1
|
Cacciatore S, Piccioli M, Turano P. Electron self-exchange of cytochrome c measured via13C detected protonless NMR. J PORPHYR PHTHALOCYA 2013. [DOI: 10.1142/s1088424612501404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The use of protonless 13C′–13C′ EXSY (COCO-EXSY) is proposed here to measure electron self-exchange rates. The experiment is compared to the commonly employed 1H and 15N EXSY experiments using as a reference system human cytochrome c. In COCO-EXSY, the exchange peaks are stronger than in the other experiments with respect to the self peaks and their intensity is less dependent on the choice of the EXSY mixing time. The use of 13C directed detection may be essential for all those cases where T2 relaxation is detrimental, as in the case of proteins containing highly paramagnetic metal centers, or rotating slowly in solution, or where the amide signals are difficult to detect due to chemical or conformational exchange. The proposed experiment has a general applicability and can be used to monitor exchange phenomena different from electron self-exchange.
Collapse
Affiliation(s)
- Stefano Cacciatore
- Magnetic Resonance Center (CERM) and Department of Chemistry, University of Florence, Via L. Sacconi 6, Sesto, Fiorentino 50019, Italy
| | - Mario Piccioli
- Magnetic Resonance Center (CERM) and Department of Chemistry, University of Florence, Via L. Sacconi 6, Sesto, Fiorentino 50019, Italy
| | - Paola Turano
- Magnetic Resonance Center (CERM) and Department of Chemistry, University of Florence, Via L. Sacconi 6, Sesto, Fiorentino 50019, Italy
| |
Collapse
|
2
|
How a single residue in individual β-thymosin/WH2 domains controls their functions in actin assembly. EMBO J 2011; 31:1000-13. [PMID: 22193718 DOI: 10.1038/emboj.2011.461] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 11/18/2011] [Indexed: 12/21/2022] Open
Abstract
β-Thymosin (βT) and WH2 domains are widespread, intrinsically disordered actin-binding peptides that display significant sequence variability and different regulations of actin self-assembly in motile and morphogenetic processes. Here, we reveal the structural mechanisms by which, in their 1:1 stoichiometric complexes with actin, they either inhibit assembly by sequestering actin monomers like Thymosin-β4, or enhance motility by directing polarized filament assembly like Ciboulot βT. We combined mutational, functional or structural analysis by X-ray crystallography, SAXS (small angle X-ray scattering) and NMR on Thymosin-β4, Ciboulot, TetraThymosinβ and the long WH2 domain of WASP-interacting protein. The latter sequesters G-actin with the same molecular mechanisms as Thymosin-β4. Functionally different βT/WH2 domains differ by distinct dynamics of their C-terminal half interactions with G-actin pointed face. These C-terminal interaction dynamics are controlled by the strength of electrostatic interactions with G-actin. At physiological ionic strength, a single salt bridge with actin located next to their central LKKT/V motif induces G-actin sequestration in both isolated long βT and WH2 domains. The results open perspectives for elucidating the functions of βT/WH2 domains in other modular proteins.
Collapse
|
3
|
Das R, Chowdhury S, Mazhab-Jafari MT, Sildas S, Selvaratnam R, Melacini G. Dynamically driven ligand selectivity in cyclic nucleotide binding domains. J Biol Chem 2009; 284:23682-96. [PMID: 19403523 DOI: 10.1074/jbc.m109.011700] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
One of the mechanisms that minimize the aberrant cross-talk between cAMP- and cGMP-dependent signaling pathways relies on the selectivity of cAMP binding domains (CBDs). For instance, the CBDs of two critical eukaryotic cAMP receptors, i.e. protein kinase A (PKA) and the exchange protein activated by cAMP (EPAC), are both selectively activated by cAMP. However, the mechanisms underlying their cAMP versus cGMP selectivity are quite distinct. In PKA this selectivity is controlled mainly at the level of ligand affinity, whereas in EPAC it is mostly determined at the level of allostery. Currently, the molecular basis for these different selectivity mechanisms is not fully understood. We have therefore comparatively analyzed by NMR the cGMP-bound states of the essential CBDs of PKA and EPAC, revealing key differences between them. Specifically, cGMP binds PKA preserving the same syn base orientation as cAMP at the price of local steric clashes, which lead to a reduced affinity for cGMP. Unlike PKA, cGMP is recognized by EPAC in an anti conformation and generates several short and long range perturbations. Although these effects do not alter significantly the structure of the EPAC CBD investigated, remarkable differences in dynamics between the cAMP- and cGMP-bound states are detected for the ionic latch region. These observations suggest that one of the determinants of cGMP antagonism in EPAC is the modulation of the entropic control of inhibitory interactions and illustrate the pivotal role of allostery in determining signaling selectivity as a function of dynamic changes, even in the absence of significant affinity variations.
Collapse
Affiliation(s)
- Rahul Das
- Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | | | | | | | | | | |
Collapse
|
4
|
Rodríguez JC, Zeng Y, Wilks A, Rivera M. The hydrogen-bonding network in heme oxygenase also functions as a modulator of enzyme dynamics: chaotic motions upon disrupting the H-bond network in heme oxygenase from Pseudomonas aeruginosa. J Am Chem Soc 2007; 129:11730-42. [PMID: 17764179 DOI: 10.1021/ja072405q] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Relaxation compensated Carr-Purcell-Meiboom-Gill (rc-CPMG) NMR experiments have been used to investigate micros-ms motions in heme oxygenase from Pseudomonas aeruginosa (pa-HO) in its ferric state, inhibited by CN- (pa-HO-CN) and N3- (pa-HO-N3), and in its ferrous state, inhibited by CO (pa-HO-CO). Comparative analysis of the data from the three forms indicates that the nature of the coordinated distal ligand affects the micros-ms conformational freedom of the polypeptide in regions of the enzyme far removed from the heme iron and distal ligand. Interpretation of the dynamical information in the context of the crystal structure of resting state pa-HO shows that residues involved in the network of structural hydrogen-bonded waters characteristic of HOs undergo micros-ms motions in pa-HO-CN, which was studied as a model of the highly paramagnetic S = 5/2 resting state form. In comparison, similar motions are suppressed in the pa-HO-CO and pa-HO-N3 complexes, which were studied as mimics of the obligatory oxyferrous and ferric hydroperoxide intermediates, respectively, in the catalytic cycle of heme degradation. These findings suggest that in addition to proton delivery to the nascent Fe(III)-OO(-) intermediate during catalysis, the hydrogen-bonding network serves two additional roles: (i) propagate the electronic state (reactive state) in each of the distinct steps of the catalytic cycle to key but remote sections of the polypeptide via small rearrangements in the network of hydrogen bonds and (ii) modulate the conformational freedom of the enzyme, thus allowing it to adapt to the demanding changes in axial coordination state and substrate transformations that take place during the catalytic cycle. This idea was probed by disrupting the hydrogen-bonding network in pa-HO by replacing R80 with L. NMR spectroscopic studies conducted with R80L-pa-HO-N3 and R80L-pa-HO-CO revealed that the mutant exhibits nearly global conformational disorder, which is absent in the equivalent complexes of the wild type enzyme. The "chaotic" disorder in the R80L mutant is likely related to its significantly lower efficiency to hydroxylate heme in the presence of H2O2, relative to the wild type enzyme.
Collapse
Affiliation(s)
- Juan Carlos Rodríguez
- Ralph N. Adams Institute for Bioanalytical Chemistry and Department of Chemistry, University of Kansas, Multidisciplinary Research Building, 2030 Becker Drive, Room 220 E, Lawrence, Kansas 66047, USA
| | | | | | | |
Collapse
|
5
|
John M, Headlam MJ, Dixon NE, Otting G. Assignment of paramagnetic (15)N-HSQC spectra by heteronuclear exchange spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2007; 37:43-51. [PMID: 17096205 DOI: 10.1007/s10858-006-9098-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Accepted: 09/15/2006] [Indexed: 05/12/2023]
Abstract
Paramagnetic metal ions in proteins provide a rich source of structural information, but the resonance assignments required to extract the information can be challenging. Here we demonstrate that paramagnetically shifted (15)N-HSQC cross-peaks can be assigned using N(Z)-exchange spectroscopy under conditions in which the paramagnetic form of the protein is in dynamic equilibrium with its diamagnetic form. Even slow exchange of specifically bound metal ions may be detected within the long lifetime of (15)N longitudinal magnetization of large proteins at high magnetic fields. Alternatively, the exchange can be accelerated using an excess of metal ions. In the resulting exchange spectra, paramagnetic (15)N resonances become visible for residues that are not directly observed in a conventional (15)N-HSQC spectrum due to paramagnetic (1)H(N) broadening. The experiments are illustrated by the 30 kDa lanthanide-binding epsilon186/theta complex of DNA polymerase III in the presence of sub-stoichiometric amounts of Dy(3+) or a mixture of Dy(3+) and La(3+).
Collapse
Affiliation(s)
- Michael John
- Research School of Chemistry, Australian National University, Canberra, ACT, 0200, Australia
| | | | | | | |
Collapse
|
6
|
Das R, Esposito V, Abu-Abed M, Anand GS, Taylor SS, Melacini G. cAMP activation of PKA defines an ancient signaling mechanism. Proc Natl Acad Sci U S A 2006; 104:93-8. [PMID: 17182741 PMCID: PMC1765484 DOI: 10.1073/pnas.0609033103] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
cAMP and the cAMP binding domain (CBD) constitute a ubiquitous regulatory switch that translates an extracellular signal into a biological response. The CBD contains alpha- and beta-subdomains with cAMP binding to a phosphate binding cassette (PBC) in the beta-sandwich. The major receptors for cAMP in mammalian cells are the regulatory subunits (R-subunits) of PKA where cAMP and the catalytic subunit compete for the same CBD. The R-subunits inhibit kinase activity, whereas cAMP releases that inhibition. Here, we use NMR to map at residue resolution the cAMP-dependent interaction network of the CBD-A domain of isoform Ialpha of the R-subunit of PKA. Based on H/D, H/H, and N(z) exchange data, we propose a molecular model for the allosteric regulation of PKA by cAMP. According to our model, cAMP binding causes long-range perturbations that propagate well beyond the immediate surroundings of the PBC and involve two key relay sites located at the C terminus of beta(2) (I163) and N terminus of beta(3) (D170). The I163 site functions as one of the key triggers of global unfolding, whereas the D170 locus acts as an electrostatic switch that mediates the communication between the PBC and the B-helix. Removal of cAMP not only disrupts the cap for the B' helix within the PBC, but also breaks the circuitry of cooperative interactions stemming from the PBC, thereby uncoupling the alpha- and beta-subdomains. The proposed model defines a signaling mechanism, conserved in every genome, where allosteric binding of a small ligand disrupts a large protein-protein interface.
Collapse
Affiliation(s)
- Rahul Das
- *Departments of Chemistry, Biochemistry, and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4M1; and
| | - Veronica Esposito
- *Departments of Chemistry, Biochemistry, and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4M1; and
| | - Mona Abu-Abed
- *Departments of Chemistry, Biochemistry, and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4M1; and
| | - Ganesh S. Anand
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, Department of Pharmacology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Susan S. Taylor
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, Department of Pharmacology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093
- To whom correspondence may be addressed. E-mail:
or
| | - Giuseppe Melacini
- *Departments of Chemistry, Biochemistry, and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4M1; and
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
7
|
Das R, Melacini G. A model for agonism and antagonism in an ancient and ubiquitous cAMP-binding domain. J Biol Chem 2006; 282:581-93. [PMID: 17074757 DOI: 10.1074/jbc.m607706200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cAMP-binding domain (CBD) is an ancient and conserved regulatory motif that allosterically modulates the function of a group of diverse proteins, thereby translating the cAMP signal into a controlled biological response. The main receptor for cAMP in mammals is the ubiquitous regulatory (R) subunit of protein kinase A. Despite the recognized significant potential for pharmacological applications of CBDs, currently only one group of competitive inhibitor antagonists is known: the (R(p))-cAMPS family of phosphorothioate cAMP analogs, in which the equatorial exocyclic oxygen of cAMP is replaced by sulfur. It is also known that the diastereoisomer (S(p))-cAMPS with opposite phosphorous chirality is a cAMP agonist, but the molecular mechanism of action of these analogs is currently not fully understood. Previous crystallographic and unfolding investigations point to the enhanced CBD dynamics as a key determinant of antagonism. Here, we investigate the (R(p))- and (S(p))-cAMPS-bound states of R(CBD-A) using a comparative NMR approach that reveals a clear chemical shift and dynamic NMR signature, differentiating the (S(p))-cAMPS agonist from the (R(p))-cAMPS antagonist. Based on these data, we have proposed a model for the (R(p)/S(p))-cAMPS antagonism and agonism in terms of steric and electronic effects on two main allosteric relay sites, Ile(163) and Asp(170), respectively, affecting the stability of a ternary inhibitory complex formed by the effector ligand, the regulatory and the catalytic subunits of protein kinase A. The proposed model not only rationalizes the existing data on the phosphorothioate analogs, but it will also facilitate the design of novel cAMP antagonists and agonists.
Collapse
Affiliation(s)
- Rahul Das
- Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | | |
Collapse
|
8
|
Cahuzac B, Cerdan R, Felenbok B, Guittet E. The solution structure of an AlcR-DNA complex sheds light onto the unique tight and monomeric DNA binding of a Zn(2)Cys(6) protein. Structure 2001; 9:827-36. [PMID: 11566132 DOI: 10.1016/s0969-2126(01)00640-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND In Aspergillus nidulans, the transcription activator AlcR mediates specific induction of a number of the genes of the alc cluster. This cluster includes genes involved in the oxidation of ethanol and other alcohols to acetate. The pattern of binding and of transactivation of AlcR is unique within the Zn(2)Cys(6) family. The structural bases for these specificities have not been analyzed at the atomic level until now. RESULTS We have used NMR spectroscopy and restrained molecular dynamics to determine a set of structures of the AlcR DNA binding domain [AlcR(1-60)] in complex with a 10-mer DNA duplex. Analysis of the structures reveals specific interactions between AlcR and DNA common to the other known zinc clusters. In addition, the involvement of the N-terminal residues upstream of the AlcR zinc cluster in DNA binding is clearly highlighted, and the pivotal role of R6 is confirmed. Totally unprecedented specific and nonspecific contacts of two additional regions of the protein with the DNA are demonstrated. The differences with the available crystallographic structures of other zinc binuclear cluster proteins-DNA complexes are analyzed. CONCLUSIONS The structures of the AlcR(1-60)-DNA complex provide the basis for a better understanding of some of the specificities of the AlcR system: the DNA consensus recognition sequence--usually the triplet CGG--is extended to five base pairs, AlcR acts as a monomer, and additional contacts inside and outside the DNA binding domain in the major and minor groove are observed. These extensive interactions stabilize the AlcR monomer to its cognate DNA site.
Collapse
Affiliation(s)
- B Cahuzac
- Laboratoire de Résonance Magnétique Nucléaire, ICSN-CNRS, 1 Avenue de la Terrasse, Gif-sur-Yvette F-91190, France
| | | | | | | |
Collapse
|