1
|
Spakman D, Bakx JAM, Biebricher AS, Peterman EJG, Wuite GJL, King GA. Unravelling the mechanisms of Type 1A topoisomerases using single-molecule approaches. Nucleic Acids Res 2021; 49:5470-5492. [PMID: 33963870 PMCID: PMC8191776 DOI: 10.1093/nar/gkab239] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/19/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022] Open
Abstract
Topoisomerases are essential enzymes that regulate DNA topology. Type 1A family topoisomerases are found in nearly all living organisms and are unique in that they require single-stranded (ss)DNA for activity. These enzymes are vital for maintaining supercoiling homeostasis and resolving DNA entanglements generated during DNA replication and repair. While the catalytic cycle of Type 1A topoisomerases has been long-known to involve an enzyme-bridged ssDNA gate that allows strand passage, a deeper mechanistic understanding of these enzymes has only recently begun to emerge. This knowledge has been greatly enhanced through the combination of biochemical studies and increasingly sophisticated single-molecule assays based on magnetic tweezers, optical tweezers, atomic force microscopy and Förster resonance energy transfer. In this review, we discuss how single-molecule assays have advanced our understanding of the gate opening dynamics and strand-passage mechanisms of Type 1A topoisomerases, as well as the interplay of Type 1A topoisomerases with partner proteins, such as RecQ-family helicases. We also highlight how these assays have shed new light on the likely functional roles of Type 1A topoisomerases in vivo and discuss recent developments in single-molecule technologies that could be applied to further enhance our understanding of these essential enzymes.
Collapse
Affiliation(s)
- Dian Spakman
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Julia A M Bakx
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Andreas S Biebricher
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Erwin J G Peterman
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Gijs J L Wuite
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Graeme A King
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
2
|
Mapping DNA Topoisomerase Binding and Cleavage Genome Wide Using Next-Generation Sequencing Techniques. Genes (Basel) 2020; 11:genes11010092. [PMID: 31941152 PMCID: PMC7017377 DOI: 10.3390/genes11010092] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 01/02/2023] Open
Abstract
Next-generation sequencing (NGS) platforms have been adapted to generate genome-wide maps and sequence context of binding and cleavage of DNA topoisomerases (topos). Continuous refinements of these techniques have resulted in the acquisition of data with unprecedented depth and resolution, which has shed new light on in vivo topo behavior. Topos regulate DNA topology through the formation of reversible single- or double-stranded DNA breaks. Topo activity is critical for DNA metabolism in general, and in particular to support transcription and replication. However, the binding and activity of topos over the genome in vivo was difficult to study until the advent of NGS. Over and above traditional chromatin immunoprecipitation (ChIP)-seq approaches that probe protein binding, the unique formation of covalent protein–DNA linkages associated with DNA cleavage by topos affords the ability to probe cleavage and, by extension, activity over the genome. NGS platforms have facilitated genome-wide studies mapping the behavior of topos in vivo, how the behavior varies among species and how inhibitors affect cleavage. Many NGS approaches achieve nucleotide resolution of topo binding and cleavage sites, imparting an extent of information not previously attainable. We review the development of NGS approaches to probe topo interactions over the genome in vivo and highlight general conclusions and quandaries that have arisen from this rapidly advancing field of topoisomerase research.
Collapse
|
3
|
Rani P, Nagaraja V. Genome-wide mapping of Topoisomerase I activity sites reveal its role in chromosome segregation. Nucleic Acids Res 2019; 47:1416-1427. [PMID: 30566665 PMCID: PMC6379724 DOI: 10.1093/nar/gky1271] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/30/2018] [Accepted: 12/13/2018] [Indexed: 11/13/2022] Open
Abstract
DNA Topoisomerase I (TopoI) in eubacteria is the principle DNA relaxase, belonging to Type 1A group. The enzyme from Mycobacterium smegmatis is essential for cell survival and distinct from other eubacteria in having several unusual characteristics. To understand genome-wide TopoI engagements in vivo, functional sites were mapped by employing a poisonous variant of the enzyme and a newly discovered inhibitor, both of which arrest the enzyme activity after the first transestrification reaction, thereby leading to the accumulation of protein-DNA covalent complexes. The cleavage sites are subsets of TopoI binding sites, implying that TopoI recruitment does not necessarily lead to DNA cleavage in vivo. The cleavage protection conferred by nucleoid associated proteins in vitro suggest a similar possibility in vivo. Co-localization of binding and cleavage sites of the enzyme on transcription units, implying that both TopoI recruitment and function are associated with active transcription. Attenuation of the cleavage upon Rifampicin treatment confirms the close connection between transcription and TopoI action. Notably, TopoI is inactive upstream of the Transcription start site (TSS) and activated following transcription initiation. The binding of TopoI at the Ter region, and the DNA cleavage at the Ter indicates TopoI involvement in chromosome segregation, substantiated by its catenation and decatenation activities.
Collapse
Affiliation(s)
- Phoolwanti Rani
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India.,Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
4
|
Yang Z, Jiang T, Zhong H, Kang Y. Bulge oligonucleotide as an inhibitory agent of bacterial topoisomerase I. J Enzyme Inhib Med Chem 2018; 33:319-323. [PMID: 29281935 PMCID: PMC6009931 DOI: 10.1080/14756366.2017.1419218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bacterial topoisomerase I (Btopo I) was defined as potential target for discovery of new antibacterial compounds. Various oligonucleotides containing bulge structure were designed and synthesised as inhibitors to Btopo I in this investigation. The results of this study demonstrated that the designed oligonucleotides display high inhibitory efficiency on the activity of Btopo I and the inhibitory effect could be modulated by the amount of bulge DNA bases. The most efficient one among them showed an IC50 value of 63.1 nM in its inhibition on the activity of Btopo I. In addition, our studies confirmed that the designed oligonucleotide would induce irreversible damages to Btopo I and without any effects occur to eukaryotic topoisomerase I. It is our hope that the results provided in these studies could provide a novel way to inhibit Btopo I.
Collapse
Affiliation(s)
- Zhaoqi Yang
- a School of Pharmaceutical Sciences , Jiangnan University , Jiangsu , People's Republic of China.,b Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University , Jiangsu , People's Republic of China
| | - Tuoyu Jiang
- b Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University , Jiangsu , People's Republic of China
| | - Hanshi Zhong
- b Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University , Jiangsu , People's Republic of China
| | - Yu Kang
- b Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University , Jiangsu , People's Republic of China
| |
Collapse
|
5
|
DNA topoisomerase I and DNA gyrase as targets for TB therapy. Drug Discov Today 2017; 22:510-518. [DOI: 10.1016/j.drudis.2016.11.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/01/2016] [Accepted: 11/03/2016] [Indexed: 11/20/2022]
|
6
|
Yang Z, Jiang T, Zhong H, Liu Y. Portion mismatch in duplex oligonucleotides as inhibitors of bacterial topoisomerase I. RSC Adv 2016. [DOI: 10.1039/c6ra23304j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The activities of bacterial topoisomerase I can be modulated by non-perfect match duplex oligonucleotides.
Collapse
Affiliation(s)
- Zhaoqi Yang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province
- School of Food Science and Technology
- Jiangnan University
- China
- School of Pharmaceutical Sciences
| | - Tuoyu Jiang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province
- School of Food Science and Technology
- Jiangnan University
- China
| | - Hanshi Zhong
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province
- School of Food Science and Technology
- Jiangnan University
- China
| | - Yuanfa Liu
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province
- School of Food Science and Technology
- Jiangnan University
- China
| |
Collapse
|
7
|
Leelaram MN, Bhat AG, Godbole AA, Bhat RS, Manjunath R, Nagaraja V. Type IA topoisomerase inhibition by clamp closure. FASEB J 2013; 27:3030-8. [PMID: 23612788 DOI: 10.1096/fj.12-226118] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bacterial DNA topoisomerase I (topoI) catalyzes relaxation of negatively supercoiled DNA. The enzyme alters DNA topology through protein-operated DNA gate, switching between open and closed conformations during its reaction. We describe the mechanism of inhibition of Mycobacterium smegmatis and Mycobacterium tuberculosis topoI by monoclonal antibodies (mAbs) that bind with high affinity and inhibit at 10-50 nM concentration. Unlike other inhibitors of topoisomerases, the mAbs inhibited several steps of relaxation reaction, namely DNA binding, cleavage, strand passage, and enzyme-DNA dissociation. The enhanced religation of the cleaved DNA in presence of the mAb indicated closing of the enzyme DNA gate. The formation of enzyme-DNA heterocatenane in the presence of the mAbs as a result of closing the gate could be inferred by the salt resistance of the complex, visualized by atomic force microscopy and confirmed by fluorescence measurements. Locking the enzyme-DNA complex as a closed clamp restricted the movements of the DNA gate, affecting all of the major steps of the relaxation reaction. Enzyme trapped on DNA in closed clamp conformation formed roadblock for the elongating DNA polymerase. The unusual multistep inhibition of mycobacterial topoisomerases may facilitate lead molecule development, and the mAbs would also serve as valuable tools to probe the enzyme mechanism.
Collapse
Affiliation(s)
- Majety Naga Leelaram
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | | | | | | | | | | |
Collapse
|
8
|
Godbole AA, Leelaram MN, Bhat AG, Jain P, Nagaraja V. Characterization of DNA topoisomerase I from Mycobacterium tuberculosis: DNA cleavage and religation properties and inhibition of its activity. Arch Biochem Biophys 2012; 528:197-203. [DOI: 10.1016/j.abb.2012.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 10/02/2012] [Accepted: 10/09/2012] [Indexed: 11/30/2022]
|
9
|
Terekhova K, Gunn KH, Marko JF, Mondragón A. Bacterial topoisomerase I and topoisomerase III relax supercoiled DNA via distinct pathways. Nucleic Acids Res 2012; 40:10432-40. [PMID: 22923519 PMCID: PMC3488232 DOI: 10.1093/nar/gks780] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Escherichia coli topoisomerases I and III (Topo I and Topo III) relax negatively supercoiled DNA and also catenate/decatenate DNA molecules containing single-stranded DNA regions. Although these enzymes share the same mechanism of action and have similar structures, they participate in different cellular processes. In bulk experiments Topo I is more efficient at DNA relaxation, whereas Topo III is more efficient at catenation/decatenation, probably reflecting their differing cellular roles. To examine the differences in the mechanism of these two related type IA topoisomerases, single-molecule relaxation studies were conducted on several DNA substrates: negatively supercoiled DNA, positively supercoiled DNA with a mismatch and positively supercoiled DNA with a bulge. The experiments show differences in the way the two proteins work at the single-molecule level, while also recovering observations from the bulk experiments. Overall, Topo III relaxes DNA efficiently in fast processive runs, but with long pauses before relaxation runs, whereas Topo I relaxes DNA in slow processive runs but with short pauses before runs. The combination of these properties results in Topo I having an overall faster total relaxation rate, even though the relaxation rate during a run for Topo III is much faster.
Collapse
Affiliation(s)
- Ksenia Terekhova
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | | | | | | |
Collapse
|
10
|
Bhat AG, Leelaram MN, Hegde SM, Nagaraja V. Deciphering the distinct role for the metal coordination motif in the catalytic activity of Mycobacterium smegmatis topoisomerase I. J Mol Biol 2009; 393:788-802. [PMID: 19733176 DOI: 10.1016/j.jmb.2009.08.064] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 08/27/2009] [Accepted: 08/27/2009] [Indexed: 11/17/2022]
Abstract
Mycobacterium smegmatis topoisomerase I (MstopoI) is distinct from typical type IA topoisomerases. The enzyme binds to both single- and double-stranded DNA with high affinity, making specific contacts. The enzyme comprises conserved regions similar to type IA topoisomerases from Escherichia coli and other eubacteria but lacks the typically found zinc fingers in the carboxy-terminal domain. The enzyme can perform DNA cleavage in the absence of Mg(2+), but religation needs exogenously added Mg(2+). One molecule of Mg(2+) tightly bound to the enzyme has no role in DNA cleavage but is needed only for the religation reaction. The toprim (topoisomerase-primase) domain in MstopoI comprising the Mg(2+) binding pocket, conserved in both type IA and type II topoisomerases, was subjected to mutagenesis to understand the role of Mg(2+) in different steps of the reaction. The residues D108, D110, and E112 of the enzyme, which form the acidic triad in the DXDXE motif, were changed to alanines. D108A mutation resulted in an enzyme that is Mg(2+) dependent for DNA cleavage unlike MstopoI and exhibited enhanced DNA cleavage property and reduced religation activity. The mutant was toxic for cell growth, most likely due to the imbalance in cleavage-religation equilibrium. In contrast, the E112A mutant behaved like wild-type enzyme, cleaving DNA in a Mg(2)(+)-independent fashion, albeit to a reduced extent. Intra- and intermolecular religation assays indicated specific roles for D108 and E112 residues during the reaction. Together, these results indicate that the D108 residue has a major role during cleavage and religation, while E112 is important for enhancing the efficiency of cleavage. Thus, although architecturally and mechanistically similar to topoisomerase I from E. coli, the metal coordination pattern of the mycobacterial enzyme is distinct, opening up avenues to exploit the enzyme to develop inhibitors.
Collapse
Affiliation(s)
- Anuradha Gopal Bhat
- Department of Microbiology and Cell Biology, Indian Institute of Science, CV Raman Avenue, Bangalore 560 012, India
| | | | | | | |
Collapse
|
11
|
Wang Y, Ng MTT, Zhou T, Li X, Tan CH, Li T. C3-Spacer-containing circular oligonucleotides as inhibitors of human topoisomerase I. Bioorg Med Chem Lett 2008; 18:3597-602. [PMID: 18490159 DOI: 10.1016/j.bmcl.2008.04.076] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2008] [Revised: 04/25/2008] [Accepted: 04/30/2008] [Indexed: 11/18/2022]
Abstract
Some dumbbell-shaped circular oligonucleotides containing internal C3-spacers and Topo I-binding sites were designed and synthesized which displayed high inhibitory efficiency on the activity of human Topo I as well as resisted the degradation by some DNA repair enzymes.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Chemistry, 3 Science Drive 3, National University of Singapore, Singapore 117543, Singapore
| | | | | | | | | | | |
Collapse
|
12
|
Li X, Tao Ng MT, Wang Y, Liu X, Li T. Dumbbell-shaped circular oligonucleotides as inhibitors of human topoisomerase I. Bioorg Med Chem Lett 2007; 17:4967-71. [PMID: 17591440 DOI: 10.1016/j.bmcl.2007.06.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 06/04/2007] [Accepted: 06/07/2007] [Indexed: 10/23/2022]
Abstract
A dumbbell-shaped circular oligonucleotide containing topoisomerase I-binding sites and two mismatched base pairs in its sequence has been designed and synthesized. Our further studies demonstrate that this particularly designed oligonucleotide displays an IC(50) value of 9 nM in its inhibition on the activity of human topoisomerase I, a magnitude smaller than that of camptothecin, an anticancer drug currently in clinical use.
Collapse
Affiliation(s)
- Xinming Li
- Department of Chemistry, 3 Science Drive 3, National University of Singapore, Singapore, Singapore
| | | | | | | | | |
Collapse
|
13
|
Jain P, Nagaraja V. Indispensable, Functionally Complementing N and C-terminal Domains Constitute Site-specific Topoisomerase I. J Mol Biol 2006; 357:1409-21. [PMID: 16490213 DOI: 10.1016/j.jmb.2006.01.079] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 01/20/2006] [Accepted: 01/23/2006] [Indexed: 11/19/2022]
Abstract
Mycobacterium smegmatis topoisomerase I differs from the typical type IA topoisomerase in many properties. The enzyme recognizes both single and double-stranded DNA with high affinity and makes sequence-specific contacts during DNA relaxation reaction. The enzyme has a conserved N-terminal domain and a highly varied C-terminal domain, which lacks the characteristic zinc binding motifs found in most of the type I eubacterial enzymes. The roles of the individual domains of the enzyme in the topoisomerase I catalyzed reactions were examined by comparing the properties of full-length topoisomerase I with those of truncated polypeptides lacking the conserved N-terminal or the divergent C-terminal region. The N-terminal larger fragment retained the site-specific binding, DNA cleavage and religation properties, hallmark characteristics of the full-length M.smegmatis topoisomerase I. In contrast, the non-conserved C-terminal fragment lacking the typical DNA binding motif, exhibited non-specific DNA binding behaviour. The two polypeptide fragments, on their own do not catalyze DNA relaxation reaction. The relaxation activity is restored when both the fragments are mixed in vitro reconstituting the enzyme function. These results along with the DNA interaction pattern of the proteins implicate an essential role for the C-terminal region in single-strand DNA passage between the two transesterification reactions catalyzed by the N-terminal domain.
Collapse
Affiliation(s)
- Paras Jain
- Department of Microbiology and Cell Biology, Indian Institute of Science, CV Raman Avenue, Bangalore 560012, India
| | | |
Collapse
|
14
|
Chandrashekaran S, Manjunatha UH, Nagaraja V. KpnI restriction endonuclease and methyltransferase exhibit contrasting mode of sequence recognition. Nucleic Acids Res 2004; 32:3148-55. [PMID: 15192117 PMCID: PMC434444 DOI: 10.1093/nar/gkh638] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The molecular basis of the interaction of KpnI restriction endonuclease (REase) and the corresponding methyltransferase (MTase) at their cognate recognition sequence is investigated using a range of footprinting techniques. DNase I protection analysis with the REase reveals the protection of a 14-18 bp region encompassing the hexanucleotide recognition sequence. The MTase, in contrast, protects a larger region. KpnI REase contacts two adjacent guanine residues and the single adenine residue in both the strands within the recognition sequence 5'-GGTACC-3', inferred by dimethylsulfate (DMS) protection, interference and missing nucleotide interference analysis. In contrast, KpnI MTase does not show elaborate base-specific contacts. Ethylation interference analysis also showed the differential interaction of REase and MTase with phosphate groups of three adjacent bases on both strands within the recognition sequence. The single thymine residue within the sequence is hyper- reactive to the permanganate oxidation, consistent with MTase-induced base flipping. The REase on the other hand does not show any major DNA distortion. The results demonstrate that the differences in the molecular interaction pattern of the two proteins at the same recognition sequence reflect the contrasting chemistry of DNA cleavage and methylation catalyzed by these two dissimilar enzymes, working in combination as constituents of a cellular defense strategy.
Collapse
|
15
|
Tyagi AK, Dhar N. Recent advances in tuberculosis research in India. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2003; 84:211-73. [PMID: 12934938 DOI: 10.1007/3-540-36488-9_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Tuberculosis (TB) continues to be the leading killer of mankind among all infectious diseases, especially in the developing countries. Since the discovery of tubercle bacillus more than 100 years ago, TB has been the subject of research in an attempt to develop tools and strategies to combat this disease. Research in Indian laboratories has contributed significantly towards developing the DOTS strategy employed worldwide in tuberculosis control programmes and elucidating the biological properties of its etiologic agent, M. tuberculosis. In recent times, the development of tools for manipulation of mycobacteria has given a boost to researchers working in this field. New strategies are being employed towards understanding the mechanisms of protection and pathogenesis of this disease. Molecular methods are being applied to develop new tools and reagents for prevention, diagnosis and treatment of tuberculosis. With the sequencing of the genome of M. tuberculosis, molecules are being identified for the development of new drugs and vaccines. In this chapter, the advances made in these areas by Indian researchers mainly during the last five years are reviewed.
Collapse
Affiliation(s)
- Anil K Tyagi
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi-110021, India.
| | | |
Collapse
|