1
|
Calcineurin Silencing in Dictyostelium discoideum Leads to Cellular Alterations Affecting Mitochondria, Gene Expression, and Oxidative Stress Response. Protist 2018; 169:584-602. [DOI: 10.1016/j.protis.2018.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 04/04/2018] [Accepted: 04/11/2018] [Indexed: 11/18/2022]
|
2
|
Plattner H. Evolutionary Cell Biology of Proteins from Protists to Humans and Plants. J Eukaryot Microbiol 2017; 65:255-289. [PMID: 28719054 DOI: 10.1111/jeu.12449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/04/2017] [Accepted: 07/07/2017] [Indexed: 01/10/2023]
Abstract
During evolution, the cell as a fine-tuned machine had to undergo permanent adjustments to match changes in its environment, while "closed for repair work" was not possible. Evolution from protists (protozoa and unicellular algae) to multicellular organisms may have occurred in basically two lineages, Unikonta and Bikonta, culminating in mammals and angiosperms (flowering plants), respectively. Unicellular models for unikont evolution are myxamoebae (Dictyostelium) and increasingly also choanoflagellates, whereas for bikonts, ciliates are preferred models. Information accumulating from combined molecular database search and experimental verification allows new insights into evolutionary diversification and maintenance of genes/proteins from protozoa on, eventually with orthologs in bacteria. However, proteins have rarely been followed up systematically for maintenance or change of function or intracellular localization, acquirement of new domains, partial deletion (e.g. of subunits), and refunctionalization, etc. These aspects are discussed in this review, envisaging "evolutionary cell biology." Protozoan heritage is found for most important cellular structures and functions up to humans and flowering plants. Examples discussed include refunctionalization of voltage-dependent Ca2+ channels in cilia and replacement by other types during evolution. Altogether components serving Ca2+ signaling are very flexible throughout evolution, calmodulin being a most conservative example, in contrast to calcineurin whose catalytic subunit is lost in plants, whereas both subunits are maintained up to mammals for complex functions (immune defense and learning). Domain structure of R-type SNAREs differs in mono- and bikonta, as do Ca2+ -dependent protein kinases. Unprecedented selective expansion of the subunit a which connects multimeric base piece and head parts (V0, V1) of H+ -ATPase/pump may well reflect the intriguing vesicle trafficking system in ciliates, specifically in Paramecium. One of the most flexible proteins is centrin when its intracellular localization and function throughout evolution is traced. There are many more examples documenting evolutionary flexibility of translation products depending on requirements and potential for implantation within the actual cellular context at different levels of evolution. From estimates of gene and protein numbers per organism, it appears that much of the basic inventory of protozoan precursors could be transmitted to highest eukaryotic levels, with some losses and also with important additional "inventions."
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, P. O. Box M625, Konstanz, 78457, Germany
| |
Collapse
|
3
|
Thewes S, Schubert SK, Park K, Mutzel R. Stress and development inDictyostelium discoideum: the involvement of the catalytic calcineurin A subunit. J Basic Microbiol 2013; 54:607-13. [DOI: 10.1002/jobm.201200574] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 01/19/2013] [Indexed: 01/26/2023]
Affiliation(s)
- Sascha Thewes
- Department of Biology, Chemistry, Pharmacy; Institute for Biology - Microbiology, Freie Universität Berlin; Berlin Germany
| | - Sebastian K. Schubert
- Department of Biology, Chemistry, Pharmacy; Institute for Biology - Microbiology, Freie Universität Berlin; Berlin Germany
| | - Kyuhyeon Park
- Department of Biology, Chemistry, Pharmacy; Institute for Biology - Microbiology, Freie Universität Berlin; Berlin Germany
| | - Rupert Mutzel
- Department of Biology, Chemistry, Pharmacy; Institute for Biology - Microbiology, Freie Universität Berlin; Berlin Germany
| |
Collapse
|
4
|
The calcineurin dependent transcription factor TacA is involved in development and the stress response of Dictyostelium discoideum. Eur J Cell Biol 2012; 91:789-99. [DOI: 10.1016/j.ejcb.2012.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/20/2012] [Accepted: 07/24/2012] [Indexed: 11/20/2022] Open
|
5
|
Catalano A, O'Day DH. Calmodulin-binding proteins in the model organism Dictyostelium: a complete & critical review. Cell Signal 2007; 20:277-91. [PMID: 17897809 DOI: 10.1016/j.cellsig.2007.08.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 08/20/2007] [Indexed: 10/22/2022]
Abstract
Calmodulin is an essential protein in the model organism Dictyostelium discoideum. As in other organisms, this small, calcium-regulated protein mediates a diversity of cellular events including chemotaxis, spore germination, and fertilization. Calmodulin works in a calcium-dependent or -independent manner by binding to and regulating the activity of target proteins called calmodulin-binding proteins. Profiling suggests that Dictyostelium has 60 or more calmodulin-binding proteins with specific subcellular localizations. In spite of the central importance of calmodulin, the study of these target proteins is still in its infancy. Here we critically review the history and state of the art of research into all of the identified and presumptive calmodulin-binding proteins of Dictyostelium detailing what is known about each one with suggestions for future research. Two individual calmodulin-binding proteins, the classic enzyme calcineurin A (CNA; protein phosphatase 2B) and the nuclear protein nucleomorphin (NumA), which is a regulator of nuclear number, have been particularly well studied. Research on the role of calmodulin in the function and regulation of the various myosins of Dictyostelium, especially during motility and chemotaxis, suggests that this is an area in which future active study would be particularly valuable. A general, hypothetical model for the role of calmodulin in myosin regulation is proposed.
Collapse
Affiliation(s)
- Andrew Catalano
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Rd., Mississauga, ON, Canada L5L 1C6
| | | |
Collapse
|
6
|
Boeckeler K, Tischendorf G, Mutzel R, Weissenmayer B. Aberrant stalk development and breakdown of tip dominance in Dictyostelium cell lines with RNAi-silenced expression of calcineurin B. BMC DEVELOPMENTAL BIOLOGY 2006; 6:12. [PMID: 16512895 PMCID: PMC1431509 DOI: 10.1186/1471-213x-6-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Accepted: 03/02/2006] [Indexed: 01/11/2023]
Abstract
BACKGROUND Calcineurin, the Ca2+/calmodulin-dependent protein phosphatase, plays important roles in various cellular processes in lower and higher eukaryotes. Here we analyze the role of calcineurin in the development of Dictyostelium discoideum by RNAi-mediated manipulation of its expression. RESULTS The cnbA gene of Dictyostelium discoideum which encodes the regulatory B subunit (CNB) of calcineurin was silenced by RNAi. We found a variety of silencing levels of CNB in different recombinant cell lines. Reduction of CNB expression in a given cell line was correlated with developmental aberrations. Cell lines with strongly reduced protein levels developed slower than wild type cells and formed short stalks and spore heads with additional tips. Formation of short stalks results from incomplete vacuolization of prestalk cells during terminal differentiation. Expression of the stalk-specific gene ecmB was reduced in mutant cells. Aberrant stalk development is a cell autonomous defect, whereas the breakdown of tip dominance can be prevented by the presence of as low as 10% wild type cells in chimeras. CONCLUSION Silencing of calcineurin B in Dictyostelium by expression of RNAi reveals an unexpected link between increased intracellular calcium levels, possibly triggered by the morphogen DIF, activation of calcineurin, and the terminal stage of morphogenesis.
Collapse
Affiliation(s)
- Katrina Boeckeler
- Institut für Biologie – Mikrobiologie, Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Königin-Luise-Strasse 12-16, 14195 Berlin, Germany
- University College London, Department of Biology, Gower Street, London, Wc1 E6BT, UK
| | - Gilbert Tischendorf
- Institut für Biologie – Mikrobiologie, Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Königin-Luise-Strasse 12-16, 14195 Berlin, Germany
| | - Rupert Mutzel
- Institut für Biologie – Mikrobiologie, Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Königin-Luise-Strasse 12-16, 14195 Berlin, Germany
| | - Barbara Weissenmayer
- Institut für Biologie – Mikrobiologie, Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Königin-Luise-Strasse 12-16, 14195 Berlin, Germany
| |
Collapse
|
7
|
Weissenmayer B, Boeckeler K, Lahrz A, Mutzel R. The calcineurin inhibitor gossypol impairs growth, cell signalling and development in Dictyostelium discoideum. FEMS Microbiol Lett 2005; 242:19-25. [PMID: 15621416 DOI: 10.1016/j.femsle.2004.10.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Revised: 09/22/2004] [Accepted: 10/19/2004] [Indexed: 10/26/2022] Open
Abstract
The Dictyostelium genome harbors single copy genes for both the catalytic and regulatory subunits of the Ca2+/calmodulin-dependent protein phosphatase calcineurin. Since molecular genetic approaches to reduce the expression of these genes have failed so far, we attempted to pharmacologically target calcineurin activity in vivo by using the recently described calcineurin inhibitor, gossypol. Up-regulation of expression of the gene for the Ca2+-ATPase PAT1 in conditions of Ca2+ stress was reduced by gossypol. Dictyostelium wild-type cells treated with 12.5-100 microM gossypol showed reduced growth rates and impaired development. In addition, cell signalling was affected. A cell line that overproduces the catalytic subunit of calcineurin was more resistant to gossypol.
Collapse
Affiliation(s)
- Barbara Weissenmayer
- Institut für Biologie - Mikrobiologie, Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Königin-Luise-Strasse 12-16, 14195 Berlin, Germany.
| | | | | | | |
Collapse
|
8
|
Coukell B, Cameron A, Perusini S, Shim K. Disruption of the NCS-1/frequenin-related ncsA gene in Dictyostelium discoideum accelerates development. Dev Growth Differ 2005; 46:449-58. [PMID: 15606490 DOI: 10.1111/j.1440-169x.2004.00761.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To learn more about the function of intracellular Ca2+ in Dictyostelium discoideum, we searched databases for sequences encoding potential members of the neuronal calcium sensor (NCS) family of Ca2+-binding proteins. As a result, genes for five new putative Ca2+-binding proteins were identified. Based on amino acid sequence alignments and phylogenetic analyses, one of these genes (ncsA) was determined to be closely related to NCS-1/frequenin genes in other organisms. The protein product of ncsA (NcsA) binds 45Ca2+ and exhibits a dramatic gel mobility shift in the presence of Ca2+, suggesting that it is a Ca2+ sensor. ncsA-null cells grow normally in axenic culture. However, on bacterial lawns, the ncsA-null clones expand slowly and development begins prematurely within the plaques. In larger clones, ncsA-null cells form narrow growth zones with evenly spaced aggregates along the inner edge, and closely packed fruiting bodies. An analysis of intracellular cyclic adenosine monophosphate (cAMP) levels, developmental timing on phosphate-buffered saline (PBS) agar, and stage-specific gene expression indicate that development of ncsA-null cells is accelerated by 3-4 h. Together, these results suggest that NcsA might function in Dictyostelium to prevent cells from entering development prematurely in the presence of environmental nutrients.
Collapse
Affiliation(s)
- Barrie Coukell
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.
| | | | | | | |
Collapse
|
9
|
Coukell B, Li Y, Moniakis J, Cameron A. The Ca2+/calcineurin-regulated cup gene family in Dictyostelium discoideum and its possible involvement in development. EUKARYOTIC CELL 2004; 3:61-71. [PMID: 14871937 PMCID: PMC329516 DOI: 10.1128/ec.3.1.61-71.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Changes in free intracellular Ca2+ are thought to regulate several major processes during Dictyostelium development, including cell aggregation and cell type-specific gene expression, but the mechanisms involved are unclear. To learn more about Ca2+ signaling and Ca2+ homeostasis in this organism, we used suppression subtractive hybridization to identify genes up-regulated by high extracellular Ca2+. Unexpectedly, many of the genes identified belong to a novel gene family (termed cup) with seven members. In vegetative cells, the cup genes were up-regulated by high Ca2+ but not by other ions or by heat, oxidative, or osmotic stress. cup induction by Ca2+ was blocked completely by inhibitors of calcineurin and protein synthesis. In developing cells, cup expression was high during aggregation and late development but low during the slug stage. This pattern correlates closely with reported levels of free intracellular Ca2+ during development. The cup gene products are highly homologous, acidic proteins possessing putative ricin domains. BLAST searches failed to reveal homologs in other organisms, but Western analyses suggested that Cup-like proteins might exist in certain other cellular slime mold species. Localization experiments indicated that Cup proteins are primarily cytoplasmic but become cell membrane-associated during Ca2+ stress and cell aggregation. When cup expression was down-regulated by antisense RNA, the cells failed to aggregate. However, this developmental block was overcome by partially up-regulating cup expression. Together, these results suggest that the Cup proteins in Dictyostelium might play an important role in stabilizing and/or regulating the cell membrane during Ca2+ stress and/or certain stages of development.
Collapse
Affiliation(s)
- Barrie Coukell
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada.
| | | | | | | |
Collapse
|
10
|
Abstract
Selection of the translational initiation site in most eukaryotic mRNAs appears to occur via a scanning mechanism which predicts that proximity to the 5' end plays a dominant role in identifying the start codon. This "position effect" is seen in cases where a mutation creates an AUG codon upstream from the normal start site and translation shifts to the upstream site. The position effect is evident also in cases where a silent internal AUG codon is activated upon being relocated closer to the 5' end. Two mechanisms for escaping the first-AUG rule--reinitiation and context-dependent leaky scanning--enable downstream AUG codons to be accessed in some mRNAs. Although these mechanisms are not new, many new examples of their use have emerged. Via these escape pathways, the scanning mechanism operates even in extreme cases, such as a plant virus mRNA in which translation initiates from three start sites over a distance of 900 nt. This depends on careful structural arrangements, however, which are rarely present in cellular mRNAs. Understanding the rules for initiation of translation enables understanding of human diseases in which the expression of a critical gene is reduced by mutations that add upstream AUG codons or change the context around the AUG(START) codon. The opposite problem occurs in the case of hereditary thrombocythemia: translational efficiency is increased by mutations that remove or restructure a small upstream open reading frame in thrombopoietin mRNA, and the resulting overproduction of the cytokine causes the disease. This and other examples support the idea that 5' leader sequences are sometimes structured deliberately in a way that constrains scanning in order to prevent harmful overproduction of potent regulatory proteins. The accumulated evidence reveals how the scanning mechanism dictates the pattern of transcription--forcing production of monocistronic mRNAs--and the pattern of translation of eukaryotic cellular and viral genes.
Collapse
Key Words
- translational control
- aug context
- 5′ untranslated region
- reinitiation
- leaky scanning
- dicistronic mrna
- internal ribosome entry site
- adometdc, s-adenosylmethionine decarboxylase
- a2ar, a2a adenosine receptor
- c/ebp, ccaat/enhancer binding protein
- ctl, cytotoxic t-lymphocyte
- egfp, enhanced green fluorescent protein
- eif, eukaryotic initiation factor
- hiv-1, human immunodeficiency virus 1
- ires, internal ribosome entry site
- lef1, lymphoid enhancer factor-1
- ogp, osteogenic growth peptide
- orf, open reading frame
- r, purine
- tpo, thrombopoietin
- uporf, upstream open reading frame
- utr, untranslated region
Collapse
Affiliation(s)
- Marilyn Kozak
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA.
| |
Collapse
|