inside epithelial cells and found that 7D9 acted at an early stage of infection to neutralize rotavirus following antibody lipofection. Using electron cryomicroscopy, we determined the three-dimensional structure of the virus-antibody complex. The attachment of 7D9 IgA to VP6 introduces a conformational change in the VP6 trimer, rendering the particle transcriptionally incompetent and preventing the elongation of initiated transcripts. Based on these observations, we suggest that anti-VP6 IgA antibodies confers protection in vivo by inhibiting viral transcription at the start of the intracellular phase of the viral replication cycle.
Collapse
Affiliation(s)
- Ningguo Feng
- Department of Gastroenterology, Stanford University School of Medicine, Stanford, California 94304, USA
| | | | | | | | | | | | | |
Collapse
|