1
|
Musleh S, Alibay I, Biggin PC, Bryce RA. Analysis of Glycan Recognition by Concanavalin A Using Absolute Binding Free Energy Calculations. J Chem Inf Model 2024; 64:8063-8073. [PMID: 39413277 PMCID: PMC11523069 DOI: 10.1021/acs.jcim.4c01088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024]
Abstract
Carbohydrates are key biological mediators of molecular recognition and signaling processes. In this case study, we explore the ability of absolute binding free energy (ABFE) calculations to predict the affinities of a set of five related carbohydrate ligands for the lectin protein, concanavalin A, ranging from 27-atom monosaccharides to a 120-atom complex-type N-linked glycan core pentasaccharide. ABFE calculations quantitatively rank and estimate the affinity of the ligands in relation to microcalorimetry, with a mean signed error in the binding free energy of -0.63 ± 0.04 kcal/mol. Consequently, the diminished binding efficiencies of the larger carbohydrate ligands are closely reproduced: the ligand efficiency values from isothermal titration calorimetry for the glycan core pentasaccharide and its constituent trisaccharide and monosaccharide compounds are respectively -0.14, -0.22, and -0.41 kcal/mol per heavy atom. ABFE calculations predict these ligand efficiencies to be -0.14 ± 0.02, -0.24 ± 0.03, and -0.46 ± 0.06 kcal/mol per heavy atom, respectively. Consequently, the ABFE method correctly identifies the high affinity of the key anchoring mannose residue and the negligible contribution to binding of both β-GlcNAc arms of the pentasaccharide. While challenges remain in sampling the conformation and interactions of these polar, flexible, and weakly bound ligands, we nevertheless find that the ABFE method performs well for this lectin system. The approach shows promise as a quantitative tool for predicting and deconvoluting carbohydrate-protein interactions, with potential application to design of therapeutics, vaccines, and diagnostics.
Collapse
Affiliation(s)
- Sondos Musleh
- Division
of Pharmacy and Optometry, The University
of Manchester, Manchester M13 9PT, U.K.
- Department
of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Irfan Alibay
- Open Free
Energy, Open Molecular Software Foundation, Davis, California 95616, United States
- Structural
Bioinformatics and Computational Biochemistry, Department of Biochemistry, The University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| | - Philip C. Biggin
- Structural
Bioinformatics and Computational Biochemistry, Department of Biochemistry, The University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| | - Richard A. Bryce
- Division
of Pharmacy and Optometry, The University
of Manchester, Manchester M13 9PT, U.K.
| |
Collapse
|
2
|
Hwang Y, Jeong JH, Lee DH, Lee SJ. Selective interactions of Co 2+-Ca 2+-concanavalin A with high mannose N-glycans. Dalton Trans 2024; 53:428-433. [PMID: 38086668 DOI: 10.1039/d3dt03575a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Concanavalin A (ConA) has an intrinsic binding affinity to carbohydrates. Here, we obtained Co2+-Ca2+-ConA (2.83 Å, PDB: 8I7Q) via X-ray crystallography by substituting native ConA (Mn2+-Ca2+); it has binding selectivity for high-mannose N-glycan similar to native ConA. Our findings may thus inform antiviral reagent design.
Collapse
Affiliation(s)
- Yunha Hwang
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Jae-Hee Jeong
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Dong-Heon Lee
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Seung Jae Lee
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea.
- Institute of Molecular Biology and Genetics, Jeonbuk National University 54896, Republic of Korea
| |
Collapse
|
3
|
Huang X, Zhang Z, Chen L, Lin Y, Zeng R, Xu J, Chen S, Zhang J, Cai H, Zhou H, Sun P. Multifunctional Au nano-bridged nanogap probes as ICP-MS/SERS dual-signal tags and signal amplifiers for bacteria discriminating, quantitative detecting and photothermal bactericidal activity. Biosens Bioelectron 2022; 212:114414. [PMID: 35687957 DOI: 10.1016/j.bios.2022.114414] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022]
Abstract
Ultra-sensitive detection of pathogenic bacteria is of great significance in the early stage of bacterial infections and treatment. In this work, we report a novel strategy using multifunctional Au nano-bridged nanogap nanoparticles (Au NNPs)-based sandwich nanocomposites, that made of Concanavalin A-conjugated Fe3O4@SiO2 NPs (ConA-Fe3O4@SiO2 NPs)/bacteria/aptamer-modified Au NNPs (apt-Au NNPs), for bacteria discrimination and quantitative detection by surface-enhanced Raman scattering (SERS) and inductively coupled plasma mass spectrometry (ICP-MS), and subsequently photothermal antibacterial assay. The sandwich nanocomposite consists of ConA-Fe3O4@SiO2 NPs to magnetically enrich and photothermal killing bacteria, and dual-signal tags of apt-Au NNPs for both SERS sensing and ICP-MS quantification. This strategy can specifically distinguish different kinds of pathogenic bacteria, and provided a good linear relationship of Staphylococcus aureus (S. aureus) in the range from 50 to 104 CFU/mL with a detection limit of 11 CFU/mL, as well as realized ultralow amounts of bacterial detection in serum sample with high accuracy. Based on the quantitative detection, high antibacterial efficiency was monitored by ICP-MS. Overall, the established method combines bacteria discrimination, quantitative detection, and photothermal elimination with a simple and rapid process, which provides a novel way for the early diagnosis and treatment of bacterial infection.
Collapse
Affiliation(s)
- Xueqin Huang
- Department of Dermatology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, PR China; College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Zhubao Zhang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, PR China
| | - Lingzhi Chen
- Department of Dermatology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, PR China
| | - Yongjian Lin
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, PR China
| | - Runmin Zeng
- Department of Dermatology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, PR China
| | - Jun Xu
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Shanze Chen
- Department of Dermatology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, PR China
| | - Jianglin Zhang
- Department of Dermatology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, PR China
| | - Huaihong Cai
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, PR China.
| | - Haibo Zhou
- Department of Dermatology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, PR China; College of Pharmacy, Jinan University, Guangzhou, 510632, PR China.
| | - Pinghua Sun
- Department of Dermatology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, PR China; College of Pharmacy, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
4
|
Jang H, Lee C, Hwang Y, Lee SJ. Concanavalin A: coordination diversity to xenobiotic metal ions and biological consequences. Dalton Trans 2021; 50:17817-17831. [PMID: 34806716 DOI: 10.1039/d1dt03501k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The binding ability of lectins has gained attention owing to the carbohydrate-specific interactions of these proteins. Such interactions can be applied to diverse fields of biotechnology, including the detection, isolation, and concentration of biological target molecules. The physiological aspects of the lectin concanavalin A (ConA) have been intensively studied through structural and functional investigations. X-ray crystallography studies have proven that ConA has two β-sheets and a short α-helix and that it exists in the form of a metalloprotein containing Mn2+ and Ca2+. These heterometals are coordinated with side chains located in a metal-coordinated domain (MCD), and they affect the structural environment in the carbohydrate-binding domain (CBD), which interacts with carbohydrates through hydrogen bonds. Recent studies have shown that ConA can regulate biophysical interactions with glycoproteins in virus envelopes because it specifically interacts with diverse polysaccharides through its CBD (Tyr, Asn, Asp, and Arg residues positioned next to the MCD). Owing to their protein-protein interaction abilities, ConA can form diverse self-assembled complexes including monomers, dimers, trimers, and tetramers, thus affording unique results in different applications. In this regard, herein, we present a review of the structural modifications in ConA through metal-ion coordination and their effect on complex formation. In recent approaches, ConA has been applied for viral protein detection, on the basis of the interactions of ConA. These aspects indicate that lectins should be thoroughly investigated with respect to their biophysical interactions, for avoiding unexpected changes in their interaction abilities.
Collapse
Affiliation(s)
- Hara Jang
- Department of Chemistry and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Chaemin Lee
- Department of Chemistry and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Yunha Hwang
- Department of Chemistry and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Seung Jae Lee
- Department of Chemistry and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| |
Collapse
|
5
|
Abstract
Lectins are widely distributed proteins having ability of binding selectively and reversibly with carbohydrates moieties and glycoconjugates. Although lectins have been reported from different biological sources, the legume lectins are the best-characterized family of plant lectins. Legume lectins are a large family of homologous proteins with considerable similarity in amino acid sequence and their tertiary structures. Despite having strong sequence conservation, these lectins show remarkable variability in carbohydrate specificity and quaternary structures. The ability of legume lectins in recognizing glycans and glycoconjugates on cells and other intracellular structures make them a valuable research tool in glycomic research. Due to variability in binding with glycans, glycoconjugates and multiple biological functions, legume lectins are the subject of intense research for their diverse application in different fields such as glycobiology, biomedical research and crop improvement. The present review specially focuses on structural and functional characteristics of legume lectins along with their potential areas of application.
Collapse
Affiliation(s)
- Rajan Katoch
- Biochemistry Laboratory, Department of Genetics and Plant Breeding, CSKHPKV, Palampur, 176 062 India
| | - Ankur Tripathi
- Biochemistry Laboratory, Department of Genetics and Plant Breeding, CSKHPKV, Palampur, 176 062 India
| |
Collapse
|
6
|
Jang H, Lee DH, Kang HG, Lee SJ. Concanavalin A targeting N-linked glycans in spike proteins influence viral interactions. Dalton Trans 2021; 49:13538-13543. [PMID: 33001090 DOI: 10.1039/d0dt02932g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lectins, which exhibit viral-interaction abilities, have garnered attention in the current pandemic era as potential neutralizing agents and vaccine candidates. Viral invasion through envelope proteins is modulated by N-linked glycosylation in the spike (S) protein. This study demonstrates the biophysical aspects between lectins and high-mannose and -galactose N-glycans to provide insights into binding events.
Collapse
Affiliation(s)
- Hara Jang
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Dong-Heon Lee
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Hyun Goo Kang
- Department of Neurology and Biomedical Research Institute, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Seung Jae Lee
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea. and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
7
|
Partridge BE, Winegar PH, Han Z, Mirkin CA. Redefining Protein Interfaces within Protein Single Crystals with DNA. J Am Chem Soc 2021; 143:8925-8934. [PMID: 34096291 PMCID: PMC8381744 DOI: 10.1021/jacs.1c04191] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Proteins are exquisite nanoscale building blocks: molecularly pure, chemically addressable, and inherently selective for their evolved function. The organization of proteins into single crystals with high positional, orientational, and translational order results in materials where the location of every atom can be known. However, controlling the organization of proteins is challenging due to the myriad interactions that define protein interfaces within native single crystals. Recently, we discovered that introducing a single DNA-DNA interaction between protein surfaces leads to changes in the packing of proteins within single crystals and the protein-protein interactions (PPIs) that arise. However, modifying specific PPIs to effect deliberate changes to protein packing is an unmet challenge. In this work, we hypothesized that disrupting and replacing a highly conserved PPI with a DNA-DNA interaction would enable protein packing to be modulated by exploiting the programmability of the introduced oligonucleotides. Using concanavalin A (ConA) as a model protein, we circumvent potentially deleterious mutagenesis and exploit the selective binding of ConA toward mannose to noncovalently attach DNA to the protein surface. We show that DNA association eliminates the major PPI responsible for crystallization of native ConA, thereby allowing subtle changes to DNA design (length, complementarity, and attachment position) to program distinct changes to ConA packing, including the realization of three novel crystal structures and the deliberate expansion of ConA packing along a single crystallographic axis. These findings significantly enhance our understanding of how DNA can supersede native PPIs to program protein packing within ordered materials.
Collapse
Affiliation(s)
- Benjamin E Partridge
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Peter H Winegar
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zhenyu Han
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
8
|
Mi F, Guan M, Hu C, Peng F, Sun S, Wang X. Application of lectin-based biosensor technology in the detection of foodborne pathogenic bacteria: a review. Analyst 2021; 146:429-443. [DOI: 10.1039/d0an01459a] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Foodborne diseases caused by pathogenic bacteria pose a serious threat to human health.
Collapse
Affiliation(s)
- Fang Mi
- College of Chemistry and Chemical Engineering
- Xinjiang normal University
- Urumqi
- China
- Xinjiang bingtuan Xingxin Vocational and Technical College
| | - Ming Guan
- College of Chemistry and Chemical Engineering
- Xinjiang normal University
- Urumqi
- China
| | - Cunming Hu
- College of Chemistry and Chemical Engineering
- Xinjiang normal University
- Urumqi
- China
| | - Fei Peng
- College of Chemistry and Chemical Engineering
- Xinjiang normal University
- Urumqi
- China
| | - Shijiao Sun
- College of Chemistry and Chemical Engineering
- Xinjiang normal University
- Urumqi
- China
| | - Xiaomei Wang
- College of Chemistry and Chemical Engineering
- Xinjiang normal University
- Urumqi
- China
| |
Collapse
|
9
|
Strzelczyk AK, Paul TJ, Schmidt S. Quantifying Thermoswitchable Carbohydrate‐Mediated Interactions via Soft Colloidal Probe Adhesion Studies. Macromol Biosci 2020; 20:e2000186. [DOI: 10.1002/mabi.202000186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/07/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Alexander Klaus Strzelczyk
- Institute of Organic and Macromolecular Chemistry Heinrich‐Heine‐University Düsseldorf Universitatsstraße 1 Dusseldorf 40225 Germany
| | - Tanja Janine Paul
- Institute of Organic and Macromolecular Chemistry Heinrich‐Heine‐University Düsseldorf Universitatsstraße 1 Dusseldorf 40225 Germany
| | - Stephan Schmidt
- Institute of Organic and Macromolecular Chemistry Heinrich‐Heine‐University Düsseldorf Universitatsstraße 1 Dusseldorf 40225 Germany
| |
Collapse
|
10
|
Paul TJ, Strzelczyk AK, Feldhof MI, Schmidt S. Temperature-Switchable Glycopolymers and Their Conformation-Dependent Binding to Receptor Targets. Biomacromolecules 2020; 21:2913-2921. [DOI: 10.1021/acs.biomac.0c00676] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Tanja J. Paul
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Dusseldorf 40225, Germany
| | - Alexander K. Strzelczyk
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Dusseldorf 40225, Germany
| | - Melina I. Feldhof
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Dusseldorf 40225, Germany
| | - Stephan Schmidt
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Dusseldorf 40225, Germany
| |
Collapse
|
11
|
Coff L, Chan J, Ramsland PA, Guy AJ. Identifying glycan motifs using a novel subtree mining approach. BMC Bioinformatics 2020; 21:42. [PMID: 32019496 PMCID: PMC7001330 DOI: 10.1186/s12859-020-3374-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 01/20/2020] [Indexed: 11/17/2022] Open
Abstract
Background Glycans are complex sugar chains, crucial to many biological processes. By participating in binding interactions with proteins, glycans often play key roles in host–pathogen interactions. The specificities of glycan-binding proteins, such as lectins and antibodies, are governed by motifs within larger glycan structures, and improved characterisations of these determinants would aid research into human diseases. Identification of motifs has previously been approached as a frequent subtree mining problem, and we extend these approaches with a glycan notation that allows recognition of terminal motifs. Results In this work, we customised a frequent subtree mining approach by altering the glycan notation to include information on terminal connections. This allows specific identification of terminal residues as potential motifs, better capturing the complexity of glycan-binding interactions. We achieved this by including additional nodes in a graph representation of the glycan structure to indicate the presence or absence of a linkage at particular backbone carbon positions. Combining this frequent subtree mining approach with a state-of-the-art feature selection algorithm termed minimum-redundancy, maximum-relevance (mRMR), we have generated a classification pipeline that is trained on data from a glycan microarray. When applied to a set of commonly used lectins, the identified motifs were consistent with known binding determinants. Furthermore, logistic regression classifiers trained using these motifs performed well across most lectins examined, with a median AUC value of 0.89. Conclusions We present here a new subtree mining approach for the classification of glycan binding and identification of potential binding motifs. The Carbohydrate Classification Accounting for Restricted Linkages (CCARL) method will assist in the interpretation of glycan microarray experiments and will aid in the discovery of novel binding motifs for further experimental characterisation.
Collapse
Affiliation(s)
- Lachlan Coff
- School of Science, College of Science, Engineering and Health, RMIT University, 3000, Melbourne, Australia
| | - Jeffrey Chan
- School of Science, College of Science, Engineering and Health, RMIT University, 3000, Melbourne, Australia
| | - Paul A Ramsland
- School of Science, College of Science, Engineering and Health, RMIT University, 3000, Melbourne, Australia.,Department of Immunology, Monash University, 3004, Melbourne, Australia.,Department of Surgery Austin Health, University of Melbourne, 3084, Heidelberg, Australia
| | - Andrew J Guy
- School of Science, College of Science, Engineering and Health, RMIT University, 3000, Melbourne, Australia.
| |
Collapse
|
12
|
Barre A, Bourne Y, Van Damme EJM, Rougé P. Overview of the Structure⁻Function Relationships of Mannose-Specific Lectins from Plants, Algae and Fungi. Int J Mol Sci 2019; 20:E254. [PMID: 30634645 PMCID: PMC6359319 DOI: 10.3390/ijms20020254] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/29/2018] [Accepted: 12/31/2018] [Indexed: 01/05/2023] Open
Abstract
To date, a number of mannose-binding lectins have been isolated and characterized from plants and fungi. These proteins are composed of different structural scaffold structures which harbor a single or multiple carbohydrate-binding sites involved in the specific recognition of mannose-containing glycans. Generally, the mannose-binding site consists of a small, central, carbohydrate-binding pocket responsible for the "broad sugar-binding specificity" toward a single mannose molecule, surrounded by a more extended binding area responsible for the specific recognition of larger mannose-containing N-glycan chains. Accordingly, the mannose-binding specificity of the so-called mannose-binding lectins towards complex mannose-containing N-glycans depends largely on the topography of their mannose-binding site(s). This structure⁻function relationship introduces a high degree of specificity in the apparently homogeneous group of mannose-binding lectins, with respect to the specific recognition of high-mannose and complex N-glycans. Because of the high specificity towards mannose these lectins are valuable tools for deciphering and characterizing the complex mannose-containing glycans that decorate both normal and transformed cells, e.g., the altered high-mannose N-glycans that often occur at the surface of various cancer cells.
Collapse
Affiliation(s)
- Annick Barre
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France.
| | - Yves Bourne
- Centre National de la Recherche Scientifique, Aix-Marseille Univ, Architecture et Fonction des Macromolécules Biologiques, 163 Avenue de Luminy, 13288 Marseille, France.
| | - Els J M Van Damme
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium.
| | - Pierre Rougé
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France.
| |
Collapse
|
13
|
Gerlits OO, Coates L, Woods RJ, Kovalevsky A. Mannobiose Binding Induces Changes in Hydrogen Bonding and Protonation States of Acidic Residues in Concanavalin A As Revealed by Neutron Crystallography. Biochemistry 2017; 56:4747-4750. [PMID: 28846383 DOI: 10.1021/acs.biochem.7b00654] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plant lectins are carbohydrate-binding proteins with various biomedical applications. Concanavalin A (Con A) holds promise in treating cancerous tumors. To better understand the Con A carbohydrate binding specificity, we obtained a room-temperature neutron structure of this legume lectin in complex with a disaccharide Manα1-2Man, mannobiose. The neutron structure afforded direct visualization of the hydrogen bonding between the protein and ligand, showing that the ligand is able to alter both protonation states and interactions for residues located close to and distant from the binding site. An unprecedented low-barrier hydrogen bond was observed forming between the carboxylic side chains of Asp28 and Glu8, with the D atom positioned equidistant from the oxygen atoms having an O···D···O angle of 101.5°.
Collapse
Affiliation(s)
- Oksana O Gerlits
- UT/ORNL Joint Institute for Biological Sciences, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Leighton Coates
- Biology and Soft Matter Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Robert J Woods
- Complex Carbohydrate Research Center, University of Georgia , Athens, Georgia 30602-4712, United States
| | - Andrey Kovalevsky
- Biology and Soft Matter Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
14
|
Kim D, Lee HM, Oh KS, Ki AY, Protzman RA, Kim D, Choi JS, Kim MJ, Kim SH, Vaidya B, Lee SJ, Kwon J. Exploration of the metal coordination region of concanavalin A for its interaction with human norovirus. Biomaterials 2017; 128:33-43. [PMID: 28288347 PMCID: PMC7112440 DOI: 10.1016/j.biomaterials.2017.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 02/26/2017] [Accepted: 03/05/2017] [Indexed: 12/15/2022]
Abstract
Rapid methods for the detection and clinical treatment of human norovirus (HuNoV) are needed to control foodborne disease outbreaks, but reliable techniques that are fast and sensitive enough to detect small amounts of HuNoV in food and aquatic environments are not yet available. We explore the interactions between HuNoV and concanavalin A (Con A), which could facilitate the development of a sensitive detection tool for HuNoV. Biophysical studies including hydrogen/deuterium exchange (HDX) mass spectrometry and surface plasmon resonance (SPR) revealed that when the metal coordinated region of Con A, which spans Asp16 to His24, is converted to nine alanine residues (mCon AMCR), the affinity for HuNoV (GII.4) diminishes, demonstrating that this Ca2+ and Mn2+ coordinated region is responsible for the observed virus-protein interaction. The mutated carbohydrate binding region of Con A (mCon ACBR) does not affect binding affinity significantly, indicating that MCR of Con A is a major region of interaction to HuNoV (GII.4). The results further contribute to the development of a HuNoV concentration tool, Con A-immobilized polyacrylate beads (Con A-PAB), for rapid detection of genotypes from genogroups I and II (GI and GII). This method offers many advantages over currently available methods, including a short concentration time. HuNov (GI and GII) can be detected in just 15 min with 90% recovery through Con A-PAB application. In addition, this method can be used over a wide range of pH values (pH 3.0 – 10.0). Overall, this rapid and sensitive detection of HuNoV (GI and GII) will aid in the prevention of virus transmission pathways, and the method developed here may have applicability for other foodborne viral infections.
Collapse
Affiliation(s)
- Duwoon Kim
- Department of Food Science and Technology and Foodborne Virus Research Center, Chonnam National University, Gwangju 61186, Republic of Korea; Bioenergy Research Center, Chonnam National University, Gwangju 61186, South Korea
| | - Hee-Min Lee
- Department of Food Science and Technology and Foodborne Virus Research Center, Chonnam National University, Gwangju 61186, Republic of Korea; Biological Disaster Analysis Group, Korea Basic Science Institute, Gwahak-ro, Yuseong-gu, Daejeon 34133, Republic of Korea
| | - Kyung-Seo Oh
- Department of Food Science and Technology and Foodborne Virus Research Center, Chonnam National University, Gwangju 61186, Republic of Korea; Biological Disaster Analysis Group, Korea Basic Science Institute, Gwahak-ro, Yuseong-gu, Daejeon 34133, Republic of Korea
| | - Ah Young Ki
- Biological Disaster Analysis Group, Korea Basic Science Institute, Gwahak-ro, Yuseong-gu, Daejeon 34133, Republic of Korea; Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Rachael A Protzman
- Department of Food Science and Technology and Foodborne Virus Research Center, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Dongkyun Kim
- Biological Disaster Analysis Group, Korea Basic Science Institute, Gwahak-ro, Yuseong-gu, Daejeon 34133, Republic of Korea
| | - Jong-Soon Choi
- Biological Disaster Analysis Group, Korea Basic Science Institute, Gwahak-ro, Yuseong-gu, Daejeon 34133, Republic of Korea; Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Min Ji Kim
- Microbiology Division, Health and Environment Research Institute of Gwangju, Gwangju 61986, Republic of Korea
| | - Sung Hyun Kim
- Hygienic Safety and Analysis Center, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Bipin Vaidya
- Department of Food Science and Technology and Foodborne Virus Research Center, Chonnam National University, Gwangju 61186, Republic of Korea; Bioenergy Research Center, Chonnam National University, Gwangju 61186, South Korea
| | - Seung Jae Lee
- Department of Chemistry and Research Center for Physics and Chemistry, Chonbuk National University, Jeonju 54896, Republic of Korea.
| | - Joseph Kwon
- Biological Disaster Analysis Group, Korea Basic Science Institute, Gwahak-ro, Yuseong-gu, Daejeon 34133, Republic of Korea.
| |
Collapse
|
15
|
Pattern Recognition in Legume Lectins to Extrapolate Amino Acid Variability to Sugar Specificity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014. [DOI: 10.1007/978-3-319-11280-0_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
16
|
Nagae M, Soga K, Morita-Matsumoto K, Hanashima S, Ikeda A, Yamamoto K, Yamaguchi Y. Phytohemagglutinin from Phaseolus vulgaris (PHA-E) displays a novel glycan recognition mode using a common legume lectin fold. Glycobiology 2014; 24:368-78. [DOI: 10.1093/glycob/cwu004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
17
|
Olkhov RV, Weissenborn MJ, Flitsch SL, Shaw AM. Glycosylation characterization of human and porcine fibrinogen proteins by lectin-binding biophotonic microarray imaging. Anal Chem 2013; 86:621-8. [PMID: 24328092 DOI: 10.1021/ac402872t] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lectin binding has been studied using the particle plasmon light-scattering properties of gold nanoparticles printed into an array format. Performance of the kinetic assay is evaluated from a detailed analysis of the binding of concanavalin A (ConA) and wheat germ agglutinin (WGA) to their target monosaccharides indicating affinity constants in the order of KD ∼10 nM for the lectin-monosaccharide interaction. The detection limits for the lectins following a 200 s injection time were determined as 10 ng/mL or 0.23 nM and 100 ng/mL or 0.93 nM, respectively. Subsequently, a nine-lectin screen was performed on the porcine and human fibrinogen glycoproteins. The observed spectra of lectin-protein specific binding rates result in characteristic patterns that evidently correlate with the structure of the glycans and allow one to distinguish between glycosylation of the porcine and human fibrinogens. The array technology has the potential to perform a multilectin screen of large numbers of proteins providing information on protein glycosylation and their microheterogeneity.
Collapse
Affiliation(s)
- Rouslan V Olkhov
- College of Life and Environmental Sciences, University of Exeter , Exeter, Devon EX4 4QD, United Kingdom
| | | | | | | |
Collapse
|
18
|
Higashimoto M, Sakai Y, Takamura M, Usui S, Nasti A, Yoshida K, Seki A, Komura T, Honda M, Wada T, Furuichi K, Ochiya T, Kaneko S. Adipose tissue derived stromal stem cell therapy in murine ConA-derived hepatitis is dependent on myeloid-lineage and CD4+ T-cell suppression. Eur J Immunol 2013; 43:2956-68. [PMID: 23934743 DOI: 10.1002/eji.201343531] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 07/03/2013] [Accepted: 08/06/2013] [Indexed: 12/20/2022]
Abstract
Mesenchymal stromal stem cells (MSCs) are an attractive therapeutic model for regenerative medicine due to their pluripotency. MSCs are used as a treatment for several inflammatory diseases, including hepatitis. However, the detailed immunopathological impact of MSC treatment on liver disease, particularly for adipose tissue derived stromal stem cells (ADSCs), has not been described. Here, we investigated the immuno-modulatory effect of ADSCs on hepatitis using an acute ConA C57BL/6 murine hepatitis model. i.v. administration of ADSCs simultaneously or 3 h post injection prevented and treated ConA-induced hepatitis. Immunohistochemical analysis revealed higher numbers of CD11b(+), Gr-1(+), and F4/80(+) cells in the liver of ConA-induced hepatitis mice was ameliorated after the administration of ADSCs. Hepatic expression of genes affected by ADSC administration indicated tissue regeneration-related biological processes, affecting myeloid-lineage immune-mediating Gr-1(+) and CD11b(+) cells. Pathway analysis of the genes expressed in ADSC-treated hepatic inflammatory cells revealed the possible involvement of T cells and macrophages. TNF-α and IFN-γ expression was downregulated in hepatic CD4(+) T cells isolated from hepatitis livers co-cultured with ADSCs. Thus, the immunosuppressive effect of ADSCs in a C57BL/6 murine ConA hepatitis model was dependent primarily on the suppression of myeloid-lineage cells and, in part, of CD4(+) T cells.
Collapse
Affiliation(s)
- Mami Higashimoto
- Disease Control and Homeostasis, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Valenga F, Petri DFS, Lucyszyn N, Jó TA, Sierakowski MR. Galactomannan thin films as supports for the immobilization of Concanavalin A and/or dengue viruses. Int J Biol Macromol 2011; 50:88-94. [PMID: 22020153 DOI: 10.1016/j.ijbiomac.2011.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 09/27/2011] [Accepted: 10/04/2011] [Indexed: 11/15/2022]
Abstract
The immobilization of the glucose/mannose-binding lectin from Concanavalia ensiformis seeds (ConA) onto a monolayer made of a galactomannan extracted from Leucaena leucocephala seeds (GML), which was adsorbed onto - amino-terminated surfaces, was investigated by means of ellipsometry and atomic force microscopy. The mean thickness of GML monolayer, which polysaccharide consists of linear 1→4-linked β-D-mannopyranosil units partially substituted at C-6 by α-D-galactopyranosyl units, amounted to (1.5±0.2) nm. ConA molecules adsorbed onto GML surfaces forming (2.0±0.5) nm thick layers. However, in the presence of mannose the adsorption failed, indicating that ConA binding sites were blocked by mannose and were no longer available for mannose units present in the GML backbone. The GML film was also used as support for the adsorption of three serotypes of dengue virus particles (DENV-1, DENV-2 and DENV-3), where DENV-2 formed the thickest film (4±2) nm. The adsorbed layer of DENV-2 onto ConA-covered GML surfaces presented mean thickness values similar to that determined for DENV-2 onto bare GML surfaces. The addition of free mannose units prevented DENV-2 adsorption onto ConA-covered GML films by ~50%, suggesting competition between virus and mannose for ConA binding sites. This finding suggests that if ConA is also adsorbed to GML surface and its binding site is blocked by free mannose, virus particles are able to recognized GML mannose unities substituted by galactose. Interactions between polysaccharides thin films, proteins, and viruses are of great relevance since they can provide basis for the development of biotechnological devices. These results indicate that GML is a potential polysaccharide for biomaterials development, as those could involve interactions between ConA in immune system and viruses.
Collapse
Affiliation(s)
- Francine Valenga
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | | | | | | | | |
Collapse
|
20
|
Agostino M, Sandrin MS, Thompson PE, Farrugia W, Ramsland PA, Yuriev E. Carbohydrate-mimetic peptides: structural aspects of mimicry and therapeutic implications. Expert Opin Biol Ther 2011; 11:211-24. [DOI: 10.1517/14712598.2011.542140] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
21
|
Wang Y, Gildersleeve JC, Basu A, Zimmt MB. Photo- and biophysical studies of lectin-conjugated fluorescent nanoparticles: reduced sensitivity in high density assays. J Phys Chem B 2010; 114:14487-94. [PMID: 20496897 PMCID: PMC2980569 DOI: 10.1021/jp101854m] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lectin-conjugated, fluorescent silica nanoparticles (fNP) have been developed for carbohydrate-based histopathology evaluations of epithelial tissue biopsies. The fNP platform was selected for its enhanced emissive brightness compared to direct dye labeling. Carbohydrate microarray studies were performed to compare the carbohydrate selectivity of the mannose-recognizing lectin Concanavalin A (ConA) before and after conjugation to fluorescent silica nanoparticles (ConA-fNP). These studies revealed surprisingly low emission intensities upon staining with ConA-fNP compared to those with biotin-ConA/Cy3-streptavidin staining. A series of photophysical and biophysical characterizations of the fNP and ConA-fNP conjugates were performed to probe the low sensitivity from fNP in the microarray assays. Up to 1200 fluorescein (FL) and 80 tetramethylrhodamine (TR) dye molecules were incorporated into 46 nm diameter fNP, yielding emissive brightness values 400 and 35 times larger than the individual dye molecules, respectively. ConA lectin conjugated to carboxylic acid surface-modified nanoparticles covers 15-30% of the fNP surface. The CD spectra and mannose substrate selectivity of ConA conjugated to the fNP differed slightly compared to that of soluble ConA. Although, the high emissive brightness of fNP enhances detection sensitivity for samples with low analyte densities, large fNP diameters limit fNP recruitment and binding to samples with high analyte densities. The high analyte density and nearly two-dimensional target format of carbohydrate microarrays make probe size a critical parameter. In this application, fNP labels afford minimal sensitivity advantage compared to direct dye labeling.
Collapse
Affiliation(s)
- Yaqi Wang
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | |
Collapse
|
22
|
Säwén E, Massad T, Landersjö C, Damberg P, Widmalm G. Population distribution of flexible molecules from maximum entropy analysis using different priors as background information: application to the Φ, Ψ-conformational space of the α-(1-->2)-linked mannose disaccharide present in N- and O-linked glycoproteins. Org Biomol Chem 2010; 8:3684-95. [PMID: 20574564 DOI: 10.1039/c003958f] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The conformational space available to the flexible molecule α-D-Manp-(1-->2)-α-D-Manp-OMe, a model for the α-(1-->2)-linked mannose disaccharide in N- or O-linked glycoproteins, is determined using experimental data and molecular simulation combined with a maximum entropy approach that leads to a converged population distribution utilizing different input information. A database survey of the Protein Data Bank where structures having the constituent disaccharide were retrieved resulted in an ensemble with >200 structures. Subsequent filtering removed erroneous structures and gave the database (DB) ensemble having three classes of mannose-containing compounds, viz., N- and O-linked structures, and ligands to proteins. A molecular dynamics (MD) simulation of the disaccharide revealed a two-state equilibrium with a major and a minor conformational state, i.e., the MD ensemble. These two different conformation ensembles of the disaccharide were compared to measured experimental spectroscopic data for the molecule in water solution. However, neither of the two populations were compatible with experimental data from optical rotation, NMR (1)H,(1)H cross-relaxation rates as well as homo- and heteronuclear (3)J couplings. The conformational distributions were subsequently used as background information to generate priors that were used in a maximum entropy analysis. The resulting posteriors, i.e., the population distributions after the application of the maximum entropy analysis, still showed notable deviations that were not anticipated based on the prior information. Therefore, reparameterization of homo- and heteronuclear Karplus relationships for the glycosidic torsion angles Φ and Ψ were carried out in which the importance of electronegative substituents on the coupling pathway was deemed essential resulting in four derived equations, two (3)J(COCC) and two (3)J(COCH) being different for the Φ and Ψ torsions, respectively. These Karplus relationships are denoted JCX/SU09. Reapplication of the maximum entropy analysis gave excellent agreement between the MD- and DB-posteriors. The information entropies show that the current reparametrization of the Karplus relationships constitutes a significant improvement. The Φ(H) torsion angle of the disaccharide is governed by the exo-anomeric effect and for the dominating conformation Φ(H) = -40 degrees and Ψ(H) = 33 degrees. The minor conformational state has a negative Ψ(H) torsion angle; the relative populations of the major and the minor states are approximately 3 : 1. It is anticipated that application of the methodology will be useful to flexible molecules ranging from small organic molecules to large biomolecules.
Collapse
Affiliation(s)
- Elin Säwén
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
23
|
de Oliveira TM, Delatorre P, da Rocha BAM, de Souza EP, Nascimento KS, Bezerra GA, Moura TR, Benevides RG, Bezerra EHS, Moreno FBMB, Freire VN, de Azevedo WF, Cavada BS. Crystal structure of Dioclea rostrata lectin: insights into understanding the pH-dependent dimer-tetramer equilibrium and the structural basis for carbohydrate recognition in Diocleinae lectins. J Struct Biol 2008; 164:177-82. [PMID: 18682294 DOI: 10.1016/j.jsb.2008.05.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Revised: 03/21/2008] [Accepted: 05/18/2008] [Indexed: 10/21/2022]
Abstract
The legume lectins from the subtribe Diocleinae, often referred to as concanavalin A-like lectins, are a typical example of highly similar proteins that show distinct biological activities. The pH-dependent oligomerization that some of these lectins undergo and the relative position of amino acids within the carbohydrate-binding site are factors that have been reported to contribute to these differences in the activities of Diocleinae lectins. In the present work, we determined the amino acid sequence and the crystal structure of the lectin of Dioclea rostrata seeds (DRL), with the aim of investigating the structural bases of the different behavior displayed by this lectin in comparison to other Diocleinae lectins and determining the reason for the distinct pH-dependent dimer-tetramer equilibrium. In addition, we discovered a novel multimeric arrangement for this lectin.
Collapse
Affiliation(s)
- T M de Oliveira
- Federal University of Ceará, Departmento Biochemistry and Molecular Biology, Campus do Pici s/n Caixa Postal 6043, 60455-970 Fortaleza, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hill AD, Reilly PJ. A Gibbs free energy correlation for automated docking of carbohydrates. J Comput Chem 2008; 29:1131-41. [PMID: 18074341 DOI: 10.1002/jcc.20873] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Thermodynamic information can be inferred from static atomic configurations. To model the thermodynamics of carbohydrate binding to proteins accurately, a large binding data set has been assembled from the literature. The data set contains information from 262 unique protein-carbohydrate crystal structures for which experimental binding information is known. Hydrogen atoms were added to the structures and training conformations were generated with the automated docking program AutoDock 3.06, resulting in a training set of 225,920 all-atom conformations. In all, 288 formulations of the AutoDock 3.0 free energy model were trained against the data set, testing each of four alternate methods of computing the van der Waals, solvation, and hydrogen-bonding energetic components. The van der Waals parameters from AutoDock 1 produced the lowest errors, and an entropic model derived from statistical mechanics produced the only models with five physically and statistically significant coefficients. Eight models predict the Gibbs free energy of binding with an error of less than 40% of the error of any similar models previously published.
Collapse
Affiliation(s)
- Anthony D Hill
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, USA
| | | |
Collapse
|
25
|
Reina JJ, Díaz I, Nieto PM, Campillo NE, Páez JA, Tabarani G, Fieschi F, Rojo J. Docking, synthesis, and NMR studies of mannosyl trisaccharide ligands for DC-SIGN lectin. Org Biomol Chem 2008; 6:2743-54. [PMID: 18633532 DOI: 10.1039/b802144a] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DC-SIGN, a lectin, which presents at the surface of immature dendritic cells, constitutes nowadays a promising target for the design of new antiviral drugs. This lectin recognizes highly glycosylated proteins present at the surface of several pathogens such as HIV, Ebola virus, Candida albicans, Mycobacterium tuberculosis, etc. Understanding the binding mode of this lectin is a topic of tremendous interest and will permit a rational design of new and more selective ligands. Here, we present computational and experimental tools to study the interaction of di- and trisaccharides with DC-SIGN. Docking analysis of complexes involving mannosyl di- and trisaccharides and the carbohydrate recognition domain (CRD) of DC-SIGN have been performed. Trisaccharides Manalpha1,2[Manalpha1,6]Man 1 and Manalpha1,3[Manalpha1,6]Man 2 were synthesized from an orthogonally protected mannose as a common intermediate. Using these ligands and the soluble extracellular domain (ECD) of DC-SIGN, NMR experiments based on STD and transfer-NOE were performed providing additional information. Conformational analysis of the mannosyl ligands in the free and bound states was done. These studies have demonstrated that terminal mannoses at positions 2 or 3 in the trisaccharides are the most important moiety and present the strongest contact with the binding site of the lectin. Multiple binding modes could be proposed and therefore should be considered in the design of new ligands.
Collapse
Affiliation(s)
- José J Reina
- Grupo de Carbohidratos, Instituto de Investigaciones Químicas, CSIC, Universidad de Sevilla, Américo Vespucio 49, Seville, Spain
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Jaipuri F, Collet B, Pohl N. Synthesis and Quantitative Evaluation ofGlycero-D-manno-heptose Binding to Concanavalin A by Fluorous-Tag Assistance. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200704262] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Jaipuri F, Collet B, Pohl N. Synthesis and Quantitative Evaluation ofGlycero-D-manno-heptose Binding to Concanavalin A by Fluorous-Tag Assistance. Angew Chem Int Ed Engl 2008; 47:1707-10. [DOI: 10.1002/anie.200704262] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
28
|
Bezerra GA, Oliveira TM, Moreno FBMB, de Souza EP, da Rocha BAM, Benevides RG, Delatorre P, de Azevedo WF, Cavada BS. Structural analysis of Canavalia maritima and Canavalia gladiata lectins complexed with different dimannosides: New insights into the understanding of the structure–biological activity relationship in legume lectins. J Struct Biol 2007; 160:168-76. [PMID: 17881248 DOI: 10.1016/j.jsb.2007.07.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 06/21/2007] [Accepted: 07/30/2007] [Indexed: 11/15/2022]
Abstract
Plant lectins, especially those purified from species of the Leguminosae family, represent the best studied group of carbohydrate-binding proteins. The legume lectins from Diocleinae subtribe are highly similar proteins that present significant differences in the potency/efficacy of their biological activities. The structural studies of the interactions between lectins and sugars may clarify the origin of the distinct biological activities observed in this high similar class of proteins. In this way, this work presents a crystallographic study of the ConM and CGL (agglutinins from Canavalia maritima and Canavalia gladiata, respectively) in the following complexes: ConM/CGL:Man(alpha1-2)Man(alpha1-O)Me, ConM/CGL:Man(alpha1-3)Man(alpha1-O)Me and ConM/CGL:Man(alpha1-4)Man(alpha1-O)Me, which crystallized in different conditions and space group from the native proteins. The structures were solved by molecular replacement, presenting satisfactory values for R(factor) and R(free). Comparisons between ConM, CGL and ConA (Canavalia ensiformis lectin) binding mode with the dimannosides in subject, presented different interactions patterns, which may account for a structural explanation of the distincts biological properties observed in the lectins of Diocleinae subtribe.
Collapse
Affiliation(s)
- Gustavo Arruda Bezerra
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Biomol-LAB, Campus do Pici S/N, Fortaleza, Ceará, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kulkarni KA, Katiyar S, Surolia A, Vijayan M, Suguna K. Generation of blood group specificity: New insights from structural studies on the complexes of A- and B-reactive saccharides with basic winged bean agglutinin. Proteins 2007; 68:762-9. [PMID: 17510954 DOI: 10.1002/prot.21428] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Basic winged bean agglutinin binds A-blood group substance with higher affinity and B-blood group substance with lesser affinity. It does not bind the O substance. The crystal structures of the lectin, complexed with A-reactive and B-reactive di and tri saccharides, have been determined. In addition, the complexes of the lectin with fucosylated A-trisaccharides and B-trisaccharides and with a variant of the A-trisaccharide have been modeled. These structures and models provide valuable insights into the structural basis of blood group specificities. All the four carbohydrate binding loops of the lectin contribute to the primary combining site while the loop of variable length contributes to the secondary binding site. In a significant advance to the current understanding, the interactions at the secondary binding site also contribute substantially, albeit in a subtle manner, to determine the blood group specificity. Compared with the interactions of the B-trisaccharide with the lectin, the third sugar residue of the A-reactive trisacharide forms an additional hydrogen bond with a lysine residue in the variable loop. In the former, the formation of such a hydrogen bond is prevented by a shift in the orientation of third sugar resulting from an internal hydrogen bond in it. The formation of this bond is also facilitated by an interaction dependent change in the rotamer conformation of the lysyl residue of the variable loop. Thus, the difference in the interactions at the secondary site is generated by coordinated movements in the ligand as well as the protein. A comparison of the crystal structure and the model of the complex involving the variant of the A-trisaccharide results in the delineation of the relative contributions of the interactions at the primary and the secondary sites in determining blood group specificity.
Collapse
Affiliation(s)
- Kiran A Kulkarni
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | | | | | | | |
Collapse
|
30
|
Ahuja R, Singhal NK, Ramanujam B, Ravikumar M, Rao CP. Experimental and Computational Studies of the Recognition of Amino Acids by Galactosyl-imine and -amine Derivatives: An Attempt to Understand the Lectin−Carbohydrate Interactions. J Org Chem 2007; 72:3430-42. [PMID: 17394358 DOI: 10.1021/jo0700979] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A galactosyl-naphthyl-imine-based derivative, 1-(beta-D-galactopyranosyl-1'-deoxy-1'-iminomethyl)-2-hydroxynaphthalene (GNI), and a galactosyl-naphthyl-amine-based derivative, 1-(galactopyranosyl-1'-deoxy-1'-aminomethyl)-2-hydroxynaphthalene (GNA), possessing an ONO binding core were studied for their recognition of naturally occurring amino acids using fluorescence and absorption spectroscopy, and the corresponding association constants were derived for the complexes formed. The complexes formed between GNI/GNA and amino acids were supported by electrospray ionization mass spectrometry (ESI/MS). The structures of the complexes were optimized by computational studies using density functional theory, and stabilization energies were computed for the complexes to substantiate the interactions present between GNI/GNA and amino acid. The interactions were found to be primarily hydrogen bonding in nature. These interactions are reminiscent of those present in the lectin-carbohydrate and glycosidase substrate. Thus, the carbohydrate moiety present in GNI shows high specificity toward the -COOH group of the amino acid, which may be relevant to such interactions present between the carbohydrates and the polypeptides.
Collapse
Affiliation(s)
- Rohit Ahuja
- Bioinorganic Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076, India
| | | | | | | | | |
Collapse
|
31
|
Natchiar SK, Suguna K, Surolia A, Vijayan M. Peanut agglutinin, a lectin with an unusual quaternary structure and interesting ligand binding properties. CRYSTALLOGR REV 2007. [DOI: 10.1080/08893110701382087] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Spiwok V, Lipovová P, Skálová T, Vondrácková E, Dohnálek J, Hasek J, Králová B. Modelling of carbohydrate-aromatic interactions: ab initio energetics and force field performance. J Comput Aided Mol Des 2006; 19:887-901. [PMID: 16607570 DOI: 10.1007/s10822-005-9033-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Accepted: 12/12/2005] [Indexed: 10/24/2022]
Abstract
Aromatic amino acid residues are often present in carbohydrate-binding sites of proteins. These binding sites are characterized by a placement of a carbohydrate moiety in a stacking orientation to an aromatic ring. This arrangement is an example of CH/pi interactions. Ab initio interaction energies for 20 carbohydrate-aromatic complexes taken from 6 selected ultra-high resolution X-ray structures of glycosidases and carbohydrate-binding proteins were calculated. All interaction energies of a pyranose moiety with a side chain of an aromatic residue were calculated as attractive with interaction energy ranging from -2.8 to -12.3 kcal/mol as calculated at the MP2/6-311+G(d) level. Strong attractive interactions were observed for a wide range of orientations of carbohydrate and aromatic ring as present in selected X-ray structures. The most attractive interaction was associated with apparent combination of CH/pi interactions and classical H-bonds. The failure of Hartree-Fock method (interaction energies from +1.0 to -6.9 kcal/mol) can be explained by a dispersion nature of a majority of the studied complexes. We also present a comparison of interaction energies calculated at the MP2 level with those calculated using molecular mechanics force fields (OPLS, GROMOS, CSFF/CHARMM, CHEAT/CHARMM, Glycam/AMBER, MM2 and MM3). For a majority of force fields there was a strong correlation with MP2 values. RMSD between MP2 and force field values were 1.0 for CSFF/CHARMM, 1.2 for Glycam/AMBER, 1.2 for GROMOS, 1.3 for MM3, 1.4 for MM2, 1.5 for OPLS and to 2.3 for CHEAT/CHARMM (in kcal/mol). These results show that molecular mechanics approximates interaction energies very well and support an application of molecular mechanics methods in the area of glycochemistry and glycobiology.
Collapse
Affiliation(s)
- Vojtech Spiwok
- Department of Biochemistry, Institute of Chemical Technology in Prague, Technická 5, 166 28, Prague 6, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
33
|
Buts L, Garcia-Pino A, Wyns L, Loris R. Structural basis of carbohydrate recognition by a Man(alpha1-2)Man-specific lectin from Bowringia milbraedii. Glycobiology 2006; 16:635-40. [PMID: 16567368 DOI: 10.1093/glycob/cwj109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The crystal structure of the seed lectin from the tropical legume Bowringia milbraedii was determined in complex with the disaccharide ligand Man(alpha1-2)Man. In solution, the protein exhibits a dynamic dimer-tetramer equilibrium, consistent with the concanavalin A-type tetramer observed in the crystal. Contacts between the tetramers are mediated almost exclusively through the carbohydrate ligand, resulting in a crystal lattice virtually identical to that of the concanavalin-A:Man(alpha1-2)Man complex, even though both proteins have less than 50% sequence identity. The disaccharide binds exclusively in a "downstream" binding mode, with the non-reducing mannose occupying the monosaccharide-binding site. The reducing mannose is bound in a predominantly polar subsite involving Tyr131, Gln218, and Tyr219.
Collapse
Affiliation(s)
- Lieven Buts
- Laboratorium voor Ultrastructuur, Vrije Universiteit Brussel and Department of Molecular and Cellular Interactions, Vlaams Interuniversitair Instituut voor Biotechnologie, Pleinlaan 2, B-1050 Brussels, Belgium.
| | | | | | | |
Collapse
|
34
|
Mari S, Posteri H, Marcou G, Potenza D, Micheli F, Cañada F, Jimenez-Barbero J, Bernardi A. Synthesis, Conformational Studies and Mannosidase Stability of a Mimic of 1,2-Mannobioside. European J Org Chem 2004. [DOI: 10.1002/ejoc.200400520] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
35
|
Miranda M, Magri M, Navarro del Cañizo A, Cascone O. Study of variables involved in horseradish and soybean peroxidase purification by affinity chromatography on concanavalin A-Agarose. Process Biochem 2002. [DOI: 10.1016/s0032-9592(02)00166-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|