1
|
Tran HT, Wan MLY, Ambite I, Cavalera M, Grossi M, Háček J, Esmaeili P, Carneiro ANBM, Chaudhuri A, Ahmadi S, Svanborg C. BAMLET administration via drinking water inhibits intestinal tumor development and promotes long-term health. Sci Rep 2024; 14:3838. [PMID: 38360830 PMCID: PMC10869698 DOI: 10.1038/s41598-024-54040-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/07/2024] [Indexed: 02/17/2024] Open
Abstract
Though new targeted therapies for colorectal cancer, which progresses from local intestinal tumors to metastatic disease, are being developed, tumor specificity remains an important problem, and side effects a major concern. Here, we show that the protein-fatty acid complex BAMLET (bovine alpha-lactalbumin made lethal to tumor cells) can act as a peroral treatment for colorectal cancer. ApcMin/+ mice, which carry mutations relevant to hereditary and sporadic human colorectal cancer, that received BAMLET in the drinking water showed long-term protection against tumor development and decreased expression of tumor growth-, migration-, metastasis- and angiogenesis-related genes. BAMLET treatment via drinking water inhibited the Wnt/β-catenin and PD-1 signaling pathways and prolonged survival without evidence of toxicity. Systemic disease in the lungs, livers, spleens, and kidneys, which accompanied tumor progression, was inhibited by BAMLET treatment. The metabolic response to BAMLET included carbohydrate and lipid metabolism, which were inhibited in tumor prone ApcMin/+ mice and weakly regulated in C57BL/6 mice, suggesting potential health benefits of peroral BAMLET administration in addition to the potent antitumor effects. Together, these findings suggest that BAMLET administration in the drinking water maintains antitumor pressure by removing emergent cancer cells and reprogramming gene expression in intestinal and extra-intestinal tissues.
Collapse
Affiliation(s)
- Hien Thi Tran
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of Medicine, Lund University, Klinikgatan 28, 221 84, Lund, Sweden
| | - Murphy Lam Yim Wan
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of Medicine, Lund University, Klinikgatan 28, 221 84, Lund, Sweden
| | - Ines Ambite
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of Medicine, Lund University, Klinikgatan 28, 221 84, Lund, Sweden
| | - Michele Cavalera
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of Medicine, Lund University, Klinikgatan 28, 221 84, Lund, Sweden
| | - Mario Grossi
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of Medicine, Lund University, Klinikgatan 28, 221 84, Lund, Sweden
| | - Jaromir Háček
- Department of Pathology and Molecular Medicine, Motol University Hospital, 2nd Faculty of Medicine, Charles University Praha, 150 06, Prague, Czech Republic
| | - Parisa Esmaeili
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of Medicine, Lund University, Klinikgatan 28, 221 84, Lund, Sweden
| | - António N B M Carneiro
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of Medicine, Lund University, Klinikgatan 28, 221 84, Lund, Sweden
| | - Arunima Chaudhuri
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of Medicine, Lund University, Klinikgatan 28, 221 84, Lund, Sweden
| | - Shahram Ahmadi
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of Medicine, Lund University, Klinikgatan 28, 221 84, Lund, Sweden
| | - Catharina Svanborg
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of Medicine, Lund University, Klinikgatan 28, 221 84, Lund, Sweden.
| |
Collapse
|
2
|
Assessing protein digestibility in allergenicity risk assessment: A comparison of in silico and high throughput in vitro gastric digestion assays. Food Chem Toxicol 2022; 167:113273. [PMID: 35809717 DOI: 10.1016/j.fct.2022.113273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/26/2022] [Accepted: 07/01/2022] [Indexed: 10/17/2022]
Abstract
The susceptibility of a novel food protein to digestion in the pepsin resistance test is widely used to inform the allergenicity risk assessment process. However, it does not model the variation in the intragastric environment found in vivo. Consequently a 96-well plate format in vitro gastric digestion protocol has been developed with a high and low pepsin activity test executed at pH 1.2, 2.5, 5.5 and 6.5. It was used to analyse seven allergens (from milk, egg, peach and peanut) and two non-allergens (cytochrome c and zein). Digestion was monitored using SDS-PAGE and densitometry. In silico predictions were not confirmed experimentally for most of the proteins studied. Proteins were ranked according to half-life and showed susceptibility to digestion was related to the stability of protein structure and protein solubility rather than allergenicity per se. Highly digestible proteins, such as β-casein and Ara h 1, generated abundant resistant fragments Mr > 3.5 kDa in the low pepsin activity test which could be immunologically significant within the context of allergenicity risk assessment for susceptible groups such as infants. The high- and low pepsin activity tests used in this study provided complementary data to support allergenicity risk assessment and used only 10 mg protein.
Collapse
|
3
|
Barone G, O'Regan J, Kelly AL, O'Mahony JA. Interactions between whey proteins and calcium salts and implications for the formulation of dairy protein‐based nutritional beverage products: A review. Compr Rev Food Sci Food Saf 2022; 21:1254-1274. [DOI: 10.1111/1541-4337.12884] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 01/29/2023]
Affiliation(s)
- Giovanni Barone
- School of Food and Nutritional Sciences University College Cork Cork Ireland
| | - Jonathan O'Regan
- Nestlé Development Centre Nutrition Wyeth Nutritionals Ireland Askeaton Limerick Ireland
| | - Alan L. Kelly
- School of Food and Nutritional Sciences University College Cork Cork Ireland
| | - James A. O'Mahony
- School of Food and Nutritional Sciences University College Cork Cork Ireland
| |
Collapse
|
4
|
Markoska T, Vasiljevic T, Huppertz T. Unravelling Conformational Aspects of Milk Protein Structure-Contributions from Nuclear Magnetic Resonance Studies. Foods 2020; 9:E1128. [PMID: 32824355 PMCID: PMC7466366 DOI: 10.3390/foods9081128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 11/30/2022] Open
Abstract
Changes in the molecular structure and association of milk proteins lead to many desirable (under controlled conditions) or undesirable characteristics of dairy products. Several methods have been used to study the structure of milk proteins and changes therein in different environments. Whey proteins are an excellent model for secondary structure studies using circular dichroism (CD), Fourier-transform infrared spectroscopy (FTIR) and tertiary structure studies using X-ray crystallography and nuclear magnetic resonance (NMR). However, caseins, the most abundant protein class in milk, are far more difficult to characterize. The tertiary structure of caseins cannot be observed by X-ray crystallography due to the inability to crystallize caseins. However, NMR is an appropriate approach for structural elucidation. Thus far, NMR was applied on specific peptides of individual caseins of the molecules including phosphoserine centers and colloidal calcium phosphate. The literature focuses on these parts of the molecule due to its importance in building the sub-unit particles involving individual caseins and calcium phosphate nanoclusters. This review focuses on present structural studies of milk proteins using NMR and their importance in dairy processing.
Collapse
Affiliation(s)
- Tatijana Markoska
- Advanced Food Systems Research Unit, Institute for Sustainable Industries and Liveable Cities, College of Health and Biomedicine, Victoria University, Melbourne VIC 8001, Australia; (T.M.); (T.V.)
| | - Todor Vasiljevic
- Advanced Food Systems Research Unit, Institute for Sustainable Industries and Liveable Cities, College of Health and Biomedicine, Victoria University, Melbourne VIC 8001, Australia; (T.M.); (T.V.)
| | - Thom Huppertz
- Advanced Food Systems Research Unit, Institute for Sustainable Industries and Liveable Cities, College of Health and Biomedicine, Victoria University, Melbourne VIC 8001, Australia; (T.M.); (T.V.)
- FrieslandCampina, 3818 LE Amersfoort, The Netherlands
- Food Quality and Design Group, Wageningen University and Research, 6808 WG Wageningen, The Netherlands
| |
Collapse
|
5
|
Influence of calcium fortification on physicochemical properties of whey protein concentrate solutions enriched in α-lactalbumin. Food Chem 2020; 317:126412. [DOI: 10.1016/j.foodchem.2020.126412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 01/26/2023]
|
6
|
Radibratovic M, Al-Hanish A, Minic S, Radomirovic M, Milcic M, Stanic-Vucinic D, Cirkovic Velickovic T. Stabilization of apo α-lactalbumin by binding of epigallocatechin-3-gallate: Experimental and molecular dynamics study. Food Chem 2019; 278:388-395. [DOI: 10.1016/j.foodchem.2018.11.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 10/27/2022]
|
7
|
Abstract
Proteins perform specific biological functions that strongly depend on their three-dimensional structure. This three-dimensional structure, i.e. the way the protein folds, is strongly determined by the interaction between the protein and the water solvent. We study the dynamics of water in aqueous solutions of several globular proteins at different degrees of urea-induced unfolding, using polarization-resolved femtosecond infrared spectroscopy. We observe that a fraction of the water molecules is strongly slowed down by their interaction with the protein surface. By monitoring the slow water fraction we can directly probe the amount of water-exposed protein surface. We find that at mild denaturing conditions, the water-exposed surface increases by almost 50%, while the secondary structure is still intact. This finding indicates that protein unfolding starts with the protein structure becoming less tight, thereby allowing water to enter.
Collapse
Affiliation(s)
- Carien C M Groot
- FOM institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Huib J Bakker
- FOM institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
8
|
Sikdar S, Chakrabarti J, Ghosh M. A microscopic insight from conformational thermodynamics to functional ligand binding in proteins. MOLECULAR BIOSYSTEMS 2015; 10:3280-9. [PMID: 25310453 DOI: 10.1039/c4mb00434e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We show that the thermodynamics of metal ion-induced conformational changes aid to understand the functions of protein complexes. This is illustrated in the case of a metalloprotein, alpha-lactalbumin (aLA), a divalent metal ion binding protein. We use the histograms of dihedral angles of the protein, generated from all-atom molecular dynamics simulations, to calculate conformational thermodynamics. The thermodynamically destabilized and disordered residues in different conformational states of a protein are proposed to serve as binding sites for ligands. This is tested for β-1,4-galactosyltransferase (β4GalT) binding to the Ca(2+)-aLA complex, in which the binding residues are known. Among the binding residues, the C-terminal residues like aspartate (D) 116, glutamine (Q) 117, tryptophan (W) 118 and leucine (L) 119 are destabilized and disordered and can dock β4GalT onto Ca(2+)-aLA. No such thermodynamically favourable binding residues can be identified in the case of the Mg(2+)-aLA complex. We apply similar analysis to oleic acid binding and predict that the Ca(2+)-aLA complex can bind to oleic acid through the basic histidine (H) 32 of the A2 helix and the hydrophobic residues, namely, isoleucine (I) 59, W60 and I95, of the interfacial cleft. However, the number of destabilized and disordered residues in Mg(2+)-aLA are few, and hence, the oleic acid binding to Mg(2+)-bound aLA is less stable than that to the Ca(2+)-aLA complex. Our analysis can be generalized to understand the functionality of other ligand bound proteins.
Collapse
Affiliation(s)
- Samapan Sikdar
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata 700098, India.
| | | | | |
Collapse
|
9
|
Litwińczuk A, Ryu SR, Nafie LA, Lee JW, Kim HI, Jung YM, Czarnik-Matusewicz B. The transition from the native to the acid-state characterized by multi-spectroscopy approach: study for the holo-form of bovine α-lactalbumin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:593-606. [PMID: 24389233 DOI: 10.1016/j.bbapap.2013.12.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 12/09/2013] [Accepted: 12/24/2013] [Indexed: 12/26/2022]
Abstract
The transition of the holo-form of bovine α-lactalbumin from the native (N) to the pH-generated acidic-state (A-state) was analyzed by probing its tertiary and secondary structure using a concerted spectroscopic approach combining near- and far-UV circular dichroism (CD), electrospray ionization ion mobility mass spectrometry (ESI-IM-MS), vibrational circular dichroism (VCD), and Fourier transform infrared spectroscopy (FTIR) in the attenuated total reflection (ATR) and transmission (TR) modes. The spectroscopic results, which relied on the interaction of an electromagnetic field with different molecular targets, confirmed the decay of extensive rigid side-chain packing interactions during the pH-induced N→A-state transition and revealed the targets' dependence on secondary structural changes. Independent analyses of the spectral changes using two methods of multivariate analysis, such as principal component analysis and two-dimensional correlation spectroscopy, revealed small but significant differences in the secondary structure as a result of the all-or-none transition. The cooperativity of the transition was quantitatively described using values corresponding to the mid-point (tm) and width of the transition (Δtm). The averages of the two parameters, calculated using the data collected by the different probes, were equal to 3.5±0.2 and 0.6±0.1(SE), respectively. The variable two-state nature of the cooperative N→A-state transition confirmed that the protonation of the side chain carboxyl groups on the Asp and Glu residues and that the release of a Ca(2+) ion induced structural changes on both the secondary and tertiary levels. The changes have been confirmed by results obtained from the concerted spectroscopic approach.
Collapse
Affiliation(s)
- Adriana Litwińczuk
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Soo Ryeon Ryu
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chunchon 200-701, Republic of Korea
| | - Laurence A Nafie
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA
| | - Jong Wha Lee
- Department of Chemistry, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Hugh I Kim
- Department of Chemistry, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea; Division of Advanced Materials Science, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chunchon 200-701, Republic of Korea.
| | | |
Collapse
|
10
|
Lobanov MY, Suvorina MY, Dovidchenko NV, Sokolovskiy IV, Surin AK, Galzitskaya OV. A novel web server predicts amino acid residue protection against hydrogen–deuterium exchange. Bioinformatics 2013; 29:1375-81. [DOI: 10.1093/bioinformatics/btt168] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
11
|
|
12
|
Ho CS J, Rydstrom A, Manimekalai MSS, Svanborg C, Grüber G. Low resolution solution structure of HAMLET and the importance of its alpha-domains in tumoricidal activity. PLoS One 2012; 7:e53051. [PMID: 23300861 PMCID: PMC3531425 DOI: 10.1371/journal.pone.0053051] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 11/26/2012] [Indexed: 11/18/2022] Open
Abstract
HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) is the first member in a new family of protein-lipid complexes with broad tumoricidal activity. Elucidating the molecular structure and the domains crucial for HAMLET formation is fundamental for understanding its tumoricidal function. Here we present the low-resolution solution structure of the complex of oleic acid bound HAMLET, derived from small angle X-ray scattering data. HAMLET shows a two-domain conformation with a large globular domain and an extended part of about 2.22 nm in length and 1.29 nm width. The structure has been superimposed into the related crystallographic structure of human α-lactalbumin, revealing that the major part of α-lactalbumin accommodates well in the shape of HAMLET. However, the C-terminal residues from L105 to L123 of the crystal structure of the human α-lactalbumin do not fit well into the HAMLET structure, resulting in an extended conformation in HAMLET, proposed to be required to form the tumoricidal active HAMLET complex with oleic acid. Consistent with this low resolution structure, we identified biologically active peptide epitopes in the globular as well as the extended domains of HAMLET. Peptides covering the alpha1 and alpha2 domains of the protein triggered rapid ion fluxes in the presence of sodium oleate and were internalized by tumor cells, causing rapid and sustained changes in cell morphology. The alpha peptide-oleate bound forms also triggered tumor cell death with comparable efficiency as HAMLET. In addition, shorter peptides corresponding to those domains are biologically active. These findings provide novel insights into the structural prerequisites for the dramatic effects of HAMLET on tumor cells.
Collapse
Affiliation(s)
- James Ho CS
- Department of Microbiology, Immunology and Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Anna Rydstrom
- Department of Microbiology, Immunology and Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | | | - Catharina Svanborg
- Department of Microbiology, Immunology and Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Lund, Sweden
- * E-mail: (CS); (GG)
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore
- * E-mail: (CS); (GG)
| |
Collapse
|
13
|
Xie Y, Min S, Harte NP, Kirk H, O'Brien JE, Voorheis HP, Svanborg C, Hun Mok K. Electrostatic interactions play an essential role in the binding of oleic acid with α-lactalbumin in the HAMLET-like complex: a study using charge-specific chemical modifications. Proteins 2012; 81:1-17. [PMID: 22777854 DOI: 10.1002/prot.24141] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/15/2012] [Accepted: 06/27/2012] [Indexed: 11/12/2022]
Abstract
Human α-lactalbumin made lethal to tumor cells (HAMLET) and its analogs are partially unfolded protein-oleic acid (OA) complexes that exhibit selective tumoricidal activity normally absent in the native protein itself. To understand the nature of the interaction between protein and OA moieties, charge-specific chemical modifications of lysine side chains involving citraconylation, acetylation, and guanidination were employed and the biophysical and biological properties were probed. Upon converting the original positively-charged lysine residues to negatively-charged citraconyl or neutral acetyl groups, the binding of OA to protein was eliminated, as were any cytotoxic activities towards osteosarcoma cells. Retention of the positive charges by converting lysine residues to homoarginine groups (guanidination); however, yielded unchanged binding of OA to protein and identical tumoricidal activity to that displayed by the wild-type α-lactalbumin-oleic acid complex. With the addition of OA, the wild-type and guanidinated α-lactalbumin proteins underwent substantial conformational changes, such as partial unfolding, loss of tertiary structure, but retention of secondary structure. In contrast, no significant conformational changes were observed in the citraconylated and acetylated α-lactalbumins, most likely because of the absence of OA binding. These results suggest that electrostatic interactions between the positively-charged basic groups on α-lactalbumin and the negatively-charged carboxylate groups on OA molecules play an essential role in the binding of OA to α-lactalbumin and that these interactions appear to be as important as hydrophobic interactions.
Collapse
Affiliation(s)
- Yongjing Xie
- Trinity Biomedical Sciences Institute-TBSI, School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Fang B, Zhang M, Jiang L, Jing H, Ren FZ. Influence of pH on the Structure and Oleic Acid Binding Ability of Bovine α-Lactalbumin. Protein J 2012; 31:564-72. [DOI: 10.1007/s10930-012-9434-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Correia M, Neves-Petersen MT, Parracino A, di Gennaro AK, Petersen SB. Photophysics, photochemistry and energetics of UV light induced disulphide bridge disruption in apo-α-lactalbumin. J Fluoresc 2011; 22:323-37. [PMID: 21997288 DOI: 10.1007/s10895-011-0963-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 08/30/2011] [Indexed: 11/29/2022]
Abstract
Continuous 295 nm excitation of whey protein bovine apo-α-lactalbumin (apo-bLA) results in an increase of tryptophan fluorescence emission intensity, in a progressive red-shift of tryptophan fluorescence emission, and breakage of disulphide bridges (SS), yielding free thiol groups. The increase in fluorescence emission intensity upon continuous UV-excitation is correlated with the increase in concentration of free thiol groups in apo-bLA. UV-excitation and consequent SS breakage induce conformational changes on apo-bLA molecules, which after prolonged illumination display molten globule spectral features. The rate of tryptophan fluorescence emission intensity increase at 340 nm with excitation time increases with temperature in the interval 9.3-29.9°C. The temperature-dependent 340 nm emission kinetic traces were fitted by a 1st order reaction model. Native apo-bLA molecules with intact SS bonds and low tryptophan emission intensity are gradually converted upon excitation into apo-bLA molecules with disrupted SS, molten-globule-like conformation, high tryptophan emission intensity and red-shifted tryptophan emission. Experimental Ahrrenius activation energy was 21.8 ± 2.3 kJ x mol(-1). Data suggests that tryptophan photoionization from the S(1) state is the likely pathway leading to photolysis of SS in apo-bLA. Photoionization mechanism(s) of tryptophan in proteins and in solution and the activation energy of tryptophan photoionization from S(1) leading to SS disruption in proteins are discussed. The observations present in this paper raise concern regarding UV-light pasteurization of milk products. Though UV-light pasteurization is a faster and cheaper method than traditional thermal denaturation, it may also lead to loss of structure and functionality of milk proteins.
Collapse
Affiliation(s)
- Manuel Correia
- Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4A, DK-9220, Aalborg, Denmark.
| | | | | | | | | |
Collapse
|
16
|
Barbana C, Pérez MD. Interaction of α-lactalbumin with lipids and possible implications for its emulsifying properties – A review. Int Dairy J 2011. [DOI: 10.1016/j.idairyj.2011.04.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Barbana C, Sánchez L, Pérez MD. Bioactivity of α-Lactalbumin Related to its Interaction with Fatty Acids: A Review. Crit Rev Food Sci Nutr 2011; 51:783-94. [DOI: 10.1080/10408398.2010.481368] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
Romero CM, Albis A. Influence of Polyols and Glucose on the Surface Tension of Bovine α-Lactalbumin in Aqueous Solution. J SOLUTION CHEM 2010. [DOI: 10.1007/s10953-010-9554-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Heijnis WH, Wierenga PA, van Berkel WJH, Gruppen H. Directing the oligomer size distribution of peroxidase-mediated cross-linked bovine alpha-lactalbumin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:5692-5697. [PMID: 20297813 DOI: 10.1021/jf100168x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Enzymatic protein cross-linking is a powerful tool to change protein functionality. For optimal functionality in gel formation, the size of the cross-linked proteins needs to be controlled, prior to heating. In the current study, we addressed the optimization of the horseradish peroxidase-mediated cross-linking of calcium-depleted bovine alpha-lactalbumin. To characterize the formed products, the molecular weight distribution of the cross-linked protein was determined by size exclusion chromatography. At low ionic strength, more dimers of alpha-lactalbumin are formed than at high ionic strength, while the same conversion of monomers is observed. Similarly, at pH 5.9 more higher oligomers are formed than at pH 6.8. This is proposed to be caused by local changes in apo alpha-lactalbumin conformation as indicated by circular dichroism spectroscopy. A gradual supply of hydrogen peroxide improves the yield of cross-linked products and increases the proportion of higher oligomers. In conclusion, this study shows that the size distribution of peroxidase-mediated cross-linked alpha-lactalbumin can be directed toward the protein oligomers desired.
Collapse
Affiliation(s)
- Walter H Heijnis
- Laboratory of Food Chemistry, Wageningen University, Wageningen, The Netherlands
| | | | | | | |
Collapse
|
20
|
Dovidchenko NV, Lobanov MY, Garbuzynskiy SO, Galzitskaya OV. Prediction of amino acid residues protected from hydrogen-deuterium exchange in a protein chain. BIOCHEMISTRY (MOSCOW) 2009; 74:888-97. [PMID: 19817689 DOI: 10.1134/s0006297909080100] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have investigated the possibility to predict protection of amino acid residues from hydrogen-deuterium exchange. A database containing experimental hydrogen-deuterium exchange data for 14 proteins for which these data are known has been compiled. Different structural parameters related to flexibility of amino acid residues and their amide groups have been analyzed to answer the question whether these parameters can be used for predicting the protection of amino acid residues from hydrogen-deuterium exchange. A method for prediction of protection of amino acid residues, which uses only the amino acid sequence of a protein, has been elaborated.
Collapse
Affiliation(s)
- N V Dovidchenko
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | | | | | | |
Collapse
|
21
|
Pettersson-Kastberg J, Mossberg AK, Trulsson M, Yong YJ, Min S, Lim Y, O'Brien JE, Svanborg C, Mok KH. α-Lactalbumin, Engineered to be Nonnative and Inactive, Kills Tumor Cells when in Complex with Oleic Acid: A New Biological Function Resulting from Partial Unfolding. J Mol Biol 2009; 394:994-1010. [DOI: 10.1016/j.jmb.2009.09.026] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2009] [Revised: 08/18/2009] [Accepted: 09/14/2009] [Indexed: 11/28/2022]
|
22
|
Tolin S, De Franceschi G, Spolaore B, Frare E, Canton M, Polverino de Laureto P, Fontana A. The oleic acid complexes of proteolytic fragments of α-lactalbumin display apoptotic activity. FEBS J 2009; 277:163-73. [DOI: 10.1111/j.1742-4658.2009.07466.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Bruylants G, Redfield C. (15)N NMR relaxation data reveal significant chemical exchange broadening in the alpha-domain of human alpha-lactalbumin. Biochemistry 2009; 48:4031-9. [PMID: 19309110 DOI: 10.1021/bi900023m] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human alpha-lactalbumin (alpha-LA), a 123-residue calcium-binding protein, has been studied using (15)N NMR relaxation methods in order to characterize backbone dynamics of the native state at the level of individual residues. Relaxation data were collected at three magnetic field strengths and analyzed using the model-free formalism of Lipari and Szabo. The order parameters derived from this analysis are generally high, indicating a rigid backbone. A total of 46 residues required an exchange contribution to T(2); 43 of these residues are located in the alpha-domain of the protein. The largest exchange contributions are observed in the A-, B-, D-, and C-terminal 3(10)-helices of the alpha-domain; these residues have been shown previously to form a highly stable core in the alpha-LA molten globule. The observed exchange broadening, along with previous hydrogen/deuterium amide exchange data, suggests that this part of the alpha-domain may undergo a local structural transition between the well-ordered native structure and a less-ordered molten-globule-like structure.
Collapse
Affiliation(s)
- Gilles Bruylants
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | |
Collapse
|
24
|
Otzen DE, Sehgal P, Westh P. α-Lactalbumin is unfolded by all classes of surfactants but by different mechanisms. J Colloid Interface Sci 2009; 329:273-83. [DOI: 10.1016/j.jcis.2008.10.021] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 10/08/2008] [Accepted: 10/09/2008] [Indexed: 11/30/2022]
|
25
|
Heat-treatment method for producing fatty acid-bound alpha-lactalbumin that induces tumor cell death. Biochem Biophys Res Commun 2008; 376:211-4. [DOI: 10.1016/j.bbrc.2008.08.127] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 08/27/2008] [Indexed: 11/19/2022]
|
26
|
Barbana C, Pérez MD, Pocovi C, Sánchez L, Wehbi Z. Interaction of human alpha-lactalbumin with fatty acids: determination of binding parameters. BIOCHEMISTRY (MOSCOW) 2008; 73:711-6. [PMID: 18620538 DOI: 10.1134/s0006297908060126] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The interaction of holo- and apo-forms of human alpha-lactalbumin with fatty acids was studied by a partition equilibrium method. Apo-alpha-lactalbumin, obtained by treatment with EDTA, displays one binding site for fatty acids, the association constants for oleic and palmitic acids being 1.9.10(6) and 4.2.10(5) M(-1), respectively. However, holo-alpha-lactalbumin was unable to bind fatty acids as measured by this technique. Likewise, no fatty acids bound to holo-alpha-lactalbumin, isolated using nondenaturing conditions, were detected by gas chromatography. These results demonstrate that the conformational change induced in alpha-lactalbumin by the removal of calcium enables the protein to interact with fatty acids.
Collapse
Affiliation(s)
- C Barbana
- Tecnologia y Bioquimica de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza 50013, Spain.
| | | | | | | | | |
Collapse
|
27
|
Gao C, Wijesinha-Bettoni R, Wilde PJ, Mills ENC, Smith LJ, Mackie AR. Surface Properties Are Highly Sensitive to Small pH Induced Changes in the 3-D Structure of α-Lactalbumin. Biochemistry 2008; 47:1659-66. [DOI: 10.1021/bi700999r] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chunli Gao
- Structuring Food for Health Programme, Institute of Food Research, Norwich Research Park, Colney NR4 7UA, U.K., and Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K
| | - Ramani Wijesinha-Bettoni
- Structuring Food for Health Programme, Institute of Food Research, Norwich Research Park, Colney NR4 7UA, U.K., and Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K
| | - Peter J. Wilde
- Structuring Food for Health Programme, Institute of Food Research, Norwich Research Park, Colney NR4 7UA, U.K., and Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K
| | - E. N. Clare Mills
- Structuring Food for Health Programme, Institute of Food Research, Norwich Research Park, Colney NR4 7UA, U.K., and Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K
| | - Lorna J. Smith
- Structuring Food for Health Programme, Institute of Food Research, Norwich Research Park, Colney NR4 7UA, U.K., and Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K
| | - Alan R. Mackie
- Structuring Food for Health Programme, Institute of Food Research, Norwich Research Park, Colney NR4 7UA, U.K., and Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K
| |
Collapse
|
28
|
Tartaglia GG, Cavalli A, Vendruscolo M. Prediction of Local Structural Stabilities of Proteins from Their Amino Acid Sequences. Structure 2007; 15:139-43. [PMID: 17292832 DOI: 10.1016/j.str.2006.12.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 12/05/2006] [Accepted: 12/28/2006] [Indexed: 11/24/2022]
Abstract
Hydrogen exchange experiments provide detailed information about the local stability and the solvent accessibility of different regions of the structures of folded proteins, protein complexes, and amyloid fibrils. We introduce an approach to predict protection factors from hydrogen exchange in proteins based on the knowledge of their amino acid sequences without the inclusion of any additional structural information. These results suggest that the propensity of different regions of the structures of globular proteins to undergo local unfolding events can be predicted from their amino acid sequences with an accuracy of 80% or better.
Collapse
Affiliation(s)
- Gian Gaetano Tartaglia
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | | | | |
Collapse
|
29
|
Schanda P, Forge V, Brutscher B. HET-SOFAST NMR for fast detection of structural compactness and heterogeneity along polypeptide chains. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2006; 44 Spec No:S177-84. [PMID: 16823898 DOI: 10.1002/mrc.1825] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Structure elucidation of proteins by either NMR or X-ray crystallography often requires the screening of a large number of samples for promising protein constructs and optimum solution conditions. For large-scale screening of protein samples in solution, robust methods are needed that allow a rapid assessment of the folding of a polypeptide under diverse sample conditions. Here we present HET-SOFAST NMR, a highly sensitive new method for semi-quantitative characterization of the structural compactness and heterogeneity of polypeptide chains in solution. On the basis of one-dimensional 1H HET-SOFAST NMR data, obtained on well-folded, molten globular, partially- and completely unfolded proteins, we define empirical thresholds that can be used as quantitative benchmarks for protein compactness. For 15N-enriched protein samples, two-dimensional 1H-15N HET-SOFAST correlation spectra provide site-specific information about the structural heterogeneity along the polypeptide chain.
Collapse
Affiliation(s)
- Paul Schanda
- Institut de Biologie Structurale, Jean-Pierre Ebel C.N.R.S.-C.E.A.-UJF, 41, rue Jules Horowitz, 38027 Grenoble Cedex 1, France
| | | | | |
Collapse
|
30
|
Pettersson J, Mossberg AK, Svanborg C. α-Lactalbumin species variation, HAMLET formation, and tumor cell death. Biochem Biophys Res Commun 2006; 345:260-70. [PMID: 16678133 DOI: 10.1016/j.bbrc.2006.04.081] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Accepted: 04/14/2006] [Indexed: 11/17/2022]
Abstract
HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a tumoricidal complex of apo alpha-lactalbumin and oleic acid, formed in casein after low pH treatment of human milk. This study examined if HAMLET-like complexes are present in casein from different species and if isolated alpha-lactalbumin from those species can form such complexes with oleic acid. Casein from human, bovine, equine, and porcine milk was separated by ion exchange chromatography and active complexes were only found in human casein. This was not explained by alpha-lactalbumin sequence variation, as purified bovine, equine, porcine, and caprine alpha-lactalbumins formed complexes with oleic acid with biological activity similar to HAMLET. We conclude that structural variation of alpha-lactalbumins does not preclude the formation of HAMLET-like complexes and that natural HAMLET formation in casein was unique to human milk, which also showed the highest oleic acid content.
Collapse
Affiliation(s)
- Jenny Pettersson
- Department of Microbiology, Immunology and Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Sweden
| | | | | |
Collapse
|
31
|
Bushmarina NA, Blanchet CE, Vernier G, Forge V. Cofactor effects on the protein folding reaction: acceleration of alpha-lactalbumin refolding by metal ions. Protein Sci 2006; 15:659-71. [PMID: 16522796 PMCID: PMC2242491 DOI: 10.1110/ps.051904206] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
About 30% of proteins require cofactors for their proper folding. The effects of cofactors on the folding reaction have been investigated with alpha-lactalbumin as a model protein and metal ions as cofactors. Metal ions accelerate the refolding of alpha-lactalbumin by lessening the energy barrier between the molten globule state and the transition state, mainly by decreasing the difference of entropy between the two states. These effects are linked to metal ion binding to the protein in the native state. Hence, relationships between the metal affinities for the intermediate states and those for the native state are observed. Some residual specificity for the calcium ion is still observed in the molten globule state, this specificity getting closer in the transition state to that of the native state. The comparison between kinetic and steady-state data in association with the Phi value method indicates the binding of the metal ions on the unfolded state of alpha-lactalbumin. Altogether, these results provide insight into cofactor effects on protein folding. They also suggest new possibilities to investigate the presence of residual native structures in the unfolded state of protein and the effects of such structures on the protein folding reaction and on protein stability.
Collapse
Affiliation(s)
- Natalia A Bushmarina
- Laboratoire de Biophysique Moléculaire et Cellulaire, Unité Mixte de Recherche 5090, Département Réponse et Dynamique Cellulaires, CEA-Grenoble, 38054 Grenoble cedex 9, France
| | | | | | | |
Collapse
|
32
|
Yin J, Bowen D, Southerland WM. Barnase thermal titration via molecular dynamics simulations: Detection of early denaturation sites. J Mol Graph Model 2006; 24:233-43. [PMID: 16213760 DOI: 10.1016/j.jmgm.2005.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Revised: 08/02/2005] [Accepted: 08/15/2005] [Indexed: 11/20/2022]
Abstract
The thermal stability of barnase has been studied using constant pressure and temperature (CPT) molecular dynamics at different temperatures. Barnase X-ray coordinates were obtained from the Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank (PDB code:1rnb). Simulations were performed at 285, 295, 300, 335, 345, and 395 K in explicit water under periodic boundary conditions for 280 ps. For each simulation, conformations were saved every 0.2 ps. Root mean square deviation (RMSD) values were calculated relative to the starting structure at 300 K and at time t = 0. Root mean square fluctuation (RMSF) values were calculated relative to the average structure obtained from the 300K simulation. Both root mean square deviation and fluctuation analysis indicated the presence of discrete regions of hyper-sensitivity along the barnase polypeptide chain. These regions exhibited spikes in flexibility prior to any global structural changes. The specific changes in barnase backbone flexibility are accompanied by increased phi/psi angle fluctuations. These results suggest the presence of early denaturation sites or denaturation nuclei whose local structure is disrupted prior to global structure disruption. Identification of denaturation nuclei suggests that appropriate amino acid replacements at these sites may lead to the design and development of more stable barnase mutants. This strategy of identifying denaturation nuclei in protein structures may represent a first step in the design of more stable protein structures.
Collapse
Affiliation(s)
- Jian Yin
- Department of Biochemistry and Molecular Biology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | | | | |
Collapse
|
33
|
Fast J, Mossberg AK, Nilsson H, Svanborg C, Akke M, Linse S. Compact oleic acid in HAMLET. FEBS Lett 2005; 579:6095-100. [PMID: 16229842 DOI: 10.1016/j.febslet.2005.08.089] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Revised: 07/08/2005] [Accepted: 08/23/2005] [Indexed: 11/22/2022]
Abstract
HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a complex between alpha-lactalbumin and oleic acid that induces apoptosis in tumor cells, but not in healthy cells. Heteronuclear nuclear magnetic resonance (NMR) spectroscopy was used to determine the structure of 13C-oleic acid in HAMLET, and to study the 15N-labeled protein. Nuclear Overhauser enhancement spectroscopy shows that the two ends of the fatty acid are in close proximity and close to the double bond, indicating that the oleic acid is bound to HAMLET in a compact conformation. The data further show that HAMLET is a partly unfolded/molten globule-like complex under physiological conditions.
Collapse
Affiliation(s)
- Jonas Fast
- Department of Biophysical Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
34
|
Fast J, Mossberg AK, Svanborg C, Linse S. Stability of HAMLET--a kinetically trapped alpha-lactalbumin oleic acid complex. Protein Sci 2005; 14:329-40. [PMID: 15659367 PMCID: PMC2253409 DOI: 10.1110/ps.04982905] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The stability toward thermal and urea denaturation was measured for HAMLET (human alpha-lactalbumin made lethal to tumor cells) and alpha-lactalbumin, using circular dichroism and fluorescence spectroscopy as well as differential scanning calorimetry. Under all conditions examined, HAMLET appears to have the same or lower stability than alpha-lactalbumin. The largest difference is seen for thermal denaturation of the calcium free (apo) forms, where the temperature at the transition midpoint is 15 degrees C lower for apo HAMLET than for apo alpha-lactalbumin. The difference becomes progressively smaller as the calcium concentration increases. Denaturation of HAMLET was found to be irreversible. Samples of HAMLET that have been renatured after denaturation have lost the specific biological activity toward tumor cells. Three lines of evidence indicate that HAMLET is a kinetic trap: (1) It has lower stability than alpha-lactalbumin, although it is a complex of alpha-lactalbumin and oleic acid; (2) its denaturation is irreversible and HAMLET is lost after denaturation; (3) formation of HAMLET requires a specific conversion protocol.
Collapse
Affiliation(s)
- Jonas Fast
- Department of Chemistry and Biochemistry, University of Colorado, Cristol Building, Room 226, Boulder, CO 80309-0215, USA.
| | | | | | | |
Collapse
|
35
|
Chenal A, Vernier G, Savarin P, Bushmarina NA, Gèze A, Guillain F, Gillet D, Forge V. Conformational states and thermodynamics of alpha-lactalbumin bound to membranes: a case study of the effects of pH, calcium, lipid membrane curvature and charge. J Mol Biol 2005; 349:890-905. [PMID: 15893324 DOI: 10.1016/j.jmb.2005.04.036] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 04/08/2005] [Accepted: 04/18/2005] [Indexed: 11/20/2022]
Abstract
The study of the conformational changes of bovine alpha-lactalbumin, switching from soluble states to membrane-bound states, deepens our knowledge of the behaviour of amphitropic proteins. The binding and the membrane-bound conformations of alpha-lactalbumin are highly sensitive to environmental factors, like calcium and proton concentrations, curvature and charge of the lipid membrane. The interactions between the protein and the membrane result from a combination of hydrophobic and electrostatic interactions and the respective weights of these interactions depend on the physicochemical conditions. As inferred by macroscopic as well as residue-level methods, the conformations of the membrane-bound protein range from native-like to molten globule-like states. However, the regions anchoring the protein to the membrane are similar and restricted to amphiphilic alpha-helices. H/(2)H-exchange experiments also yield residue-level data that constitute comprehensive information providing a new point of view on the thermodynamics of the interactions between the protein and the membrane.
Collapse
Affiliation(s)
- Alexandre Chenal
- Biophysique Moléculaire et Cellulaire, Unité Mixte de Recherche 5090, Département Réponse et Dynamique Cellulaires, CEA-Grenoble, 38054 Grenoble cedex 9, France.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Hoffmann B, Eichmüller C, Steinhauser O, Konrat R. Rapid Assessment of Protein Structural Stability and Fold Validation via NMR. Methods Enzymol 2005; 394:142-75. [PMID: 15808220 DOI: 10.1016/s0076-6879(05)94006-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
In structural proteomics, it is necessary to efficiently screen in a high-throughput manner for the presence of stable structures in proteins that can be subjected to subsequent structure determination by X-ray or NMR spectroscopy. Here we illustrate that the (1)H chemical distribution in a protein as detected by (1)H NMR spectroscopy can be used to probe protein structural stability (e.g., the presence of stable protein structures) of proteins in solution. Based on experimental data obtained on well-structured proteins and proteins that exist in a molten globule state or a partially folded alpha-helical state, a well-defined threshold exists that can be used as a quantitative benchmark for protein structural stability (e.g., foldedness) in solution. Additionally, in this chapter we describe a largely automated strategy for rapid fold validation and structure-based backbone signal assignment. Our methodology is based on a limited number of NMR experiments (e.g., HNCA and 3D NOESY-HSQC) and performs a Monte Carlo-type optimization. The novel feature of the method is the opportunity to screen for structural fragments (e.g., template scanning). The performance of this new validation tool is demonstrated with applications to a diverse set of proteins.
Collapse
Affiliation(s)
- Bernd Hoffmann
- Institute of Theoretical Chemistry and Molecular Structural Biology, University of Vienna, Austria
| | | | | | | |
Collapse
|
37
|
Svensson M, Mossberg AK, Pettersson J, Linse S, Svanborg C. Lipids as cofactors in protein folding: stereo-specific lipid-protein interactions are required to form HAMLET (human alpha-lactalbumin made lethal to tumor cells). Protein Sci 2004; 12:2805-14. [PMID: 14627740 PMCID: PMC2366988 DOI: 10.1110/ps.0231103] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Proteins can adjust their structure and function in response to shifting environments. Functional diversity is created not only by the sequence but by changes in tertiary structure. Here we present evidence that lipid cofactors may enable otherwise unstable protein folding variants to maintain their conformation and to form novel, biologically active complexes. We have identified unsaturated C18 fatty acids in the cis conformation as the cofactors that bind apo alpha-lactalbumin and form HAMLET (human alpha-lactalbumin made lethal to tumor cells). The complexes were formed on an ion exchange column, were stable in a molten globule-like conformation, and had attained the novel biological activity. The protein-fatty acid interaction was specific, as saturated C18 fatty acids, or unsaturated C18:1trans conformers were unable to form complexes with apo alpha-lactalbumin, as were fatty acids with shorter or longer carbon chains. Unsaturated cis fatty acids other than C18:1:9cis were able to form stable complexes, but these were not active in the apoptosis assay. The results demonstrate that stereo-specific lipid-protein interactions can stabilize partially unfolded conformations and form molecular complexes with novel biological activity. The results offer a new mechanism for the functional diversity of proteins, by exploiting lipids as essential, tissue-specific cofactors in this process.
Collapse
Affiliation(s)
- Malin Svensson
- Department of Microbiology, Immunology and Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | | | | | | | | |
Collapse
|
38
|
Engel MFM, Visser AJWG, van Mierlo CPM. Adsorption of bovine alpha-lactalbumin on suspended solid nanospheres and its subsequent displacement studied by NMR spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2004; 20:5530-8. [PMID: 15986696 DOI: 10.1021/la049834b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Detailed knowledge of the adsorption-induced conformational changes of proteins is essential to understand the process of protein adsorption. However, not much information about these conformational changes is available. Here, the adsorption of calcium-depleted (APO)- and calcium-containing (HOLO)-bovine alpha-lactalbumin (BLA) on suspended solid polystyrene nanospheres and their subsequent displacement by a surfactant are studied by NMR spectroscopy. To our knowledge, this is the first time that adsorption of proteins on solid nanospheres, with both components present in the NMR sample, is studied by this method. High-quality one-dimensional and two-dimensional 1H NMR spectra of nonadsorbed APO- and HOLO-BLA in the presence of BLA- and/or surfactant-covered solid polystyrene nanospheres in suspension are obtained using standard NMR procedures. BLA and surfactant molecules that are adsorbed on the polystyrene nanospheres give rise to extremely broadened proton resonances. This can be exploited to determine the amount of adsorbed protein and of adsorbed surfactant in a system containing protein, nanospheres, and surfactant, without disturbing the equilibrium of the system. Two-dimensional 1H NMR spectroscopy shows that the chemical shifts of the backbone amide protons of HOLO-BLA after its adsorption and subsequent displacement from polystyrene nanospheres by the surfactant 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate (CHAPS) are identical to those of native HOLO-BLA. The adsorption-induced unfolding of BLA to a molten globule state on polystyrene nanospheres is thus fully reversible at the residue level upon CHAPS-induced displacement of BLA. The latter is the now fulfilled essential requirement that enables the future indirect study, at the residue level, of the conformational characteristics of BLA adsorbed on polystyrene nanospheres by hydrogen/deuterium exchange and NMR spectroscopy. The results presented show that NMR spectroscopy is clearly feasible to study the adsorption of BLA on suspended polystyrene nanospheres. This technique should be applicable to the study of the adsorption of other proteins on other surfaces as well.
Collapse
Affiliation(s)
- Maarten F M Engel
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | | | | |
Collapse
|
39
|
Farrell HM, Jimenez-Flores R, Bleck GT, Brown EM, Butler JE, Creamer LK, Hicks CL, Hollar CM, Ng-Kwai-Hang KF, Swaisgood HE. Nomenclature of the Proteins of Cows’ Milk—Sixth Revision. J Dairy Sci 2004; 87:1641-74. [PMID: 15453478 DOI: 10.3168/jds.s0022-0302(04)73319-6] [Citation(s) in RCA: 742] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This report of the American Dairy Science Association Committee on the Nomenclature, Classification, and Methodology of Milk Proteins reviews changes in the nomenclature of milk proteins necessitated by recent advances of our knowledge of milk proteins. Identification of major caseins and whey proteins continues to be based upon their primary structures. Nomenclature of the immunoglobulins consistent with new international standards has been developed, and all bovine immunoglobulins have been characterized at the molecular level. Other significant findings related to nomenclature and protein methodology are elucidation of several new genetic variants of the major milk proteins, establishment by sequencing techniques and sequence alignment of the bovine caseins and whey proteins as the reference point for the nomenclature of all homologous milk proteins, completion of crystallographic studies for major whey proteins, and advances in the study of lactoferrin, allowing it to be added to the list of fully characterized milk proteins.
Collapse
Affiliation(s)
- H M Farrell
- US Department of Agriculture, Eastern Regional Research Center, Wyndmoor, PA 19038, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Biekofsky RR, Turjanski AG, Estrin DA, Feeney J, Pastore A. Ab Initio Study of NMR15N Chemical Shift Differences Induced by Ca2+Binding to EF-Hand Proteins†. Biochemistry 2004; 43:6554-64. [PMID: 15157088 DOI: 10.1021/bi0497852] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
EF-hands are Ca(2+) binding motifs that are widely distributed throughout the entire living organism kingdom. At present, relatively little is known at a quantum mechanical level about the mechanisms that allow Ca(2+) to be recognized specifically by EF-hands and to induce a conformational switch from a compact ("closed") conformation to an "open" state that exposes a large patch of hydrophobic residues. Here, we present a study of NMR (15)N chemical shifts based on ab initio quantum mechanical calculations carried out on a minimalist model system linking both Ca(2+) binding sites across the beta-sheet of an EF-hand domain. Calculated and experimentally determined chemical shift changes are correlated with structural changes induced upon metal binding. The effect of Ca(2+) binding on these (15)N shifts can be dissected into two main contributions: one from pi-polarization of beta-sheet amide groups and the other from rotation of an isoleucine side chain. By correlating this description with experimental evidence, different polarization states for the beta-sheet amide groups were identified and linked to the overall conformation of different EF-hand domains. When all four beta-sheet amide groups are polarized, the ab initio calculations in our model indicate a cooperative stabilization effect due to the establishment of a circular network of donor-acceptor interactions connecting the two Ca(2+) ions across the beta-sheet. The emerging hypothesis from our analysis is that this cooperative network of interactions is essential for stabilizing the "open" conformation of an EF-hand domain.
Collapse
Affiliation(s)
- Rodolfo R Biekofsky
- Molecular Structure Division, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom.
| | | | | | | | | |
Collapse
|
41
|
Dyson HJ, Wright PE. Insights into the structure and dynamics of unfolded proteins from nuclear magnetic resonance. ADVANCES IN PROTEIN CHEMISTRY 2004; 62:311-40. [PMID: 12418108 DOI: 10.1016/s0065-3233(02)62012-1] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- H Jane Dyson
- Department of Molecular Biology, Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
42
|
Svanborg C, Agerstam H, Aronson A, Bjerkvig R, Düringer C, Fischer W, Gustafsson L, Hallgren O, Leijonhuvud I, Linse S, Mossberg AK, Nilsson H, Pettersson J, Svensson M. HAMLET kills tumor cells by an apoptosis-like mechanism--cellular, molecular, and therapeutic aspects. Adv Cancer Res 2003; 88:1-29. [PMID: 12665051 DOI: 10.1016/s0065-230x(03)88302-1] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a protein-lipid complex that induces apoptosis-like death in tumor cells, but leaves fully differentiated cells unaffected. This review summarizes the information on the in vivo effects of HAMLET in patients and tumor models on the tumor cell biology, and on the molecular characteristics of the complex. HAMLET limits the progression of human glioblastomas in a xenograft model and removes skin papillomas in patients. This broad anti-tumor activity includes >40 different lymphomas and carcinomas and apoptosis is independent of p53 or bcl-2. In tumor cells HAMLET enters the cytoplasm, translocates to the perinuclear area, and enters the nuclei where it accumulates. HAMLET binds strongly to histones and disrupts the chromatin organization. In the cytoplasm, HAMLET targets ribosomes and activates caspases. The formation of HAMLET relies on the propensity of alpha-lactalbumin to alter its conformation when the strongly bound Ca2+ ion is released and the protein adopts the apo-conformation that exposes a new fatty acid binding site. Oleic acid (C18:1,9 cis) fits this site with high specificity, and stabilizes the altered protein conformation. The results illustrate how protein folding variants may be beneficial, and how their formation in peripheral tissues may depend on the folding change and the availability of the lipid cofactor. One example is the acid pH in the stomach of the breast-fed child that promotes the formation of HAMLET. This mechanism may contribute to the protective effect of breastfeeding against childhood tumors. We propose that HAMLET should be explored as a novel approach to tumor therapy.
Collapse
Affiliation(s)
- Catharina Svanborg
- Institute of Laboratory Medicine, Department of Microbiology, Immunology and Glycobiology, Lund University, 221 00 Lund, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Rehm T, Huber R, Holak TA. Application of NMR in structural proteomics: screening for proteins amenable to structural analysis. Structure 2002; 10:1613-8. [PMID: 12467568 DOI: 10.1016/s0969-2126(02)00894-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the time of structural proteomics when protein structures are targeted on a genome-wide scale, the detection of "well-behaved" proteins that would yield good quality NMR spectra or X-ray images is the key to high-throughput structure determination. Already, simple one-dimensional proton NMR spectra provide enough information for assessing the folding properties of proteins. Heteronuclear two-dimensional spectra are routinely used for screenings that reveal structural, as well as binding, properties of proteins. NMR can thus provide important information for optimizing conditions for protein constructs that are amenable to structural studies.
Collapse
Affiliation(s)
- Till Rehm
- Max-Planck-Institut für Biochemie, Am Klopferspitz 18a, D-82152 München, Germany
| | | | | |
Collapse
|
44
|
Polverino de Laureto P, Frare E, Gottardo R, Van Dael H, Fontana A. Partly folded states of members of the lysozyme/lactalbumin superfamily: a comparative study by circular dichroism spectroscopy and limited proteolysis. Protein Sci 2002; 11:2932-46. [PMID: 12441391 PMCID: PMC2373748 DOI: 10.1110/ps.0205802] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2002] [Revised: 06/24/2002] [Accepted: 07/10/2002] [Indexed: 10/27/2022]
Abstract
The partly folded states of protein members of the lysozyme (LYS)/alpha-lactalbumin (LA) superfamily have been analyzed by circular dichroism (CD) measurements and limited proteolysis experiments. Hen, horse, dog, and pigeon LYSs and bovine LA were used in the present study. These are related proteins of 123- to 129-amino-acid residues with similar three-dimensional structures but low similarity in amino acid sequences. Moreover, notable differences among them reside in their calcium-binding properties and capability to adopt partly folded states or molten globules in acid solution (A-state) or on depletion of calcium at neutral pH (apo-state). Far- and near-UV CD measurements revealed that although the structures of hen and dog LYS are rather stable in acid at pH 2.0 or at neutral pH in the absence of calcium, conformational transitions to various extents occur with all other LYS/LA proteins herewith investigated. The most significant perturbation of tertiary structure in acid was observed with bovine LA and LYS from horse milk and pigeon egg-white. Pepsin and proteinase K were used as proteolytic probes, because these proteases show broad substrate specificity, and therefore, their sites of proteolysis are dictated not by the specific amino acid sequence of the protein substrate but by its overall structure and dynamics. Although hen LYS at pH 2.0 was fully resistant to proteolysis by pepsin, the other members of the LYS/LA superfamily were cleaved at different rates at few sites of the polypeptide chain and thus producing rather large protein fragments. The apo-form of bovine LA, horse LYS, and pigeon LYS were attacked by proteinase K at pH 8.3, whereas dog and hen LYSs were resistant to proteolysis when reacted under identical experimental conditions. Briefly, it has been found that the proteolysis data correlate well with the extent of conformational transitions inferred from CD spectra and with existing structural informations regarding the proteins herewith investigated, mainly derived from NMR and hydrogen exchange measurements. The sites of initial proteolytic cleavages in the LYS variants occur at the level of the beta-subdomain (approximately chain region 34-57), in analogy to those observed with bovine LA. Proteolysis data are in agreement with the current view that the molten globule of the LYS/LA proteins is characterized by a structured alpha-domain and a largely disrupted beta-subdomain. Our results underscore the utility of the limited proteolysis approach for analyzing structure and dynamics of proteins, even if adopting an ensemble of dynamic states as in the molten globule.
Collapse
|
45
|
Polverino de Laureto P, Frare E, Gottardo R, Fontana A. Molten globule of bovine alpha-lactalbumin at neutral pH induced by heat, trifluoroethanol, and oleic acid: a comparative analysis by circular dichroism spectroscopy and limited proteolysis. Proteins 2002; 49:385-97. [PMID: 12360528 DOI: 10.1002/prot.10234] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The calcium-depleted form of alpha-lactalbumin (alpha-LA) at neutral pH can be induced to adopt a partly folded state or molten globule upon moderate heating, by dissolving the protein in aqueous TFE or by adding oleic acid. This last folding variant of the protein, named HAMLET, can induce apoptosis in tumor cells. The aim of the present work was to unravel from circular dichroism (CD) measurements and proteolysis experiments structural features of the molten globule of apo-alpha-LA at neutral pH. CD spectra revealed that the molten globule of apo-alpha-LA can be obtained upon mild heating at 45 degrees C, as well as at room temperature in the presence of 15% TFE or by adding to the protein solution 7.5 equivalents of oleic acid. Under these various conditions the far- and near-UV CD spectra of apo-alpha-LA are essentially identical to those of the most studied molten globule of alpha-LA at pH 2.0 (A-state). Proteolysis of the 123-residue chain of apo-alpha-LA by proteinase K at 4 degrees C occurs slowly as an all-or-none process leading to small peptides only. At 37 degrees C, proteinase K preferentially cleaves apo-alpha-LA at peptide bonds Ser34-Gly35, Gln39-Ala40, Gln43-Asn44, Phe53-Gln54, and Asn56-Asn57. All these peptide bonds are located at level of the beta-subdomain of the protein (chain region 34-57). Similar sites of preferential cleavage have been observed with the TFE- and oleic acid-induced molten globule of apo-alpha-LA. A protein species given by the N-terminal fragment 1-34 linked via the four disulfide bridges to the C-terminal fragment 54-123 or 57-123 can be isolated from the proteolytic mixture. The results of this study indicate that the same molten globule state of apo-alpha-LA can be obtained at neutral pH under mildly denaturing conditions, as indicated by using a classical spectroscopic technique such as CD and a simple biochemical approach as limited proteolysis. We conclude that the molten globule of alpha-LA maintains a native-like tertiary fold characterized by a rather well-structured alpha-domain and a disordered chain region encompassing the beta-subdomain 34-57 of the protein.
Collapse
|
46
|
Halskau Ø, Frøystein NA, Muga A, Martínez A. The membrane-bound conformation of alpha-lactalbumin studied by NMR-monitored 1H exchange. J Mol Biol 2002; 321:99-110. [PMID: 12139936 DOI: 10.1016/s0022-2836(02)00565-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The interaction of bovine alpha-lactalbumin (BLA) with negatively charged phospholipid bilayers was studied by NMR monitored 1H exchange to characterize the conformational transition that enables a water-soluble protein to associate with and partially insert into a membrane. BLA was allowed to exchange in deuterated buffer in the absence (reference) and the presence (membrane-bound) of acidic liposomes at pH 4.5, experimental conditions that allow efficient protein-membrane interaction. After adjusting the pH to 6.0, to dissociate the protein from the membrane, reference and membrane-released samples of BLA were analysed by (F1) band-selective homonuclear decoupled total correlation spectroscopy in the alphaH-NH region. The overall exchange behaviour of the membrane-bound state is molten globule-like, suggesting an overall destabilization of the polypeptide. Nevertheless, the backbone amide protons of residues R10, L12, C77, K94, K98, V99 and W104 show significant protection against solvent exchange in the membrane-bound protein. We propose a mechanism for the association of BLA with negatively charged membranes that includes initial protonation of acidic side-chains at the membrane interface, and formation of an interacting site with the membrane which involves helixes A and C. In the next step these helices would slide away from each other, adopting a parallel orientation to the membrane, and would rotate to maximize the interaction between their hydrophobic residues and the lipid bilayer.
Collapse
Affiliation(s)
- Øyvind Halskau
- Department of Biochemistry and Molecular Biology, University of Bergen, Arstadveien 19, Norway
| | | | | | | |
Collapse
|
47
|
Luque I, Leavitt SA, Freire E. The linkage between protein folding and functional cooperativity: two sides of the same coin? ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2002; 31:235-56. [PMID: 11988469 DOI: 10.1146/annurev.biophys.31.082901.134215] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During the course of their biological function, proteins undergo different types of structural rearrangements ranging from local to large-scale conformational changes. These changes are usually triggered by their interactions with small-molecular-weight ligands or other macromolecules. Because binding interactions occur at specific sites and involve only a small number of residues, a chain of cooperative interactions is necessary for the propagation of binding signals to distal locations within the protein structure. This process requires an uneven structural distribution of protein stability and cooperativity as revealed by NMR-detected hydrogen/deuterium exchange experiments under native conditions. The distribution of stabilizing interactions does not only provide the architectural foundation to the three-dimensional structure of a protein, but it also provides the required framework for functional cooperativity. In this review, the statistical thermodynamic linkage between protein stability, functional cooperativity, and ligand binding is discussed.
Collapse
Affiliation(s)
- Irene Luque
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | |
Collapse
|
48
|
Wirmer J, Kühn T, Schwalbe H. Millisecond Time Resolved Photo-CIDNP NMR Reveals a Non-Native Folding Intermediate on the Ion-Induced Refolding Pathway of Bovineα-Lactalbumin. Angew Chem Int Ed Engl 2001. [DOI: 10.1002/1521-3757(20011119)113:22<4378::aid-ange4378>3.0.co;2-g] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Wirmer J, Kühn T, Schwalbe H. Millisecond Time Resolved Photo-CIDNP NMR Reveals a Non-Native Folding Intermediate on the Ion-Induced Refolding Pathway of Bovine α-Lactalbumin. Angew Chem Int Ed Engl 2001; 40:4248-4251. [PMID: 29712118 DOI: 10.1002/1521-3773(20011119)40:22<4248::aid-anie4248>3.0.co;2-i] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2001] [Indexed: 11/10/2022]
Abstract
Aspects of the structure of the intermediate populated after 200 ms in the Ca2+ -induced refolding of α-lactalbumin have been derived by time-resolved photo-CIDNP NMR methods. Refolding at constant denaturant concentration was initiated by laser-induced ion release from photolabile chelators. The NMR data demonstrated that part of the polypeptide chain in the β-domain of α-lactalbumin samples adopt non-native conformations while a hydrophobic core of the α-domain is already formed.
Collapse
Affiliation(s)
- Julia Wirmer
- Department of Chemistry and MIT/Harvard Center for Magnetic Resonance at the Francis Bitter Magnet Laboratory Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge MA 02139, USA, Present address: Zentrum für Biologische Magnetische Resonanz Institut für Organische Chemie Universität Frankfurt Marie-Curie-Str. 11 60439 Frankfurt, Germany, Fax: (+49) 697-9829515
| | - Till Kühn
- Department of Chemistry and MIT/Harvard Center for Magnetic Resonance at the Francis Bitter Magnet Laboratory Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge MA 02139, USA, Present address: Zentrum für Biologische Magnetische Resonanz Institut für Organische Chemie Universität Frankfurt Marie-Curie-Str. 11 60439 Frankfurt, Germany, Fax: (+49) 697-9829515
| | - Harald Schwalbe
- Department of Chemistry and MIT/Harvard Center for Magnetic Resonance at the Francis Bitter Magnet Laboratory Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge MA 02139, USA, Present address: Zentrum für Biologische Magnetische Resonanz Institut für Organische Chemie Universität Frankfurt Marie-Curie-Str. 11 60439 Frankfurt, Germany, Fax: (+49) 697-9829515
| |
Collapse
|