1
|
Davidson RB, Hendrix J, Geiss BJ, McCullagh M. Allostery in the dengue virus NS3 helicase: Insights into the NTPase cycle from molecular simulations. PLoS Comput Biol 2018; 14:e1006103. [PMID: 29659571 PMCID: PMC5919694 DOI: 10.1371/journal.pcbi.1006103] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 04/26/2018] [Accepted: 03/22/2018] [Indexed: 12/29/2022] Open
Abstract
The C-terminus domain of non-structural 3 (NS3) protein of the Flaviviridae viruses (e.g. HCV, dengue, West Nile, Zika) is a nucleotide triphosphatase (NTPase) -dependent superfamily 2 (SF2) helicase that unwinds double-stranded RNA while translocating along the nucleic polymer. Due to these functions, NS3 is an important target for antiviral development yet the biophysics of this enzyme are poorly understood. Microsecond-long molecular dynamic simulations of the dengue NS3 helicase domain are reported from which allosteric effects of RNA and NTPase substrates are observed. The presence of a bound single-stranded RNA catalytically enhances the phosphate hydrolysis reaction by affecting the dynamics and positioning of waters within the hydrolysis active site. Coupled with results from the simulations, electronic structure calculations of the reaction are used to quantify this enhancement to be a 150-fold increase, in qualitative agreement with the experimental enhancement factor of 10–100. Additionally, protein-RNA interactions exhibit NTPase substrate-induced allostery, where the presence of a nucleotide (e.g. ATP or ADP) structurally perturbs residues in direct contact with the phosphodiester backbone of the RNA. Residue-residue network analyses highlight pathways of short ranged interactions that connect the two active sites. These analyses identify motif V as a highly connected region of protein structure through which energy released from either active site is hypothesized to move, thereby inducing the observed allosteric effects. These results lay the foundation for the design of novel allosteric inhibitors of NS3. Non-structural protein 3 (NS3) is a Flaviviridae (e.g. Hepatitis C, dengue, and Zika viruses) helicase that unwinds double stranded RNA while translocating along the nucleic polymer during viral genome replication. As a member of superfamily 2 (SF2) helicases, NS3 utilizes the free energy of nucleotide triphosphate (NTP) binding, hydrolysis, and product unbinding to perform its functions. While much is known about SF2 helicases, the pathways and mechanisms through which free energy is transduced between the NTP hydrolysis active site and RNA binding cleft remains elusive. Here we present a multiscale computational study to characterize the allosteric effects induced by the RNA and NTPase substrates (ATP, ADP, and Pi) as well as the pathways of short-range, residue-residue interactions that connect the two active sites. Results from this body of molecular dynamics simulations and electronic structure calculations are highlighted in context to the NTPase enzymatic cycle, allowing for development of testable hypotheses for validation of these simulations. Our insights, therefore, provide novel details about the biophysics of NS3 and guide the next generation of experimental studies.
Collapse
Affiliation(s)
- Russell B. Davidson
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, United States of America
| | - Josie Hendrix
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, United States of America
| | - Brian J. Geiss
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, United States of America
| | - Martin McCullagh
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
2
|
Fan X, Xue B, Dolan PT, LaCount DJ, Kurgan L, Uversky VN. The intrinsic disorder status of the human hepatitis C virus proteome. MOLECULAR BIOSYSTEMS 2014; 10:1345-63. [PMID: 24752801 DOI: 10.1039/c4mb00027g] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Many viral proteins or their biologically important regions are disordered as a whole, or contain long disordered regions. These intrinsically disordered proteins/regions do not possess unique structures and possess functions that complement the functional repertoire of "normal" ordered proteins and domains, with many protein functional classes being heavily dependent on the intrinsic disorder. Viruses commonly use these highly flexible regions to invade the host organisms and to hijack various host systems. These disordered regions also help viruses in adapting to their hostile habitats and to manage their economic usage of genetic material. In this article, we focus on the structural peculiarities of proteins from human hepatitis C virus (HCV) and use a wide spectrum of bioinformatics techniques to evaluate the abundance of intrinsic disorder in the completed proteomes of several human HCV genotypes, to analyze the peculiarities of disorder distribution within the individual HCV proteins, and to establish potential roles of the structural disorder in functions of ten HCV proteins. We show that the intrinsic disorder or increased flexibility is not only abundant in these proteins, but is also absolutely necessary for their functions, playing a crucial role in the proteolytic processing of the HCV polyprotein, the maturation of the individual HCV proteins, and being related to the posttranslational modifications of these proteins and their interactions with DNA, RNA, and various host proteins.
Collapse
Affiliation(s)
- Xiao Fan
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta AB T6G 2V4, Canada.
| | | | | | | | | | | |
Collapse
|
3
|
Rajagopal V, Gurjar M, Levin MK, Patel SS. The protease domain increases the translocation stepping efficiency of the hepatitis C virus NS3-4A helicase. J Biol Chem 2010; 285:17821-32. [PMID: 20363755 PMCID: PMC2878546 DOI: 10.1074/jbc.m110.114785] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 04/01/2010] [Indexed: 01/24/2023] Open
Abstract
Hepatitis C virus (HCV) NS3 protein has two enzymatic activities of helicase and protease that are essential for viral replication. The helicase separates the strands of DNA and RNA duplexes using the energy from ATP hydrolysis. To understand how ATP hydrolysis is coupled to helicase movement, we measured the single turnover helicase translocation-dissociation kinetics and the pre-steady-state P(i) release kinetics on single-stranded RNA and DNA substrates of different lengths. The parameters of stepping were determined from global fitting of the two types of kinetic measurements into a computational model that describes translocation as a sequence of coupled hydrolysis-stepping reactions. Our results show that the HCV helicase moves with a faster rate on single stranded RNA than on DNA. The HCV helicase steps on the RNA or DNA one nucleotide at a time, and due to imperfect coupling, not every ATP hydrolysis event produces a successful step. Comparison of the helicase domain (NS3h) with the protease-helicase (NS3-4A) shows that the most significant contribution of the protease domain is to improve the translocation stepping efficiency of the helicase. Whereas for NS3h, only 20% of the hydrolysis events result in translocation, the coupling for NS3-4A is near-perfect 93%. The presence of the protease domain also significantly reduces the stepping rate, but it doubles the processivity. These effects of the protease domain on the helicase can be explained by an improved allosteric cross-talk between the ATP- and nucleic acid-binding sites achieved by the overall stabilization of the helicase domain structure.
Collapse
Affiliation(s)
- Vaishnavi Rajagopal
- From the
Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854 and
| | - Madhura Gurjar
- From the
Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854 and
| | - Mikhail K. Levin
- the
Department of Biostatistics & Bioinformatics, Duke University Medical Center, Durham, North Carolina 27710
| | - Smita S. Patel
- From the
Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854 and
| |
Collapse
|
4
|
Fan JS, Cheng Z, Zhang J, Noble C, Zhou Z, Song H, Yang D. Solution and crystal structures of mRNA exporter Dbp5p and its interaction with nucleotides. J Mol Biol 2009; 388:1-10. [PMID: 19281819 DOI: 10.1016/j.jmb.2009.03.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 02/28/2009] [Accepted: 03/03/2009] [Indexed: 11/19/2022]
Abstract
DEAD-box protein 5 (Dbp5p) plays very important roles in RNA metabolism from transcription, to translation, to RNA decay. It is an RNA helicase and functions as an essential RNA export factor from nucleus. Here, we report the solution NMR structures of the N- and C-terminal domains (NTD and CTD, respectively) of Dbp5p from Saccharomyces cerevisiae (ScDbp5p) and X-ray crystal structure of Dbp5p from Schizosaccharomyces pombe (SpDbp5p) in the absence of nucleotides and RNA. The crystal structure clearly shows that SpDbp5p comprises two RecA-like domains that do not interact with each other. NMR results show that the N-terminal flanking region of ScDpbp5 (M1-E70) is intrinsically unstructured and the region Y71-R121 including the Q motif is highly dynamic on millisecond-microsecond timescales in solution. The C-terminal flanking region of ScDbp5p forms a short beta-strand and a long helix. This helix is unique for ScDbp5p and has not been observed in other DEAD-box proteins. Compared with other DEAD-box proteins, Dbp5p has an extra insert with six residues in the CTD. NMR structure reveals that the insert is located in a solvent-exposed loop capable of interacting with other proteins. ATP and ADP titration experiments show that both ADP and ATP bind to the consensus binding site in the NTD of ScDbp5p but do not interact with the CTD at all. Binding of ATP or ADP to NTD induces significant conformational rearrangement too.
Collapse
Affiliation(s)
- Jing-Song Fan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | | | | | | | | | | | | |
Collapse
|
5
|
Rajagopal V, Patel SS. Viral Helicases. VIRAL GENOME REPLICATION 2009. [PMCID: PMC7121818 DOI: 10.1007/b135974_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Helicases are motor proteins that use the free energy of NTP hydrolysis to catalyze the unwinding of duplex nucleic acids. Helicases participate in almost all processes involving nucleic acids. Their action is critical for replication, recombination, repair, transcription, translation, splicing, mRNA editing, chromatin remodeling, transport, and degradation (Matson and Kaiser-Rogers 1990; Matson et al. 1994; Mendonca et al. 1995; Luking et al. 1998).
Collapse
|
6
|
Abstract
Helicases are a ubiquitous class of enzymes involved in nearly all aspects of DNA and RNA metabolism. Despite recent progress in understanding their mechanism of action, limited resolution has left inaccessible the detailed mechanisms by which these enzymes couple the rearrangement of nucleic acid structures to the binding and hydrolysis of ATP. Observing individual mechanistic cycles of these motor proteins is central to understanding their cellular functions. Here we follow in real time, at a resolution of two base pairs and 20 ms, the RNA translocation and unwinding cycles of a hepatitis C virus helicase (NS3) monomer. NS3 is a representative superfamily-2 helicase essential for viral replication, and therefore a potentially important drug target. We show that the cyclic movement of NS3 is coordinated by ATP in discrete steps of 11 +/- 3 base pairs, and that actual unwinding occurs in rapid smaller substeps of 3.6 +/- 1.3 base pairs, also triggered by ATP binding, indicating that NS3 might move like an inchworm. This ATP-coupling mechanism is likely to be applicable to other non-hexameric helicases involved in many essential cellular functions. The assay developed here should be useful in investigating a broad range of nucleic acid translocation motors.
Collapse
Affiliation(s)
- David N Frick
- Department of Biochemistry & Molecular Biology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
7
|
Abstract
Helicases are promising antiviral drug targets because their enzymatic activities are essential for viral genome replication, transcription, and translation. Numerous potent inhibitors of helicases encoded by herpes simplex virus, severe acute respiratory syndrome coronavirus, hepatitis C virus, Japanese encephalitis virus, West Nile virus, and human papillomavirus have been recently reported in the scientific literature. Some inhibitors have also been shown to decrease viral replication in cell culture and animal models. This review discusses recent progress in understanding the structure and function of viral helicases to help clarify how these potential antiviral compounds function and to facilitate the design of better inhibitors. The above helicases and all related viral proteins are classified here based on their evolutionary and functional similarities, and the key mechanistic features of each group are noted. All helicases share a common motor function fueled by ATP hydrolysis, but differ in exactly how the motor moves the protein and its cargo on a nucleic acid chain. The helicase inhibitors discussed here influence rates of helicase-catalyzed DNA (or RNA) unwinding by preventing ATP hydrolysis, nucleic acid binding, nucleic acid release, or by disrupting the interaction of a helicase with a required cofactor.
Collapse
Affiliation(s)
- D N Frick
- Department of Biochemistry & Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| | | |
Collapse
|
8
|
Lam AMI, Rypma RS, Frick DN. Enhanced nucleic acid binding to ATP-bound hepatitis C virus NS3 helicase at low pH activates RNA unwinding. Nucleic Acids Res 2004; 32:4060-70. [PMID: 15289579 PMCID: PMC506820 DOI: 10.1093/nar/gkh743] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The molecular basis of the low-pH activation of the helicase encoded by the hepatitis C virus (HCV) was examined using either a full-length NS3 protein/NS4A cofactor complex or truncated NS3 proteins lacking the protease domain, which were isolated from three different viral genotypes. All proteins unwound RNA and DNA best at pH 6.5, which demonstrate that conserved NS3 helicase domain amino acids are responsible for low-pH enzyme activation. DNA unwinding was less sensitive to pH changes than RNA unwinding. Both the turnover rate of ATP hydrolysis and the K(m) of ATP were similar between pH 6 and 10, but the concentration of nucleic acid needed to stimulate ATP hydrolysis decreased almost 50-fold when the pH was lowered from 7.5 to 6.5. In direct-binding experiments, HCV helicase bound DNA weakly at high pH only in the presence of the non-hydrolyzable ATP analog, ADP(BeF3). These data suggest that a low-pH environment might be required for efficient HCV RNA translation or replication, and support a model in which an acidic residue rotates toward the RNA backbone upon ATP binding repelling nucleic acid from the binding cleft.
Collapse
Affiliation(s)
- Angela M I Lam
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | | | | |
Collapse
|
9
|
Hwang B, Cho JS, Yeo HJ, Kim JH, Chung KM, Han K, Jang SK, Lee SW. Isolation of specific and high-affinity RNA aptamers against NS3 helicase domain of hepatitis C virus. RNA (NEW YORK, N.Y.) 2004; 10:1277-1290. [PMID: 15247433 PMCID: PMC1370617 DOI: 10.1261/rna.7100904] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2004] [Accepted: 05/12/2004] [Indexed: 05/24/2023]
Abstract
Hepatitis C virus (HCV)-encoded nonstructural protein 3 (NS3) possesses protease, NTPase, and helicase activities, which are considered essential for viral proliferation. Thus, HCV NS3 is a good putative therapeutic target protein for the development of anti-HCV agents. In this study, we isolated specific RNA aptamers to the helicase domain of HCV NS3 from a combinatorial RNA library with 40-nucleotide random sequences using in vitro selection techniques. The isolated RNAs were observed to very avidly bind the HCV helicase with an apparent Kd of 990 pM in contrast to original pool RNAs with a Kd of >1 microM. These RNA ligands appear to impede binding of substrate RNA to the HCV helicase and can act as potent decoys to competitively inhibit helicase activity with high efficiency compared with poly(U) or tRNA. The minimal binding domain of the ligands was determined to evaluate the structural features of the isolated RNA molecules. Interestingly, part of binding motif of the RNA aptamers consists of similar secondary structure to the 3'-end of HCV negative-strand RNA. Moreover, intracellular NS3 protein can be specifically detected in situ with the RNA aptamers, indicating that the selected RNAs are very specific to the HCV NS3 helicase. Furthermore, the RNA aptamers partially inhibited RNA synthesis of HCV subgenomic replicon in Huh-7 hepatoma cell lines. These results suggest that the RNA aptamers selected in vitro could be useful not only as therapeutic and diagnostic agents of HCV infection but also as a powerful tool for the study of HCV helicase mechanism.
Collapse
Affiliation(s)
- Byounghoon Hwang
- Department of Molecular Biology, Institute of Nanosensor and Biotechnology, Dankook University, San8 Hannam-Dong, Yongsan-Gu, Seoul 140-714, Korea
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Liu D, Windsor WT, Wyss DF. Double-stranded DNA-induced localized unfolding of HCV NS3 helicase subdomain 2. Protein Sci 2004; 12:2757-67. [PMID: 14627736 PMCID: PMC2366984 DOI: 10.1110/ps.03280803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The NS3 helicase of the hepatitis C virus (HCV) unwinds double-stranded (ds) nucleic acid (NA) in an NTP-dependent fashion. Mechanistic details of this process are, however, largely unknown for the HCV helicase. We have studied the binding of dsDNA to an engineered version of subdomain 2 of the HCV helicase (d(2Delta)NS3h) by NMR and circular dichroism. Binding of dsDNA to d(2Delta)NS3h induces a local unfolding of helix (alpha(3)), which includes residues of conserved helicase motif VI (Q(460)RxxRxxR(467)), and strands (beta(1) and beta(8)) from the central beta-sheet. This also occurs upon lowering the pH (4.4) and introducing an R461A point mutation, which disrupt salt bridges with Asp 412 and Asp 427 in the protein structure. NMR studies on d(2Delta)NS3h in the partially unfolded state at low pH map the dsDNA binding site to residues previously shown to be involved in single-stranded DNA binding. Sequence alignment and structural comparison suggest that these Arg-Asp interactions are highly conserved in SF2 DEx(D/H) proteins. Thus, modulation of these interactions by dsNA may allow SF2 helicases to switch between conformations required for helicase function.
Collapse
Affiliation(s)
- Dingjiang Liu
- Department of Structural Chemistry, Schering-Plough Research Institute, Kenilworth, New Jersey 07033, USA
| | | | | |
Collapse
|
11
|
Lam AMI, Keeney D, Frick DN. Two novel conserved motifs in the hepatitis C virus NS3 protein critical for helicase action. J Biol Chem 2003; 278:44514-24. [PMID: 12944414 PMCID: PMC3571693 DOI: 10.1074/jbc.m306444200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hepatitis C virus (HCV) NS3 helicase shares several conserved motifs with other superfamily 2 (SF2) helicases. Besides these sequences, several additional helicase motifs are conserved among the various HCV genotypes and quasispecies. The roles of two such motifs are examined here. The first motif (YRGXDV) forms a loop that connects SF2 helicase motifs 4 and 5, at the tip of which is Arg393. When Arg393 is changed to Ala, the resulting protein (R393A) retains a nucleic acid stimulated ATPase but cannot unwind RNA. R393A also unwinds DNA more slowly than wild type and translocates poorly on single-stranded DNA (ssDNA). DNA and RNA stimulate ATP hydrolysis catalyzed by R393A like the wild type, but the mutant protein binds ssDNA more weakly both in the presence and absence of the non-hydrolyzable ATP analog ADP(BeF3). The second motif (DFSLDPTF) forms a loop that connects two anti-parallel sheets between SF2 motifs 5 and 6. When Phe444 in this Phe-loop is changed to Ala, the resulting protein (F444A) is devoid of all activities. When Phe438 is changed to Ala, the protein (F438A) retains nucleic acid-stimulated ATPase, but does not unwind RNA. F438A unwinds DNA and translocates on ssDNA at about half the rate of the wild type. Equilibrium binding data reveal that this uncoupling of ATP hydrolysis and unwinding is due to the fact that the F438A mutant does not release ssDNA upon ATP binding like the wild type. A model is presented explaining the roles of the Arg-clamp and the Phe-loop in the unwinding reaction.
Collapse
Affiliation(s)
| | | | - David N. Frick
- To whom correspondence should be addressed: Dept. of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595. Tel.: 914-594-4190; Fax: 914-594-4058;
| |
Collapse
|
12
|
Abstract
The limitations of current treatment for chronic hepatitis C virus (HCV) infection have prompted the development of novel therapeutic strategies targeting events specific to viral replication. Over the past decade, advances in the study of HCV molecular biology have led to the identification of cis-acting RNA sequences and viral enzymatic activities which present attractive targets for inhibition. High-resolution, three-dimensional structures of the HCV serine protease, helicase and RNA-dependent RNA polymerase have been determined through X-ray crystallographic studies. More recently, solution structures of these proteins and the HCV internal ribosome entry site have been evaluated by nuclear magnetic resonance spectroscopy and electron microscopy. Mutational analysis and structural characterization of these macromolecules in complex with bound substrates, cofactors and inhibitors has further defined the various electrochemical interactions which mediate protein-protein, protein-RNA and other intermolecular contacts. This review will discuss the available structural data with respect to the rational design of HCV enzyme inhibitors and the development of antisense-based therapeutic strategies, such as RNA interference.
Collapse
Affiliation(s)
- R M Smith
- Department of Medicine, Division of Gastroenterology-Hepatology, University of Connecticut Health Center, Farmington, CT 06030-1845, USA
| | | |
Collapse
|