1
|
Richardson KH, Seif-Eddine M, Sills A, Roessler MM. Controlling and exploiting intrinsic unpaired electrons in metalloproteins. Methods Enzymol 2022; 666:233-296. [PMID: 35465921 DOI: 10.1016/bs.mie.2022.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Electron paramagnetic resonance spectroscopy encompasses a versatile set of techniques that allow detailed insight into intrinsically occurring paramagnetic centers in metalloproteins and enzymes that undergo oxidation-reduction reactions. In this chapter, we discuss the process from isolating the protein to acquiring and analyzing pulse EPR spectra, adopting a practical perspective. We start with considerations when preparing the protein sample, explain techniques and procedures available for determining the reduction potential of the redox-active center of interest and provide details on methodologies to trap a given paramagnetic state for detailed pulse EPR studies, with an emphasis on biochemical and spectroscopic tools available when multiple EPR-active species are present. We elaborate on some of the most commonly used pulse EPR techniques and the choices the user has to make, considering advantages and disadvantages and how to avoid pitfalls. Examples are provided throughout.
Collapse
Affiliation(s)
| | - Maryam Seif-Eddine
- Imperial College London, Molecular Sciences Research Hub, London, United Kingdom
| | - Adam Sills
- Imperial College London, Molecular Sciences Research Hub, London, United Kingdom
| | - Maxie M Roessler
- Imperial College London, Molecular Sciences Research Hub, London, United Kingdom.
| |
Collapse
|
2
|
Abdullin D, Schiemann O. Pulsed Dipolar EPR Spectroscopy and Metal Ions: Methodology and Biological Applications. Chempluschem 2020; 85:353-372. [DOI: 10.1002/cplu.201900705] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/16/2020] [Indexed: 01/18/2023]
Affiliation(s)
- Dinar Abdullin
- Institute of Physical and Theoretical ChemistryUniversity of Bonn Wegelerstr. 12 53115 Bonn Germany
| | - Olav Schiemann
- Institute of Physical and Theoretical ChemistryUniversity of Bonn Wegelerstr. 12 53115 Bonn Germany
| |
Collapse
|
3
|
Abdullin D, Matsuoka H, Yulikov M, Fleck N, Klein C, Spicher S, Hagelueken G, Grimme S, Lützen A, Schiemann O. Pulsed EPR Dipolar Spectroscopy under the Breakdown of the High-Field Approximation: The High-Spin Iron(III) Case. Chemistry 2019; 25:8820-8828. [PMID: 31017706 DOI: 10.1002/chem.201900977] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Indexed: 12/11/2022]
Abstract
Pulsed EPR dipolar spectroscopy (PDS) offers several methods for measuring dipolar coupling and thus the distance between electron-spin centers. To date, PDS measurements to metal centers were limited to ions that adhere to the high-field approximation. Here, the PDS methodology is extended to cases where the high-field approximation breaks down on the example of the high-spin Fe3+ /nitroxide spin-pair. First, the theory developed by Maryasov et al. (Appl. Magn. Reson. 2006, 30, 683-702) was adapted to derive equations for the dipolar coupling constant, which revealed that the dipolar spectrum does not only depend on the length and orientation of the interspin distance vector with respect to the applied magnetic field but also on its orientation to the effective g-tensor of the Fe3+ ion. Then, it is shown on a model system and a heme protein that a PDS method called relaxation-induced dipolar modulation enhancement (RIDME) is well-suited to measuring such spectra and that the experimentally obtained dipolar spectra are in full agreement with the derived equations. Finally, a RIDME data analysis procedure was developed, which facilitates the determination of distance and angular distributions from the RIDME data. Thus, this study enables the application of PDS to for example, the highly relevant class of high-spin Fe3+ heme proteins.
Collapse
Affiliation(s)
- Dinar Abdullin
- Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Hideto Matsuoka
- Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany.,Current address: Graduate School of Science, Osaka City University, Osaka, Japan
| | - Maxim Yulikov
- Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Nico Fleck
- Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Christoph Klein
- Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany.,Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Bonn, Germany
| | - Sebastian Spicher
- Mulliken Center for Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Gregor Hagelueken
- Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Arne Lützen
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Bonn, Germany
| | - Olav Schiemann
- Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| |
Collapse
|
4
|
Zadrozny JM, Graham MJ, Krzyaniak MD, Wasielewski MR, Freedman DE. Unexpected suppression of spin-lattice relaxation via high magnetic field in a high-spin iron(iii) complex. Chem Commun (Camb) 2018; 52:10175-8. [PMID: 27463410 DOI: 10.1039/c6cc05094h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A counterintuitive three-order of magnitude slowing of the spin-lattice relaxation rate is observed in a high spin qubit at high magnetic field via multifrequency pulsed electron paramagnetic resonance measurements.
Collapse
Affiliation(s)
- Joseph M Zadrozny
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.
| | - Michael J Graham
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.
| | - Matthew D Krzyaniak
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA. and Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, IL 60208, USA
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA. and Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, IL 60208, USA
| | - Danna E Freedman
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
5
|
Zadrozny JM, Freedman DE. Qubit Control Limited by Spin-Lattice Relaxation in a Nuclear Spin-Free Iron(III) Complex. Inorg Chem 2015; 54:12027-31. [PMID: 26650962 DOI: 10.1021/acs.inorgchem.5b02429] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High-spin transition metal complexes are of interest as candidates for quantum information processing owing to the tunability of the pairs of MS levels for use as quantum bits (qubits). Thus, the design of high-spin systems that afford qubits with stable superposition states is of primary importance. Nuclear spins are a potent instigator of superposition instability; thus, we probed the Ph4P(+) salt of the nuclear spin-free complex [Fe(C5O5)3](3-) (1) to see if long-lived superpositions were possible in such a system. Continuous-wave and pulsed electron paramagnetic resonance (EPR) spectroscopic measurements reveal a strong EPR transition at X-band that can be utilized as a qubit. However, at 5 K the coherent lifetime, T2, for this resonance is 721(3) ns and decreases rapidly with increasing temperature. Simultaneously, the spin-lattice relaxation time is extremely short, 11.33(1) μs, at 5 K, and also rapidly decreases with increasing temperature. The coincidence of these two temperature-dependent data sets suggests that T2 in 1 is strongly limited by the short T1. Importantly, these results highlight the need for new design parameters in pursuit of high-spin species with appreciable coherence times.
Collapse
Affiliation(s)
- Joseph M Zadrozny
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Danna E Freedman
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| |
Collapse
|
6
|
Nehrkorn J, Telser J, Holldack K, Stoll S, Schnegg A. Simulating Frequency-Domain Electron Paramagnetic Resonance: Bridging the Gap between Experiment and Magnetic Parameters for High-Spin Transition-Metal Ion Complexes. J Phys Chem B 2015; 119:13816-24. [DOI: 10.1021/acs.jpcb.5b04156] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joscha Nehrkorn
- Berlin Joint EPR Lab, Institute
for Nanospectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie, Kekuléstraße 5, 12489 Berlin, Germany
| | - Joshua Telser
- Department
of Biological, Chemical and Physical Sciences, Roosevelt University, 430 South Michigan Avenue, Chicago, Illinois 60605, United States
| | - Karsten Holldack
- Institute
for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße
15, 12489 Berlin, Germany
| | - Stefan Stoll
- Department
of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - Alexander Schnegg
- Berlin Joint EPR Lab, Institute
for Nanospectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie, Kekuléstraße 5, 12489 Berlin, Germany
| |
Collapse
|
7
|
Hoffmann SK, Goslar J. Resonance local phonon mode and electron spin-lattice relaxation of formate-type free radicals studied by electron spin echo in Cd(HCOO)2·2H2O crystal. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:265402. [PMID: 26053705 DOI: 10.1088/0953-8984/27/26/265402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The results of X-band electron spin resonance (ESR) and electron spin echo (ESE) measurements for free radicals generated in Cd(HCOO)2·2H2O single crystal are presented. From ESR spectra analysis the radicals were identified as CO2(-) after x-ray irradiation and as HOCO after γ-ray irradiation. The room temperature g-factors are: g|| = 1.9969 and g⊥ = 2.0024 for CO2(-) and g1 = 2.0087, g2 = 2.0029 and g3 = 1.9960 for HOCO. Axial g-tensor symmetry for CO2(-) is due to fast reorientation of the radical molecule around the g||-axis. Assignment of HOCO is confirmed by hyperfine splitting (Amax = 0.4 mT) from a single distant proton. Spin lattice relaxation rate was determined from ESE measurements in temperature range 4-250 K. Both radicals relax via local resonance mode lying within acoustic phonon branch. The existing theories of electron spin-lattice relaxation via local resonance mode are critically reviewed and compared with experimental data. A new approximation is proposed giving local mode energy ħω(R) = 56 cm(-1) for CO2(-) and ħω(R) = 44 cm(-1) for the HOCO-radical.
Collapse
Affiliation(s)
- S K Hoffmann
- Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznan, Poland
| | | |
Collapse
|
8
|
Edwards DT, Takahashi S, Sherwin MS, Han S. Distance measurements across randomly distributed nitroxide probes from the temperature dependence of the electron spin phase memory time at 240 GHz. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 223:198-206. [PMID: 22975249 DOI: 10.1016/j.jmr.2012.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 06/27/2012] [Accepted: 07/05/2012] [Indexed: 06/01/2023]
Abstract
At 8.5 T, the polarization of an ensemble of electron spins is essentially 100% at 2 K, and decreases to 30% at 20 K. The strong temperature dependence of the electron spin polarization between 2 and 20 K leads to the phenomenon of spin bath quenching: temporal fluctuations of the dipolar magnetic fields associated with the energy-conserving spin "flip-flop" process are quenched as the temperature of the spin bath is lowered to the point of nearly complete spin polarization. This work uses pulsed electron paramagnetic resonance (EPR) at 240 GHz to investigate the effects of spin bath quenching on the phase memory times (T(M)) of randomly-distributed ensembles of nitroxide molecules below 20 K at 8.5 T. For a given electron spin concentration, a characteristic, dipolar flip-flop rate (W) is extracted by fitting the temperature dependence of T(M) to a simple model of decoherence driven by the spin flip-flop process. In frozen solutions of 4-Amino-TEMPO, a stable nitroxide radical in a deuterated water-glass, a calibration is used to quantify average spin-spin distances as large as r=6.6 nm from the dipolar flip-flop rate. For longer distances, nuclear spin fluctuations, which are not frozen out, begin to dominate over the electron spin flip-flop processes, placing an effective ceiling on this method for nitroxide molecules. For a bulk solution with a three-dimensional distribution of nitroxide molecules at concentration n, we find W∝n∝1/r(3), which is consistent with magnetic dipolar spin interactions. Alternatively, we observe W∝n(32) for nitroxides tethered to a quasi two-dimensional surface of large (Ø∼200 nm), unilamellar, lipid vesicles, demonstrating that the quantification of spin bath quenching can also be used to discern the geometry of molecular assembly or organization.
Collapse
Affiliation(s)
- Devin T Edwards
- Department of Physics, University of California, Santa Barbara, CA 93106, United States
| | | | | | | |
Collapse
|
9
|
Electron-electron distances in spin-labeled low-spin metmyoglobin variants by relaxation enhancement. Biophys J 2008; 95:5306-16. [PMID: 18775958 DOI: 10.1529/biophysj.108.141887] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Thirteen single-cysteine variants of myoglobin were prepared by overexpression of apoprotein, spin labeling, and reconstitution with hemin. This procedure resulted in a protein with fewer hemichrome impurities than was obtained by an overexpression of holo-protein followed by spin labeling. Coordination of cyanide to the met heme formed low-spin complexes. Iron-nitroxyl interspin distances in the range of 17-30 A were determined by saturation recovery measurements of the enhancement of the nitroxyl spin lattice relaxation rates between approximately 30-140 K, and by spin-echo measurements of the enhancement of spin-spin relaxation rates at 10-30 K. Interspin distances were also calculated, using the molecular modeling program Insight II (Accelrys, San Diego, CA). For most variants, distances determined from the temperature dependence of spin-echo intensities at a pulse spacing of 200 ns agree with distances measured by saturation recovery and calculated with Insight II within about an angstrom, which is within experimental uncertainties. Measurements of interspin distances via spin-spin relaxation enhancement have the advantages that maximum effects are observed for slower metal relaxation rates than are required for spin-lattice relaxation enhancement, and the impact diminishes as r(-3) instead of r(-6), as with spin-lattice relaxation enhancement, which permits measurements at longer distances.
Collapse
|
10
|
Fielding AJ, Usselman RJ, Watmough N, Simkovic M, Frerman FE, Eaton GR, Eaton SS. Electron spin relaxation enhancement measurements of interspin distances in human, porcine, and Rhodobacter electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO). JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2008; 190:222-32. [PMID: 18037314 PMCID: PMC2262937 DOI: 10.1016/j.jmr.2007.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 10/20/2007] [Accepted: 11/02/2007] [Indexed: 05/25/2023]
Abstract
Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) is a membrane-bound electron transfer protein that links primary flavoprotein dehydrogenases with the main respiratory chain. Human, porcine, and Rhodobacter sphaeroides ETF-QO each contain a single [4Fe-4S](2+,1+) cluster and one equivalent of FAD, which are diamagnetic in the isolated enzyme and become paramagnetic on reduction with the enzymatic electron donor or with dithionite. The anionic flavin semiquinone can be reduced further to diamagnetic hydroquinone. The redox potentials for the three redox couples are so similar that it is not possible to poise the proteins in a state where both the [4Fe-4S](+) cluster and the flavoquinone are fully in the paramagnetic form. Inversion recovery was used to measure the electron spin-lattice relaxation rates for the [4Fe-4S](+) between 8 and 18K and for semiquinone between 25 and 65K. At higher temperatures the spin-lattice relaxation rates for the [4Fe-4S](+) were calculated from the temperature-dependent contributions to the continuous wave linewidths. Although mixtures of the redox states are present, it was possible to analyze the enhancement of the electron spin relaxation of the FAD semiquinone signal due to dipolar interaction with the more rapidly relaxing [4Fe-4S](+) and obtain point-dipole interspin distances of 18.6+/-1A for the three proteins. The point-dipole distances are within experimental uncertainty of the value calculated based on the crystal structure of porcine ETF-QO when spin delocalization is taken into account. The results demonstrate that electron spin relaxation enhancement can be used to measure distances in redox poised proteins even when several redox states are present.
Collapse
Affiliation(s)
- Alistair J. Fielding
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208
| | - Robert J. Usselman
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208
| | - Nicholas Watmough
- Center for Metalloprotein Spectroscopy and Biology and School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ
| | - Martin Simkovic
- Department of Pediatrics, University of Colorado School of Medicine, Denver, CO 80262
| | - Frank E. Frerman
- Department of Pediatrics, University of Colorado School of Medicine, Denver, CO 80262
| | - Gareth R. Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208
| | - Sandra S. Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208
| |
Collapse
|
11
|
Schaefle N, Sharp R. NMR paramagnetic relaxation due to the S=5∕2 complex, Fe(III)-(tetra-p-sulfonatophenyl)porphyrin: Central role of the tetragonal fourth-order zero-field splitting interaction. J Chem Phys 2005; 122:184501. [PMID: 15918723 DOI: 10.1063/1.1886748] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The metalloporphyrins, Me-TSPP [Me=Cr(III), Mn(III), Mn(II), Fe(III), and TSPP=meso-(tetra-p-sulfonatophenyl)porphyrin], which possess electron spins S=3/2, 2, 5/2, and 5/2, respectively, comprise an important series of model systems for mechanistic studies of NMR paramagnetic relaxation enhancement (NMR-PRE). For these S>1/2 spin systems, the NMR-PRE depends critically on the detailed form of the zero-field splitting (zfs) tensor. We report the results of experimental and theoretical studies of the NMR relaxation mechanism associated with Fe(III)-TSPP, a spin 5/2 complex for which the overall zfs is relatively large (D approximately = 10 cm(-1)). A comparison of experimental data with spin dynamics simulations shows that the primary determinant of the shape of the magnetic relaxation dispersion profile of the water proton R1 is the tetragonal fourth-order component of the zfs tensor. The relaxation mechanism, which has not previously been described, is a consequence of zfs-induced mixing of the spin eigenfunctions of adjacent Kramers doublets. We have also investigated the magnetic-field dependence of electron-spin relaxation for S=5/2 in the presence of a large zfs, such as occurs in Fe(III)-TSPP. Calculations show that field dependence of this kind is suppressed in the vicinity of the zfs limit, in agreement with observation.
Collapse
Affiliation(s)
- Nathaniel Schaefle
- Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
12
|
Eaton SS, Eaton GR. Relaxation Times of Organic Radicals and Transition Metal Ions. DISTANCE MEASUREMENTS IN BIOLOGICAL SYSTEMS BY EPR 2002. [DOI: 10.1007/0-306-47109-4_2] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Hoffmann SK, Hilczer W, Goslar J, Massa MM, Calvo R. Electron spin relaxation in pseudo-Jahn-Teller low-symmetry Cu(II) complexes in diaqua(L-aspartate)Zn(II).H(2)O crystals. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2001; 153:92-102. [PMID: 11700085 DOI: 10.1006/jmre.2001.2434] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Low-temperature (4-55 K) pulsed EPR measurements were performed with the magnetic field directed along the z-axis of the g-factor of the low-symmetry octahedral complex [(63)Cu(L-aspartate)(2)(H2O)2] undergoing dynamic Jahn-Teller effect in diaqua(L-aspartate)Zn(II) hydrate single crystals. Spin-lattice relaxation time T(1) and phase memory time T(M) were determined by the electron spin echo (ESE) method. The relaxation rate 1/T(1) increases strongly over 5 decades in the temperature range 4-55 K. Various processes and mechanisms of T(1)-relaxation are discussed, and it is shown that the relaxation is governed mainly by Raman relaxation processes with the Debye temperature Theta(D)=204 K, with a detectable contribution from disorder in the doped Cu(2+) ions system below 12 K. An analytical approximation of the transport integral I(8) is given in temperature range T=0.025-10Theta(D) and applied for computer fitting procedures. Since the Jahn-Teller distorted configurations differ strongly in energy (delta(12)=240 cm(-1)), there is no influence of the classical vibronic dynamics mechanism on T(1). Dephasing of the ESE (phase relaxation) is governed by instantaneous diffusion and spectral diffusion below 20 K with resulting rigid lattice value 1/T(0)(M)=1.88 MHz. Above this temperature the relaxation rate 1/T(M) increases upon heating due to two mechanisms. The first is the phonon-controlled excitation to the first excited vibronic level of energy Delta=243 cm(-1), with subsequent tunneling to the neighbor potential well. This vibronic-type dynamics also produces a temperature-dependent broadening of lines in the ESEEM spectra. The second mechanism is produced by the spin-lattice relaxation. The increase in T(M) is described in terms of the spin packets forming inhomogeneously broadened EPR lines.
Collapse
Affiliation(s)
- S K Hoffmann
- Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, PL-60179 Poznan, Poland
| | | | | | | | | |
Collapse
|
14
|
Yong L, Harbridge J, Quine RW, Rinard GA, Eaton SS, Eaton GR, Mailer C, Barth E, Halpern HJ. Electron spin relaxation of triarylmethyl radicals in fluid solution. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2001; 152:156-161. [PMID: 11531374 DOI: 10.1006/jmre.2001.2379] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Electron spin relaxation times of a Nycomed triarylmethyl radical (sym-trityl) in water, 1:1 water:glycerol, and 1:9 water:glycerol were measured at L-band, S-band, and X-band by pulsed EPR methods. In H(2)O solution, T(1) is 17+/-1 micros at X-band at ambient temperature, is nearly independent of microwave frequency, and exhibits little dependence on viscosity. The temperature dependence of T(1) in 1:1 water:glycerol is characteristic of domination by a Raman process between 20 and 80 K. The increased spin-lattice relaxation rates at higher temperatures, including room temperature, are attributed to a local vibrational mode that modulates spin-orbit coupling. In H(2)O solution, T(2) is 11+/-1 micros at X-band, increasing to 13+/-1 micros at L-band. For more viscous solvent mixtures, T(2) is much shorter than T(1) and weakly frequency dependent, which indicates that incomplete motional averaging of hyperfine anisotropy makes a significant contribution to T(2). In water and 1:1 water:glycerol solutions continuous wave EPR linewidths are not relaxation determined, but become relaxation determined in the higher viscosity 1:9 water:glycerol solutions. The Lorentzian component of the 250-MHz linewidths as a function of viscosity is in good agreement with T(2)-determined contributions to the linewidths at higher frequencies.
Collapse
Affiliation(s)
- L Yong
- Department of Chemistry, University of Denver, Denver, Colorado 80208-2436, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhou Y, Bowler BE, Lynch K, Eaton SS, Eaton GR. Interspin distances in spin-labeled metmyoglobin variants determined by saturation recovery EPR. Biophys J 2000; 79:1039-52. [PMID: 10920034 PMCID: PMC1301000 DOI: 10.1016/s0006-3495(00)76358-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Saturation recovery (SR) electron paramagnetic resonance was used to determine the distance between iron and nitroxyl for spin-labeled metmyoglobin variants in low-spin and high-spin states of the Fe(III). The interspin distances were measured by analyzing the effect of the heme iron on the spin-lattice relaxation rates of the nitroxyl spin label using the modified Bloembergen equation for low-spin species, and an analogue of the Bloembergen equation for high-spin species. Insight simulations of the spin-labeled protein structures also were used to determine the interspin distances. The distances obtained by SR for high-spin and low-spin complexes with 15-20 A interspin distances, for low-spin CN(-) and high-spin formate adducts at distances up to about 30 A, and results from Insight calculations were in good agreement. For variants with 25-30 A interspin distances, the distances obtained by SR for the fluoride adducts were shorter than observed for the CN(-) or formate adducts or predicted by Insight simulations. Of the heme axial ligands examined (CN(-), imidazole, F(-), and formate), CN(-) is the best choice for determination of iron-nitroxyl distances in the range of 15-30 A.
Collapse
Affiliation(s)
- Y Zhou
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208-2436, USA
| | | | | | | | | |
Collapse
|