1
|
Betteridge T, Liu H, Gamper H, Kirillov S, Cooperman BS, Hou YM. Fluorescent labeling of tRNAs for dynamics experiments. RNA (NEW YORK, N.Y.) 2007; 13:1594-601. [PMID: 17652134 PMCID: PMC1950756 DOI: 10.1261/rna.475407] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Transfer RNAs (tRNAs) are substrates for complex enzymes, such as aminoacyl-tRNA synthetases and ribosomes, and play an essential role in translation of genetic information into protein sequences. Here we describe a general method for labeling tRNAs with fluorescent dyes, so that the activities and dynamics of the labeled tRNAs can be directly monitored by fluorescence during the ribosomal decoding process. This method makes use of the previously reported fluorescent labeling of natural tRNAs at dihydrouridine (D) positions, but extends the previous method to synthetic tRNAs by preparing tRNA transcripts and introducing D residues into transcripts with the yeast enzyme Dus1p dihydrouridine synthase. Using the unmodified transcript of Escherichia coli tRNAPro as an example, which has U17 and U17a in the D loop, we show that Dus1p catalyzes conversion of one of these Us (mostly U17a) to D, and that the modified tRNA can be labeled with the fluorophores proflavin and rhodamine 110, with overall labeling yields comparable to those obtained with the native yeast tRNAPhe. Further, the transcript of yeast tRNAPhe, modified by Dus1p and labeled with proflavin, translocates on the ribosome at a rate similar to that of the proflavin-labeled native yeast tRNAPhe. These results demonstrate that synthetic tRNA transcripts, which may be designed to contain mutations not found in nature, can be labeled and studied. Such labeled tRNAs should have broad utility in research that involves studies of tRNA maturation, aminoacylation, and tRNA-ribosome interactions.
Collapse
Affiliation(s)
- Thu Betteridge
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | |
Collapse
|
2
|
Vasil'eva IA, Moor NA. Interaction of aminoacyl-tRNA synthetases with tRNA: general principles and distinguishing characteristics of the high-molecular-weight substrate recognition. BIOCHEMISTRY (MOSCOW) 2007; 72:247-63. [PMID: 17447878 DOI: 10.1134/s0006297907030029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review summarizes results of numerous (mainly functional) studies that have been accumulated over recent years on the problem of tRNA recognition by aminoacyl-tRNA synthetases. Development and employment of approaches that use synthetic mutant and chimeric tRNAs have demonstrated general principles underlying highly specific interaction in different systems. The specificity of interaction is determined by a certain number of nucleotides and structural elements of tRNA (constituting the set of recognition elements or specificity determinants), which are characteristic of each pair. Crystallographic structures available for many systems provide the details of the molecular basis of selective interaction. Diversity and identity of biochemical functions of the recognition elements make substantial contribution to the specificity of such interactions.
Collapse
Affiliation(s)
- I A Vasil'eva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | | |
Collapse
|
3
|
Abstract
Natural RNAs contain many base modifications that have specific biological functions. The ability to functionally dissect individual modifications is facilitated by the identification and cloning of enzymes responsible for these modifications, but is hindered by the difficulty of isolating site-specifically modified RNAs away from unmodified transcripts. Using the m1G37 and m1A58 methyl modifications of tRNA as two examples, we demonstrate that non-pairing base modifications protect RNAs against the DNA-directed RNase H cleavage. This provide a new approach to obtain homogeneous RNAs with site-specific base modifications that are suitable for biochemical and functional studies.
Collapse
Affiliation(s)
- Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University 233 South 10th Street, BLSB 220, Philadelphia, PA 19107-5719, USA.
| | | | | |
Collapse
|
4
|
An S, Musier-Forsyth K. Cys-tRNA(Pro) editing by Haemophilus influenzae YbaK via a novel synthetase.YbaK.tRNA ternary complex. J Biol Chem 2005; 280:34465-72. [PMID: 16087664 DOI: 10.1074/jbc.m507550200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aminoacyl-tRNA synthetases are multidomain enzymes that often possess two activities to ensure translational accuracy. A synthetic active site catalyzes tRNA aminoacylation, while an editing active site hydrolyzes mischarged tRNAs. Prolyl-tRNA synthetases (ProRS) have been shown to misacylate Cys onto tRNA(Pro), but lack a Cys-specific editing function. The synthetase-like Haemophilus influenzae YbaK protein was recently shown to hydrolyze misacylated Cys-tRNA(Pro) in trans. However, the mechanism of specific substrate selection by this single domain hydrolase is unknown. Here, we demonstrate that YbaK alone appears to lack specific tRNA recognition capabilities. Moreover, YbaK cannot compete for aminoacyl-tRNAs in the presence of elongation factor Tu, suggesting that YbaK acts before release of the aminoacyl-tRNA from the synthetase. In support of this idea, cross-linking studies reveal the formation of binary (ProRS.YbaK) and ternary (ProRS.YbaK.tRNA) complexes. The binding constants for the interaction between ProRS and YbaK are 550 nM and 45 nM in the absence and presence of tRNA(Pro), respectively. These results suggest that the specificity of trans-editing by YbaK is ensured through formation of a novel ProRS.YbaK.tRNA complex.
Collapse
Affiliation(s)
- Songon An
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
5
|
An S, Musier-Forsyth K. Trans-editing of Cys-tRNAPro by Haemophilus influenzae YbaK protein. J Biol Chem 2004; 279:42359-62. [PMID: 15322138 DOI: 10.1074/jbc.c400304200] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prolyl-tRNA synthetases (ProRSs) from all three domains of life have been shown to misactivate cysteine and to mischarge cysteine onto tRNAPro. Although most bacterial ProRSs possess an amino acid editing domain that deacylates mischarged Ala-tRNAPro, editing of Cys-tRNAPro has not been demonstrated and a double-sieve mechanism of editing does not appear to be sufficient to eliminate all misacylated tRNAPro species from the cell. It was recently shown that a ProRS paralog, the YbaK protein from Haemophilus influenzae, which is homologous to the ProRS editing domain, is capable of weakly deacylating Ala-tRNAPro. This function appears to be redundant with that of its corresponding ProRS, which contains a canonical bacterial editing domain. In the present study, we test the specificity of editing by H. influenzae YbaK and show that it efficiently edits Cys-tRNAPro and that a conserved Lys residue is essential for this activity. These findings represent the first example of an editing domain paralog possessing altered specificity and suggest that similar autonomous editing domains could act upon different mischarged tRNAs thus providing cells with enhanced proofreading potential. This work also suggests a novel mechanism of editing wherein a third sieve is used to clear Cys-tRNAPro in at least some organisms.
Collapse
Affiliation(s)
- Songon An
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
6
|
Ruan B, Nakano H, Tanaka M, Mills JA, DeVito JA, Min B, Low KB, Battista JR, Söll D. Cysteinyl-tRNA(Cys) formation in Methanocaldococcus jannaschii: the mechanism is still unknown. J Bacteriol 2004; 186:8-14. [PMID: 14679218 PMCID: PMC303452 DOI: 10.1128/jb.186.1.8-14.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Accepted: 10/02/2003] [Indexed: 11/20/2022] Open
Abstract
Most organisms form Cys-tRNA(Cys), an essential component for protein synthesis, through the action of cysteinyl-tRNA synthetase (CysRS). However, the genomes of Methanocaldococcus jannaschii, Methanothermobacter thermautotrophicus, and Methanopyrus kandleri do not contain a recognizable cysS gene encoding CysRS. It was reported that M. jannaschii prolyl-tRNA synthetase (C. Stathopoulos, T. Li, R. Longman, U. C. Vothknecht, H. D. Becker, M. Ibba, and D. Söll, Science 287:479-482, 2000; R. S. Lipman, K. R. Sowers, and Y. M. Hou, Biochemistry 39:7792-7798, 2000) or the M. jannaschii MJ1477 protein (C. Fabrega, M. A. Farrow, B. Mukhopadhyay, V. de Crécy-Lagard, A. R. Ortiz, and P. Schimmel, Nature 411:110-114, 2001) provides the "missing" CysRS activity for in vivo Cys-tRNA(Cys) formation. These conclusions were supported by complementation of temperature-sensitive Escherichia coli cysS(Ts) strain UQ818 with archaeal proS genes (encoding prolyl-tRNA synthetase) or with the Deinococcus radiodurans DR0705 gene, the ortholog of the MJ1477 gene. Here we show that E. coli UQ818 harbors a mutation (V27E) in CysRS; the largest differences compared to the wild-type enzyme are a fourfold increase in the K(m) for cysteine and a ninefold reduction in the k(cat) for ATP. While transformants of E. coli UQ818 with archaeal and bacterial cysS genes grew at a nonpermissive temperature, growth was also supported by elevated intracellular cysteine levels, e.g., by transformation with an E. coli cysE allele (encoding serine acetyltransferase) or by the addition of cysteine to the culture medium. An E. coli cysS deletion strain permitted a stringent complementation test; growth could be supported only by archaeal or bacterial cysS genes and not by archaeal proS genes or the D. radiodurans DR0705 gene. Construction of a D. radiodurans DR0705 deletion strain showed this gene to be dispensable. However, attempts to delete D. radiodurans cysS failed, suggesting that this is an essential Deinococcus gene. These results imply that it is not established that proS or MJ1477 gene products catalyze Cys-tRNA(Cys) synthesis in M. jannaschii. Thus, the mechanism of Cys-tRNA(Cys) formation in M. jannaschii still remains to be discovered.
Collapse
Affiliation(s)
- Benfang Ruan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Accurate aminoacyl-tRNA synthesis is essential for correct translation of the genetic code in all organisms. Whereas many aspects of this process are conserved, others display a surprisingly high level of divergence from the canonical Escherichia coli model system. These differences are most pronounced in archaea where novel mechanisms have recently been described for aminoacylating tRNAs with asparagine, cysteine, glutamine and lysine. Whereas these mechanisms were initially assumed to be uniquely archaeal, both the alternative asparagine and lysine pathways have subsequently been demonstrated in numerous bacteria. Similarly, studies of the means by which archaea insert the rare amino acid selenocysteine in response to UGA stop codons have helped provide a better understanding of both archaeal and eukaryal selenoprotein synthesis. Most recently a new co-translationally inserted amino acid, pyrrolysine, has been found in archaea although again there is some suggestion that it may also be present in bacteria. Thus, whereas archaea contain a preponderance of non-canonical aminoacyl-tRNA synthesis systems most are also found elsewhere albeit less frequently.
Collapse
Affiliation(s)
- Mette Praetorius-Ibba
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210-1292, USA
| | | |
Collapse
|
8
|
Ambrogelly A, Ahel I, Polycarpo C, Bunjun-Srihari S, Krett B, Jacquin-Becker C, Ruan B, Köhrer C, Stathopoulos C, RajBhandary UL, Söll D. Methanocaldococcus jannaschii prolyl-tRNA synthetase charges tRNA(Pro) with cysteine. J Biol Chem 2002; 277:34749-54. [PMID: 12130658 DOI: 10.1074/jbc.m206929200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Methanocaldococcus jannaschii prolyl-tRNA synthetase (ProRS) was previously reported to also catalyze the synthesis of cysteinyl-tRNA(Cys) (Cys-tRNA(Cys)) to make up for the absence of the canonical cysteinyl-tRNA synthetase in this organism (Stathopoulos, C., Li, T., Longman, R., Vothknecht, U. C., Becker, H., Ibba, M., and Söll, D. (2000) Science 287, 479-482; Lipman, R. S., Sowers, K. R., and Hou, Y. M. (2000) Biochemistry 39, 7792-7798). Here we show by acid urea gel electrophoresis that pure heterologously expressed recombinant M. jannaschii ProRS misaminoacylates M. jannaschii tRNA(Pro) with cysteine. The enzyme is unable to aminoacylate purified mature M. jannaschii tRNA(Cys) with cysteine in contrast to facile aminoacylation of the same tRNA with cysteine by Methanococcus maripaludis cysteinyl-tRNA synthetase. Although M. jannaschii ProRS catalyzes the synthesis of Cys-tRNA(Pro) readily, the enzyme is unable to edit this misaminoacylated tRNA. We discuss the implications of these results on the in vivo activity of the M. jannaschii ProRS and on the nature of the enzyme involved in the synthesis of Cys-tRNA(Cys) in M. jannaschii.
Collapse
Affiliation(s)
- Alexandre Ambrogelly
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Lipman RSA, Beuning PJ, Musier-Forsyth K, Hou YM. Amino acid activation of a dual-specificity tRNA synthetase is independent of tRNA. J Mol Biol 2002; 316:421-7. [PMID: 11866507 DOI: 10.1006/jmbi.2001.5373] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transfer RNA can play a role in amino acid activation by aminoacyl-tRNA synthetases. For the prolyl-tRNA synthetase (ProRS) of Methanococcus jannaschii, which activates both proline and cysteine, the role of tRNA in amino acid selection and activation is of interest in the effort to understand the mechanism of the dual-specificity. While activation of proline does not require tRNA, whether or not tRNA is required in the activation of cysteine has been a matter of debate. Here, investigation of a series of buffer conditions shows that activation of cysteine occurs without tRNA in a wide-range of buffers. However, the extent of cysteine activation is strongly buffer-dependent, varying over a 180-fold range. In contrast, the extent of proline activation is much less sensitive to buffer conditions, varying over only a 36-fold range. We also find that addition of tRNA has a small threefold stimulatory effect on cysteine activation. The lack of a major role of tRNA in activation of cysteine suggests that the dual-specificity enzyme must distinguish cysteine from proline directly, without the assistance of each cognate tRNA, to achieve the necessary specificity required for protein synthesis.
Collapse
Affiliation(s)
- Richard S A Lipman
- Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|