1
|
Aebischer K, Ernst M. INEPT and CP transfer efficiencies of dynamic systems in MAS solid-state NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 359:107617. [PMID: 38244331 DOI: 10.1016/j.jmr.2024.107617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/22/2024]
Abstract
Hartmann-Hahn cross polarization and INEPT polarization transfer are the most popular sequences to increase the polarization of low-γ nuclei in magic-angle spinning solid-state NMR. It is well known that the two methods preferentially lead to polarization transfer in different parts of molecules. Cross polarization works best in rigid segments of the molecule while INEPT-based polarization transfer is efficient in highly mobile segments where (nearly) isotropic motion averages out the dipolar couplings. However, there have only been few attempts to define the time scales of motion that are compatible with cross polarization or INEPT transfer in a more quantitative way. We have used simple isotropic jump models in combination with simulations based on the stochastic Liouville equation to elucidate the time scales of motion that allow either cross polarization or INEPT-based polarization transfer. We investigate which motional time scales interfere with one or both polarization-transfer schemes. We have modeled isolated I-S two-spin systems, strongly-coupled I2S three-spin systems and more loosely coupled I-I-S three-spin systems as well as I3S groups. Such fragments can be used as models for typical environments in fully deuterated and back-exchanged molecules (I-S), for fully protonated molecules (I2S and I3S) or situations in between (I-I-S).
Collapse
Affiliation(s)
- Kathrin Aebischer
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, Zürich, 8093, Switzerland
| | - Matthias Ernst
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, Zürich, 8093, Switzerland.
| |
Collapse
|
2
|
van Aalst EJ, Jang J, Halligan TC, Wylie BJ. Strategies for acquisition of resonance assignment spectra of highly dynamic membrane proteins: a GPCR case study. JOURNAL OF BIOMOLECULAR NMR 2023; 77:191-202. [PMID: 37493866 PMCID: PMC10838152 DOI: 10.1007/s10858-023-00421-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023]
Abstract
In protein nuclear magnetic resonance (NMR), chemical shift assignment provides a wealth of information. However, acquisition of high-quality solid-state NMR spectra depends on protein-specific dynamics. For membrane proteins, bilayer heterogeneity further complicates this observation. Since the efficiency of cross-polarization transfer is strongly entwined with protein dynamics, optimal temperatures for spectral sensitivity and resolution will depend not only on inherent protein dynamics, but temperature-dependent phase properties of the bilayer environment. We acquired 1-, 2-, and 3D homo- and heteronuclear experiments of the chemokine receptor CCR3 in a 7:3 phosphatidylcholine:cholesterol lipid environment. 1D direct polarization, cross polarization (CP), and T2' experiments indicate sample temperatures below - 25 °C facilitate higher CP enhancement and longer-lived transverse relaxation times. T1rho experiments indicate intermediate timescales are minimized below a sample temperature of - 20 °C. 2D DCP NCA experiments indicated optimal CP efficiency and resolution at a sample temperature of - 30 °C, corroborated by linewidth analysis in 3D NCACX at - 30 °C compared to - 5 °C. This optimal temperature is concluded to be directly related the lipid phase transition, measured to be between - 20 and 15 °C based on rINEPT signal of all-trans and trans-gauche lipid acyl conformations. Our results have critical implications in acquisition of SSNMR membrane protein assignment spectra, as we hypothesize that different lipid compositions with different phase transition properties influence protein dynamics and therefore the optimal acquisition temperature.
Collapse
Affiliation(s)
- Evan J van Aalst
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79415, USA
| | - Jun Jang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79415, USA
| | - Ty C Halligan
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79415, USA
| | - Benjamin J Wylie
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79415, USA.
| |
Collapse
|
3
|
van Aalst EJ, Borcik CG, Wylie BJ. Spectroscopic signatures of bilayer ordering in native biological membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183891. [PMID: 35217001 PMCID: PMC10793244 DOI: 10.1016/j.bbamem.2022.183891] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Membrane proteins and polycyclic lipids like cholesterol and hopanoids coordinate phospholipid bilayer ordering. This phenomenon manifests as partitioning of the liquid crystalline phase into liquid-ordered (Lo) and liquid-disordered (Ld) regions. In Eukaryotes, microdomains are rich in cholesterol and sphingolipids and serve as signal transduction scaffolds. In Prokaryotes, Lo microdomains increase pathogenicity and antimicrobial resistance. Previously, we identified spectroscopically distinct chemical shift signatures for all-trans (AT) and trans-gauche (TG) acyl chain conformations, cyclopropyl ring lipids (CPR), and hopanoids in prokaryotic lipid extracts and used Polarization Transfer (PT) SSNMR to investigate bilayer ordering. To investigate how these findings relate to native bilayer organization, we interrogate whole cell and whole membrane extract samples of Burkholderia thailendensis to investigate bilayer ordering in situ. In 13C-13C 2D SSNMR spectra, we assigned chemical shifts for lipid species in both samples, showing conservation of lipids of interest in our native membrane sample. A one-dimensional temperature series of PT SSNMR and transverse relaxation measurements of AT versus TG acyl conformations in the membrane sample confirm bilayer ordering and a broadened phase transition centered at a lower-than-expected temperature. Bulk protein backbone Cα dynamics and correlations consistent with lipid-protein contacts within are further indicative of microdomain formation and lipid ordering. In aggregate, these findings provide evidence for microdomain formation in vivo and provide insight into phase separation and transition mechanics in biological membranes.
Collapse
Affiliation(s)
- Evan J van Aalst
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79415, USA
| | - Collin G Borcik
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79415, USA
| | - Benjamin J Wylie
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79415, USA.
| |
Collapse
|
4
|
Doroudgar M, Morstein J, Becker-Baldus J, Trauner D, Glaubitz C. How Photoswitchable Lipids Affect the Order and Dynamics of Lipid Bilayers and Embedded Proteins. J Am Chem Soc 2021; 143:9515-9528. [PMID: 34133158 DOI: 10.1021/jacs.1c03524] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Altering the properties of phospholipid membranes by light is an attractive option for the noninvasive manipulation of membrane proteins and cellular functions. Lipids with an azobenzene group within their acyl chains such as AzoPC are suitable tools for manipulating lipid order and dynamics through a light-induced trans-to-cis isomerization. However, the action of these photoswitchable lipids at the atomic level is still poorly understood. Here, liposomes containing AzoPC, POPE, and POPG have been characterized by solid-state NMR through chemical shift and dipolar CH order parameter measurements. Upon UV-light illumination, an efficient trans-to-cis conversion can be achieved resulting in a localized reduction of the CH order parameter within the bulk lipid acyl chains. This effect is even more pronounced in liposomes containing the integral membrane protein E. coli diacylglycerol kinase. The protein responds to the light-induced trans-to-cis isomerization by a site-specific increase in the molecular dynamics as observed by altered cross peak intensities in NCA spectra. This study represents a proof-of-concept demonstration for the use of photoswitchable lipids to modulate membrane properties by light for inducing dynamic changes within an embedded membrane protein.
Collapse
Affiliation(s)
- Mahmoudreza Doroudgar
- Institute of Biophysical Chemistry and Centre for Biomolecular Magnetic Resonance, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Johannes Morstein
- Department of Chemistry, New York University, 31 Washington Place, New York, New York 10003, United States
| | - Johanna Becker-Baldus
- Institute of Biophysical Chemistry and Centre for Biomolecular Magnetic Resonance, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Dirk Trauner
- Department of Chemistry, New York University, 31 Washington Place, New York, New York 10003, United States
| | - Clemens Glaubitz
- Institute of Biophysical Chemistry and Centre for Biomolecular Magnetic Resonance, Goethe University Frankfurt, 60438 Frankfurt, Germany
| |
Collapse
|
5
|
Wang H, Falcoz S, Berteau JP. Long-Chain Fatty Acids in Bones and Their Link to Submicroscopic Vascularization Network: NMR Assignment and Relaxation Studies under Magic Angle Spinning Conditions in Intramuscular Bones of Atlantic Herring Fish. J Phys Chem B 2021; 125:4585-4595. [PMID: 33914538 DOI: 10.1021/acs.jpcb.1c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The long-lasting proton signals in bones are identified as long-chain fatty acids, including saturated, mono-, and di-unsaturated fatty acids, with direct nuclear magnetic resonance evidence. We used intramuscular bones from Atlantic Herring fish to avoid interference from lipid-rich marrows. The key is to recognize that these signals are from mobile phase materials and study them with J-coupled correlation spectroscopies under magic angle spinning conditions. We kept extensive 1H-spin-echo records that allowed us to examine the effect of magic angle spinning on the transverse relaxation time of water and lipids over time. While it is impossible to distinguish based on chemical shifts, the relaxation data suggest that the signals are more consistent with the interpretation of phospholipid membranes than triglycerides in lipid droplets. In particular, the simultaneous T2 changes in water and lipids suggest that the centrifugal impact of magic angle spinning alters the lipid's structure in very tight spaces. Additional evidence of phospholipid membranes came from the choline-γ resonance at 3.2 ppm in fresh samples, which disappears with magic angle spinning. Thus, the fatty acid signals are at least partially from membrane bilayer structures, and we propose that they are linked to the submicroscopic vascularization channels similar to the dense canaliculi network in mammalian bones. Our detection of phospholipids from bones depended critically on two factors: (1) the elimination of the overwhelming triglyceride signals from marrows and (2) the preservation of water that biomembranes require. The relaxation data reveal aspects of lipid fluidity that have not been elucidated by previous order parameter studies on model membranes. Relaxation times have long been considered difficult to interpret. A robust and renewed understanding may be beneficial.
Collapse
Affiliation(s)
- Hsin Wang
- Department of Chemistry and Biochemistry, The City College of New York and CUNY Institute for Macromolecular Assemblies, 85 St. Nicholas Terrace, New York, New York 10031, United States
| | - Steve Falcoz
- Department of Physical Therapy, The College of Staten Island, 2800 Victory Blvd, Staten Island, New York 10314, United States
| | - Jean-Philippe Berteau
- Department of Physical Therapy, The College of Staten Island, 2800 Victory Blvd, Staten Island, New York 10314, United States.,New York Centre for Biomedical Engineering, City University of New York - City College of New York, New York, New York 10031, United States.,Nanosciences Initiative, City University of New York - Advance Science Research Center, New York, New York 10031, United States
| |
Collapse
|
6
|
Poulhazan A, Arnold AA, Warschawski DE, Marcotte I. Unambiguous Ex Situ and in Cell 2D 13C Solid-State NMR Characterization of Starch and Its Constituents. Int J Mol Sci 2018; 19:E3817. [PMID: 30513587 PMCID: PMC6320826 DOI: 10.3390/ijms19123817] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/23/2018] [Accepted: 11/28/2018] [Indexed: 11/23/2022] Open
Abstract
Starch is the most abundant energy storage molecule in plants and is an essential part of the human diet. This glucose polymer is composed of amorphous and crystalline domains in different forms (A and B types) with specific physicochemical properties that determine its bioavailability for an organism, as well as its value in the food industry. Using two-dimensional (2D) high resolution solid-state nuclear magnetic resonance (SS-NMR) on 13C-labelled starches that were obtained from Chlamydomonas reinhardtii microalgae, we established a complete and unambiguous assignment for starch and its constituents (amylopectin and amylose) in the two crystalline forms and in the amorphous state. We also assigned so far unreported non-reducing end groups and assessed starch chain length, crystallinity and amylose content. Starch was then characterized in situ, i.e., by 13C solid-state NMR of intact microalgal cells. Our in-cell methodology also enabled the identification of the effect of nitrogen starvation on starch metabolism. This work shows how solid-state NMR can enable the identification of starch structure, chemical modifications and biosynthesis in situ in intact microorganisms, eliminating time consuming and potentially altering purification steps.
Collapse
Affiliation(s)
- Alexandre Poulhazan
- Department of Chemistry, Université du Québec à Montréal, Downtown Station, P.O. Box 8888, Montreal, QC H3C 3P8, Canada.
| | - Alexandre A Arnold
- Department of Chemistry, Université du Québec à Montréal, Downtown Station, P.O. Box 8888, Montreal, QC H3C 3P8, Canada.
| | - Dror E Warschawski
- Department of Chemistry, Université du Québec à Montréal, Downtown Station, P.O. Box 8888, Montreal, QC H3C 3P8, Canada.
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS, Université Paris Diderot and IBPC, 13 rue Pierre et Marie-Curie, 75005 Paris, France.
| | - Isabelle Marcotte
- Department of Chemistry, Université du Québec à Montréal, Downtown Station, P.O. Box 8888, Montreal, QC H3C 3P8, Canada.
| |
Collapse
|
7
|
Matlahov I, van der Wel PCA. Hidden motions and motion-induced invisibility: Dynamics-based spectral editing in solid-state NMR. Methods 2018; 148:123-135. [PMID: 29702226 DOI: 10.1016/j.ymeth.2018.04.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/05/2018] [Accepted: 04/16/2018] [Indexed: 10/17/2022] Open
Abstract
Solid-state nuclear magnetic resonance (ssNMR) spectroscopy enables the structural characterization of a diverse array of biological assemblies that include amyloid fibrils, non-amyloid aggregates, membrane-associated proteins and viral capsids. Such biological samples feature functionally relevant molecular dynamics, which often affect different parts of the sample in different ways. Solid-state NMR experiments' sensitivity to dynamics represents a double-edged sword. On the one hand, it offers a chance to measure dynamics in great detail. On the other hand, certain types of motion lead to signal loss and experimental inefficiencies that at first glance interfere with the application of ssNMR to overly dynamic proteins. Dynamics-based spectral editing (DYSE) ssNMR methods leverage motion-dependent signal losses to simplify spectra and enable the study of sub-structures with particular motional properties.
Collapse
Affiliation(s)
- Irina Matlahov
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15213, USA
| | - Patrick C A van der Wel
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15213, USA; Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
8
|
Arnold AA, Bourgouin JP, Genard B, Warschawski DE, Tremblay R, Marcotte I. Whole cell solid-state NMR study of Chlamydomonas reinhardtii microalgae. JOURNAL OF BIOMOLECULAR NMR 2018; 70:123-131. [PMID: 29327221 DOI: 10.1007/s10858-018-0164-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/04/2018] [Indexed: 05/03/2023]
Abstract
In vivo or whole-cell solid-state NMR is an emerging field which faces tremendous challenges. In most cases, cell biochemistry does not allow the labelling of specific molecules and an in vivo study is thus hindered by the inherent difficulty of identifying, among a formidable number of resonances, those arising from a given molecule. In this work we examined the possibility of studying, by solid-state NMR, the model organism Chlamydomonas reinhardtii fully and non-specifically 13C labelled. The extension of NMR-based dynamic filtering from one-dimensional to two-dimensional experiments enabled an enhanced selectivity which facilitated the assignment of cell constituents. The number of resonances detected with these robust and broadly applicable experiments appears to be surprisingly sparse. Various constituents, notably galactolipids abundant in organelle membranes, carbohydrates from the cell wall, and starch from storage grains could be unambiguously assigned. Moreover, the dominant crystal form of starch could be determined in situ. This work illustrates the feasibility and caveats of using solid-state NMR to study intact non-specifically 13C labelled micro-organisms.
Collapse
Affiliation(s)
- Alexandre A Arnold
- Department of Chemistry, Université du Québec à Montréal, Downtown Station, P.O. Box 8888, Montreal, H3C 3P8, Canada
| | - Jean-Philippe Bourgouin
- Department of Chemistry, Université du Québec à Montréal, Downtown Station, P.O. Box 8888, Montreal, H3C 3P8, Canada
| | - Bertrand Genard
- Department of Chemistry, Université du Québec à Montréal, Downtown Station, P.O. Box 8888, Montreal, H3C 3P8, Canada
- Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, 310 allée des Ursulines, Rimouski, G5L 3A1, Canada
| | - Dror E Warschawski
- Department of Chemistry, Université du Québec à Montréal, Downtown Station, P.O. Box 8888, Montreal, H3C 3P8, Canada
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS, Université Paris Diderot and IBPC, 13 rue Pierre et Marie-Curie, 75005, Paris, France
| | - Réjean Tremblay
- Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, 310 allée des Ursulines, Rimouski, G5L 3A1, Canada
| | - Isabelle Marcotte
- Department of Chemistry, Université du Québec à Montréal, Downtown Station, P.O. Box 8888, Montreal, H3C 3P8, Canada.
| |
Collapse
|
9
|
Molugu TR, Lee S, Brown MF. Concepts and Methods of Solid-State NMR Spectroscopy Applied to Biomembranes. Chem Rev 2017; 117:12087-12132. [PMID: 28906107 DOI: 10.1021/acs.chemrev.6b00619] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Concepts of solid-state NMR spectroscopy and applications to fluid membranes are reviewed in this paper. Membrane lipids with 2H-labeled acyl chains or polar head groups are studied using 2H NMR to yield knowledge of their atomistic structures in relation to equilibrium properties. This review demonstrates the principles and applications of solid-state NMR by unifying dipolar and quadrupolar interactions and highlights the unique features offered by solid-state 2H NMR with experimental illustrations. For randomly oriented multilamellar lipids or aligned membranes, solid-state 2H NMR enables direct measurement of residual quadrupolar couplings (RQCs) due to individual C-2H-labeled segments. The distribution of RQC values gives nearly complete profiles of the segmental order parameters SCD(i) as a function of acyl segment position (i). Alternatively, one can measure residual dipolar couplings (RDCs) for natural abundance lipid samples to obtain segmental SCH order parameters. A theoretical mean-torque model provides acyl-packing profiles representing the cumulative chain extension along the normal to the aqueous interface. Equilibrium structural properties of fluid bilayers and various thermodynamic quantities can then be calculated, which describe the interactions with cholesterol, detergents, peptides, and integral membrane proteins and formation of lipid rafts. One can also obtain direct information for membrane-bound peptides or proteins by measuring RDCs using magic-angle spinning (MAS) in combination with dipolar recoupling methods. Solid-state NMR methods have been extensively applied to characterize model membranes and membrane-bound peptides and proteins, giving unique information on their conformations, orientations, and interactions in the natural liquid-crystalline state.
Collapse
Affiliation(s)
- Trivikram R Molugu
- Department of Chemistry & Biochemistry and ‡Department of Physics, University of Arizona , Tucson, Arizona 85721, United States
| | - Soohyun Lee
- Department of Chemistry & Biochemistry and ‡Department of Physics, University of Arizona , Tucson, Arizona 85721, United States
| | - Michael F Brown
- Department of Chemistry & Biochemistry and ‡Department of Physics, University of Arizona , Tucson, Arizona 85721, United States
| |
Collapse
|
10
|
Bärenwald R, Achilles A, Lange F, Ferreira TM, Saalwächter K. Applications of Solid-State NMR Spectroscopy for the Study of Lipid Membranes with Polyphilic Guest (Macro)Molecules. Polymers (Basel) 2016; 8:E439. [PMID: 30974716 PMCID: PMC6432237 DOI: 10.3390/polym8120439] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/01/2016] [Accepted: 12/08/2016] [Indexed: 11/16/2022] Open
Abstract
The incorporation of polymers or smaller complex molecules into lipid membranes allows for property modifications or the introduction of new functional elements. The corresponding molecular-scale details, such as changes in dynamics or features of potential supramolecular structures, can be studied by a variety of solid-state NMR techniques. Here, we review various approaches to characterizing the structure and dynamics of the guest molecules as well as the lipid phase structure and dynamics by different high-resolution magic-angle spinning proton and 13C NMR experiments as well as static 31P NMR experiments. Special emphasis is placed upon the incorporation of novel synthetic polyphilic molecules such as shape-persistent T- and X-shaped molecules as well as di- and tri-block copolymers. Most of the systems studied feature dynamic heterogeneities, for instance those arising from the coexistence of different phases; possibilities for a quantitative assessment are of particular concern.
Collapse
Affiliation(s)
- Ruth Bärenwald
- Institut für Physik-NMR, Martin-Luther-Universität Halle-Wittenberg, D-06120 Halle, Germany
| | - Anja Achilles
- Institut für Physik-NMR, Martin-Luther-Universität Halle-Wittenberg, D-06120 Halle, Germany
| | - Frank Lange
- Institut für Physik-NMR, Martin-Luther-Universität Halle-Wittenberg, D-06120 Halle, Germany
| | - Tiago Mendes Ferreira
- Institut für Physik-NMR, Martin-Luther-Universität Halle-Wittenberg, D-06120 Halle, Germany
| | - Kay Saalwächter
- Institut für Physik-NMR, Martin-Luther-Universität Halle-Wittenberg, D-06120 Halle, Germany.
| |
Collapse
|
11
|
Epand RM, Bach D, Wachtel E. In vitro determination of the solubility limit of cholesterol in phospholipid bilayers. Chem Phys Lipids 2016; 199:3-10. [DOI: 10.1016/j.chemphyslip.2016.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
In vitro determination of the solubility limit of cholesterol in phospholipid bilayers. Chem Phys Lipids 2016. [DOI: 10.1016/j.chemphyslip.2016.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Arnold AA, Genard B, Zito F, Tremblay R, Warschawski DE, Marcotte I. Identification of lipid and saccharide constituents of whole microalgal cells by 13C solid-state NMR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:369-77. [DOI: 10.1016/j.bbamem.2014.07.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/02/2014] [Accepted: 07/15/2014] [Indexed: 11/15/2022]
|
14
|
Björklund S, Andersson JM, Pham QD, Nowacka A, Topgaard D, Sparr E. Stratum corneum molecular mobility in the presence of natural moisturizers. SOFT MATTER 2014; 10:4535-46. [PMID: 24817485 DOI: 10.1039/c4sm00137k] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The outermost layer of the skin, the stratum corneum (SC), is a lipid-protein membrane that experiences considerable osmotic stress from a dry and cold climate. The natural moisturizing factor (NMF) comprises small and polar substances, which like osmolytes can protect living systems from osmotic stress. NMF is commonly claimed to increase the water content in the SC and thereby protect the skin from dryness. In this work we challenge this proposed mechanism, and explore the influence of NMF on the lipid and protein components in the SC. We employ natural-abundance (13)C solid-state NMR methods to investigate how the SC molecular components are influenced by urea, glycerol, pyrrolidone carboxylic acid (PCA), and urocanic acid (UCA), all of which are naturally present in the SC as NMF compounds. Experiments are performed with intact SC, isolated corneocytes and model lipids. The combination of NMR experiments provides molecularly resolved qualitative information on the dynamics of different SC lipid and protein components. We obtain completely novel molecular information on the interaction of these NMF compounds with the SC lipids and proteins. We show that urea and glycerol, which are also common ingredients in skin care products, increase the molecular mobility of both SC lipids and proteins at moderate relative humidity where the SC components are considerably more rigid in the absence of these compounds. This effect cannot be attributed to increased SC water content. PCA has no detectable effect on SC molecular mobility under the conditions investigated. It is finally shown that the more apolar compound, UCA, specifically influences the mobility of the SC lipid regions. The present results show that the NMF components act to retain the fluidity of the SC molecular components under dehydrating conditions in such a way that the SC properties remain largely unchanged as compared to more hydrated SC. These findings provide a new molecular insight into how small polar molecules in NMF and skin care products act to protect the human skin from drying.
Collapse
Affiliation(s)
- Sebastian Björklund
- Division of Physical Chemistry, The Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-22100 Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
15
|
Kharkov BB, Dvinskikh SV. Chain dynamics of surfactants in mesoporous silica. Phys Chem Chem Phys 2013; 15:18620-6. [PMID: 24080836 DOI: 10.1039/c3cp52562g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mesostructured porous materials possess unique surface, structural, and bulk properties that lead to important practical applications. By retaining structure-directing species in the product material, mesostructured organic-inorganic composites are obtained which are of broad interest for fundamental studies of confinement effects and surface interaction on structural and dynamic properties of organic molecules. In the present study, solid state dipolar (13)C-(1)H NMR spectroscopy is applied to quantitatively characterize the conformational dynamics of organic surfactants in the mesostructured composite CTAB-MCM41. Such an approach does not require assumptions and adjustable parameters and reflects the changes in conformational dynamics without relying on specific motional models. The conformational dynamics of the surfactant confined in solid hexagonal arrays is compared to that in hexagonal aggregates formed in a concentrated aqueous solution. The study showed that in cylindrical pores of hexagonal mesoporous silica the order parameter gradually decreases towards the end of the chain. The degree of order and the order parameter profile is similar to that observed in hexagonal liquid crystalline phases. However, the mobility of segments close to the head group is more restricted compared to that in the mesophase, as the result of interaction with the solid silica interface.
Collapse
Affiliation(s)
- B B Kharkov
- Royal Institute of Technology KTH, Department of Chemistry, Teknikringen 36, SE-10044 Stockholm, Sweden.
| | | |
Collapse
|
16
|
Hellstrand E, Nowacka A, Topgaard D, Linse S, Sparr E. Membrane lipid co-aggregation with α-synuclein fibrils. PLoS One 2013; 8:e77235. [PMID: 24146972 PMCID: PMC3795653 DOI: 10.1371/journal.pone.0077235] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 08/30/2013] [Indexed: 11/27/2022] Open
Abstract
Amyloid deposits from several human diseases have been found to contain membrane lipids. Co-aggregation of lipids and amyloid proteins in amyloid aggregates, and the related extraction of lipids from cellular membranes, can influence structure and function in both the membrane and the formed amyloid deposit. Co-aggregation can therefore have important implications for the pathological consequences of amyloid formation. Still, very little is known about the mechanism behind co-aggregation and molecular structure in the formed aggregates. To address this, we study in vitro co-aggregation by incubating phospholipid model membranes with the Parkinson's disease-associated protein, α-synuclein, in monomeric form. After aggregation, we find spontaneous uptake of phospholipids from anionic model membranes into the amyloid fibrils. Phospholipid quantification, polarization transfer solid-state NMR and cryo-TEM together reveal co-aggregation of phospholipids and α-synuclein in a saturable manner with a strong dependence on lipid composition. At low lipid to protein ratios, there is a close association of phospholipids to the fibril structure, which is apparent from reduced phospholipid mobility and morphological changes in fibril bundling. At higher lipid to protein ratios, additional vesicles adsorb along the fibrils. While interactions between lipids and amyloid-protein are generally discussed within the perspective of different protein species adsorbing to and perturbing the lipid membrane, the current work reveals amyloid formation in the presence of lipids as a co-aggregation process. The interaction leads to the formation of lipid-protein co-aggregates with distinct structure, dynamics and morphology compared to assemblies formed by either lipid or protein alone.
Collapse
Affiliation(s)
- Erik Hellstrand
- Division of Biophysical Chemistry, Center of Chemistry and Chemical Engineering, Lund University, Lund, Sweden
| | - Agnieszka Nowacka
- Division of Physical Chemistry, Center of Chemistry and Chemical Engineering, Lund University, Lund, Sweden
| | - Daniel Topgaard
- Division of Physical Chemistry, Center of Chemistry and Chemical Engineering, Lund University, Lund, Sweden
| | - Sara Linse
- Division of Biochemistry, Center of Chemistry and Chemical Engineering, Lund University, Lund, Sweden
| | - Emma Sparr
- Division of Physical Chemistry, Center of Chemistry and Chemical Engineering, Lund University, Lund, Sweden
| |
Collapse
|
17
|
Nowacka A, Bongartz NA, Ollila OHS, Nylander T, Topgaard D. Signal intensities in ¹H-¹³C CP and INEPT MAS NMR of liquid crystals. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 230:165-175. [PMID: 23542743 DOI: 10.1016/j.jmr.2013.02.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Revised: 02/21/2013] [Accepted: 02/27/2013] [Indexed: 06/02/2023]
Abstract
Spectral editing with CP and INEPT in (13)C MAS NMR enables identification of rigid and mobile molecular segments in concentrated assemblies of surfactants, lipids, and/or proteins. In order to get stricter definitions of the terms "rigid" and "mobile", as well as resolving some ambiguities in the interpretation of CP and INEPT data, we have developed a theoretical model for calculating the CP and INEPT intensities as a function of rotational correlation time τc and C-H bond order parameter SCH, taking the effects of MAS into account. According to the model, the range of τc can at typical experimental settings (5kHz MAS, 1ms ramped CP at 80-100kHz B1 fields) be divided into four regimes: fast (τc<1ns), fast-intermediate (τc≈0.1μs), intermediate (τc≈1μs), and slow (τc>0.1ms). In the fast regime, the CP and INEPT intensities are independent of τc, but strongly dependent on |SCH|, with a cross-over from dominating INEPT to dominating CP at |SCH|>0.1. In the intermediate regime, neither CP nor INEPT yield signal on account of fast T1ρ and T2 relaxation. In both the fast-intermediate and slow regimes, there is exclusively CP signal. The theoretical predictions are tested by experiments on the glass-forming surfactant n-octyl-β-d-maltoside, for which τc can be varied continuously in the nano- to millisecond range by changing the temperature and the hydration level. The atomistic details of the surfactant dynamics are investigated with MD simulations. Based on the theoretical model, we propose a procedure for calculating CP and INEPT intensities directly from MD simulation trajectories. While MD shows that there is a continuous gradient of τc from the surfactant polar headgroup towards the methyl group at the end of the hydrocarbon chain, analysis of the experimental CP and INEPT data indicates that this gradient gets steeper with decreasing temperature and hydration level, eventually spanning four orders of magnitude at completely dry conditions.
Collapse
Affiliation(s)
- A Nowacka
- Physical Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | | | | | | | | |
Collapse
|
18
|
Unique backbone-water interaction detected in sphingomyelin bilayers with 1H/31P and 1H/13C HETCOR MAS NMR spectroscopy. Biophys J 2008; 95:1189-98. [PMID: 18390621 DOI: 10.1529/biophysj.108.130724] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Two-dimensional (1)H/(31)P dipolar heteronuclear correlation (HETCOR) magic-angle spinning nuclear magnetic resonance (NMR) is used to investigate the correlation of the lipid headgroup with various intra- and intermolecular proton environments. Cross-polarization NMR techniques involving (31)P have not been previously pursued to a great extent in lipid bilayers due to the long (1)H-(31)P distances and high degree of headgroup mobility that averages the dipolar coupling in the liquid crystalline phase. The results presented herein show that this approach is very promising and yields information not readily available with other experimental methods. Of particular interest is the detection of a unique lipid backbone-water intermolecular interaction in egg sphingomyelin (SM) that is not observed in lipids with glycerol backbones like phosphatidylcholines. This backbone-water interaction in SM is probed when a mixing period allowing magnetization exchange between different (1)H environments via the nuclear Overhauser effect (NOE) is included in the NMR pulse sequence. The molecular information provided by these (1)H/(31)P dipolar HETCOR experiments with NOE mixing differ from those previously obtained by conventional NOE spectroscopy and heteronuclear NOE spectroscopy NMR experiments. In addition, two-dimensional (1)H/(13)C INEPT HETCOR experiments with NOE mixing support the (1)H/(31)P dipolar HETCOR results and confirm the presence of a H(2)O environment that has nonvanishing dipolar interactions with the SM backbone.
Collapse
|
19
|
Macdonald PM, Soong R. The truncated driven NOE and (13)C NMR sensitivity enhancement in magnetically-aligned bicelles. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2007; 188:1-9. [PMID: 17596978 DOI: 10.1016/j.jmr.2007.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 06/06/2007] [Accepted: 06/06/2007] [Indexed: 05/16/2023]
Abstract
The truncated driven nuclear Overhauser effect (NOE) sequence is examined as a means of sensitivity enhancement in (13)C NMR spectroscopy of magnetically-aligned bicelles consisting of 4.5:1 mixtures of DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) plus DHPC (1,2-dihexanoyl-sn-glycero-3-phosphocholine), with 1 mole% DMPE-PEG 2000 (1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N-methoxy(polyethylene glycol)-2000). Steady-state NOE enhancements were observed at all carbon segments except the lipid carbonyls, but full NOE enhancements were obtained only for the most mobile carbon segments, specifically the choline quaternary methyls and terminal acyl chain methyls of both DMPC and DHPC, as well as the ethylene oxide segments of the PEG head group of DMPE-PEG 2000. Other carbon segments exhibited NOE enhancements that scaled with mobility as determined by transient NOE measurements combined with spin-lattice relaxation measurements. We conclude that the truncated driven NOE provides sensitivity enhancement complimentary to that yielded by cross-polarization techniques and for mobile membrane-associated species may be preferred for its robustness and ease of setup.
Collapse
Affiliation(s)
- Peter M Macdonald
- Department of Chemical and Physical Sciences, University of Toronto at Mississauga, 3359 Mississauga Road North, Mississauga, Ontario, Canada L5L 1C6.
| | | |
Collapse
|
20
|
Dvinskikh SV, Yamamoto K, Dürr UHN, Ramamoorthy A. Sensitivity and resolution enhancement in solid-state NMR spectroscopy of bicelles. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2007; 184:228-35. [PMID: 17084096 PMCID: PMC1861833 DOI: 10.1016/j.jmr.2006.10.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 10/03/2006] [Accepted: 10/16/2006] [Indexed: 05/12/2023]
Abstract
Magnetically aligned bicelles are becoming attractive model membranes to investigate the structure, dynamics, geometry, and interaction of membrane-associated peptides and proteins using solution- and solid-state NMR experiments. Recent studies have shown that bicelles are more suitable than mechanically aligned bilayers for multidimensional solid-state NMR experiments. In this work, we describe experimental aspects of the natural abundance (13)C and (14)N NMR spectroscopy of DMPC/DHPC bicelles. In particular, approaches to enhance the sensitivity and resolution and to quantify radio-frequency heating effects are presented. Sensitivity of (13)C detection using single pulse excitation, conventional cross-polarization (CP), ramp-CP, and NOE techniques are compared. Our results suggest that the proton decoupling efficiency of the FLOPSY pulse sequence is better than that of continuous wave decoupling, TPPM, SPINAL, and WALTZ sequences. A simple method of monitoring the water proton chemical shift is demonstrated for the measurement of sample temperature and calibration of the radio-frequency-induced heating in the sample. The possibility of using (14)N experiments on bicelles is also discussed.
Collapse
Affiliation(s)
| | - Kazutoshi Yamamoto
- Biophysics Research Division and Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Ulrich H. N. Dürr
- Biophysics Research Division and Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics Research Division and Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
21
|
Holland GP, Alam TM. Multi-dimensional 1H-13C HETCOR and FSLG-HETCOR NMR study of sphingomyelin bilayers containing cholesterol in the gel and liquid crystalline states. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2006; 181:316-26. [PMID: 16798032 DOI: 10.1016/j.jmr.2006.05.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Revised: 05/23/2006] [Accepted: 05/31/2006] [Indexed: 05/10/2023]
Abstract
(13)C cross polarization magic angle spinning (CP-MAS) and (1)H MAS NMR spectra were collected on egg sphingomyelin (SM) bilayers containing cholesterol above and below the liquid crystalline phase transition temperature (T(m)). Two-dimensional (2D) dipolar heteronuclear correlation (HETCOR) spectra were obtained on SM bilayers in the liquid crystalline (L(alpha)) state for the first time and display improved resolution and chemical shift dispersion compared to the individual (1)H and (13)C spectra and significantly aid in spectral assignment. In the gel (L(beta)) state, the (1)H dimension suffers from line broadening due to the (1)H-(1)H homonuclear dipolar coupling that is not completely averaged by the combination of lipid mobility and MAS. This line broadening is significantly suppressed by implementing frequency switched Lee-Goldburg (FSLG) homonuclear (1)H decoupling during the evolution period. In the liquid crystalline (L(alpha)) phase, no improvement in line width is observed when FSLG is employed. All of the observed resonances are assignable to cholesterol and SM environments. This study demonstrates the ability to obtain 2D heteronuclear correlation experiments in the gel state for biomembranes, expands on previous SM assignments, and presents a comprehensive (1)H/(13)C NMR assignment of SM bilayers containing cholesterol. Comparisons are made to a previous report on cholesterol chemical shifts in dimyristoylphosphatidylcholine (DMPC) bilayers. A number of similarities and some differences are observed and discussed.
Collapse
Affiliation(s)
- Gregory P Holland
- Department of Electronic and Nanostructured Materials, Sandia National Laboratories, Albuquerque, NM 87185-0886, USA
| | | |
Collapse
|
22
|
Alam TM, Holland GP. (1)H-(13)C INEPT MAS NMR correlation experiments with (1)H-(1)H mediated magnetization exchange to probe organization in lipid biomembranes. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2006; 180:210-21. [PMID: 16563820 DOI: 10.1016/j.jmr.2006.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 02/18/2006] [Accepted: 02/20/2006] [Indexed: 05/08/2023]
Abstract
Two-dimensional (1)H-(13)C INEPT MAS NMR experiments utilizing a (1)H-(1)H magnetization exchange mixing period are presented for characterization of lipid systems. The introduction of the exchange period allows for structural information to be obtained via (1)H-(1)H dipolar couplings but with (13)C chemical shift resolution. It is shown that utilizing a RFDR recoupling sequence with short mixing times in place of the more standard NOE cross-relaxation for magnetization exchange during the mixing period allowed for the identification and separation of close (1)H-(1)H dipolar contacts versus longer-range inter-molecular (1)H-(1)H dipolar cross-relaxation. These 2D INEPT experiments were used to address both intra- and inter-molecular contacts in lipid and lipid/cholesterol mixtures.
Collapse
Affiliation(s)
- T M Alam
- Department of Electronic and Nanostructured Materials, Sandia National Laboratories, Albuquerque, NM 87185, USA.
| | | |
Collapse
|
23
|
|
24
|
Warschawski DE, Devaux PF. 1H-13C polarization transfer in membranes: a tool for probing lipid dynamics and the effect of cholesterol. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2005; 177:166-71. [PMID: 16125427 DOI: 10.1016/j.jmr.2005.07.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Revised: 07/14/2005] [Accepted: 07/15/2005] [Indexed: 05/04/2023]
Abstract
Phospholipid bilayers with over 20% cholesterol can form a liquid-ordered (l(o)) phase, which can be found in lateral domains, called rafts, in biomembranes. We show here that high-resolution (13)C and (1)H solid-state NMR are well suited to explore this phase, intermediate between gel and fluid. This approach can be applied to artificial or natural membranes, with no isotopic enrichment and with the help of magic-angle spinning (MAS), taking advantage of the high resolution and sensitivity of these nuclei. The sensitivity of magnetization transfer schemes to different lipid states has allowed us here to discriminate between various phases. We show that the phase composed of unsaturated phospholipids and cholesterol differs, in terms of lipid dynamics, both from the previously described l(o) phase and from the liquid-disordered phase.
Collapse
|
25
|
de Planque MRR, Rijkers DTS, Fletcher JI, Liskamp RMJ, Separovic F. The αM1 segment of the nicotinic acetylcholine receptor exhibits conformational flexibility in a membrane environment. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1665:40-7. [PMID: 15471569 DOI: 10.1016/j.bbamem.2004.06.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2004] [Revised: 06/18/2004] [Accepted: 06/24/2004] [Indexed: 11/19/2022]
Abstract
The transmembrane domain of the nicotinic acetylcholine receptor (nAChR) is predominantly alpha-helical, and of the four distinctly different transmembrane M-segments, only the helicity of M1 is ambiguous. In this study, we have investigated the conformation of a membrane-embedded synthetic M1 segment by solid-state nuclear magnetic resonance (NMR) methods. A 35-residue peptide representing the extended alphaM1 domain 206-240 of the Torpedo californica nAChR was synthesized with specific 13C - and 15N-labelled amino acids, and was incorporated in different phosphatidylcholine model membranes. The chemical shift of the isotopic labels was resolved by magic angle spinning (MAS) NMR and could be related to the secondary structure of the alphaM1 analog at the labelled sites. Our results show that the membrane-embedded alphaM1 segment forms an unstable alpha-helix, particularly near residue Leu18 (alphaLeu223 in the entire nAChR). This non-helical tendency was most pronounced when the peptide was incorporated in fully hydrated phospholipid bilayers, with an estimated 40-50% of the peptides having an extended conformation at position Leu18. We propose that the conserved proline residue at position 16 in the alphaM1 analog imparts a conformational flexibility on the M1 segments that could enable membrane-mediated modulation of nAChR activity.
Collapse
|
26
|
Dvinskikh SV, Zimmermann H, Maliniak A, Sandström D. Measurements of motionally averaged heteronuclear dipolar couplings in MAS NMR using R-type recoupling. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2004; 168:194-201. [PMID: 15140427 DOI: 10.1016/j.jmr.2004.03.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Revised: 03/05/2004] [Indexed: 05/24/2023]
Abstract
A novel MAS NMR approach is presented for the determination of heteronuclear dipolar couplings in unoriented materials. The technique is based on the proton-detected local field (PDLF) protocol, and achieves dipolar recoupling by R-type radio-frequency irradiation. The experiment, which is called R-PDLF spectroscopy, is demonstrated on solid and liquid-crystalline systems. For mobile systems, it is shown that the R-PDLF scheme provides better dipolar resolution as compared to techniques combining conventional separated local field (SLF) spectroscopy with R-type recoupling.
Collapse
Affiliation(s)
- Sergey V Dvinskikh
- Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden.
| | | | | | | |
Collapse
|
27
|
Triba MN, Traïkia M, Warschawski DE, Nicolas-Morgantini L, Lety A, Gilard P, Devaux PF. Proton magic-angle spinning–NMR investigation of surfactant aqueous suspensions. J Colloid Interface Sci 2004; 274:341-5. [PMID: 15120310 DOI: 10.1016/j.jcis.2004.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2003] [Accepted: 01/06/2004] [Indexed: 10/26/2022]
Abstract
In this Note we present the advantages of 1H magic-angle spinning nuclear magnetic resonance (MAS-NMR) for the investigation of surfactant suspensions via transverse relaxation rate (R2) measurements. 1H-relaxation rates can be determined by the classical CPMG method from high-resolution spectra obtained either under conditions of liquid-state NMR for monomers and small spherical micelles or by using MAS-NMR for larger aggregates. For a mixture of alkyl dioxyethylene sulfate and alkylbetaine (80:20, w/w), up to a percentage of surfactant in water of 20%, we found that R2 increased, in accordance with an increased micellar size and very likely the formation of an HI phase. However, above 25%, R2 decreased. This result suggests a change from a hexagonal to a lamellar phase that would be difficult to observe by proton NMR without magic-angle spinning because the lines would be very broad, or by light scattering because of sample opacity. This NMR approach seems to have been overlooked by the community of surfactant physical chemists. It can be complementary to other analytical techniques and presents the advantage of not requiring isotopic labeling.
Collapse
Affiliation(s)
- Mohamed N Triba
- Institut de Biologie Physico-Chimique, UMR CNRS 7099, 13 rue Pierre et Marie Curie, F-75005 Paris, France
| | | | | | | | | | | | | |
Collapse
|
28
|
Kim H, Cross TA, Fu R. Cross-polarization schemes for peptide samples oriented in hydrated phospholipid bilayers. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2004; 168:147-152. [PMID: 15082260 DOI: 10.1016/j.jmr.2004.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Revised: 02/06/2004] [Indexed: 05/24/2023]
Abstract
Continuous-wave, ramped amplitude, and frequency modulated cross-polarization schemes (abbreviated as CWCP, RACP, and FMCP, respectively) are evaluated for static samples in anisotropic phases, such as peptides oriented in lipid environments. It is shown experimentally that both RACP and FMCP give rise to 20% higher polarized signal intensity in comparison to CWCP. The CP matching bandwidths for CWCP and RACP are about the same. Because of its adiabaticity, FMCP has a much broader CP matching bandwidth than CWCP and RACP. In addition, the (15)N RF amplitude used at the center of the FMCP matching profile is much lower than that of the CWCP and RACP matching profiles. A sample of [(15)N]Leu(4) labeled gramicidin A oriented in lipid bilayers was used to demonstrate these experiments.
Collapse
Affiliation(s)
- Hyeongnam Kim
- Center for Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, and Department of Chemistry and Biochemistry, Florida State University, Tallahassee, USA
| | | | | |
Collapse
|
29
|
Alonso B, Massiot D. Multi-scale NMR characterisation of mesostructured materials using 1H-->13C through-bond polarisation transfer, fast MAS, and 1H spin diffusion. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2003; 163:347-352. [PMID: 12914851 DOI: 10.1016/s1090-7807(03)00061-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A NMR method for the characterisation of materials at different length scales, robust and simple to implement, is presented. It combines selection of 1H-13C pairs by a through-bond polarisation transfer (INEPT here) and exploration of larger distances by the introduction of 1H spin diffusion. This characterisation method is well adapted to the highest MAS rates and takes benefits of it. The effect of 1H dephasing on the efficiency of the 1H-->13C through-bond polarisation transfer is determined. This allows consecutively the quantification of signals. Mesostructured spherical silica-based particles containing CTA+ cations were studied by this multi-scale characterisation method. Contrasted spin diffusion curves were found and qualitatively explained by differences in terms of mobility and spatial distributions.
Collapse
Affiliation(s)
- Bruno Alonso
- CRMHT-CNRS, 1D avenue de la Recherche Scientifique, 45071 Orléans 2, France.
| | | |
Collapse
|
30
|
Bardet M, Foray MF. Discrimination of 13C NMR signals in solid material with liquid-like behavior presenting residual dipolar proton-proton homonuclear interactions: application on seeds. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2003; 160:157-160. [PMID: 12615158 DOI: 10.1016/s1090-7807(02)00175-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this communication, we propose, a modified spin echo fourier transform (SEFT) experiment run under magic angle spinning (MAS) to obtain structural informations of the liquid-like domains inside complex organic materials. It includes a proton-proton dipolar decoupling such as BLEW12 or Lee-Goldburg sequence just after the 180 degrees 13C refocusing pulse and short echo delays are used in order to overcome T(2) relaxation. This very easy implemented sequence allows a clear discrimination among fast relaxing 13C signals between those with a pure liquid-like behavior and those presenting residual proton-proton dipolar coupling. The interests of the sequence, combined with other classical NMR experiments, are illustrated on whole vegetable seeds that represent an example of a complex material.
Collapse
Affiliation(s)
- Michel Bardet
- Service de Chimie Inorganique et Biologique, Département de Recherche Fondamentale sur la Matière Condensée, CEA-Grenoble, F-38054 Grenoble Cedex 9, France.
| | | |
Collapse
|
31
|
Epand RM, Bain AD, Sayer BG, Bach D, Wachtel E. Properties of mixtures of cholesterol with phosphatidylcholine or with phosphatidylserine studied by (13)C magic angle spinning nuclear magnetic resonance. Biophys J 2002; 83:2053-63. [PMID: 12324423 PMCID: PMC1302294 DOI: 10.1016/s0006-3495(02)73966-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The behavior of cholesterol is different in mixtures with phosphatidylcholine as compared with phosphatidylserine. In (13)C cross polarization/magic angle spinning nuclear magnetic resonance spectra, resonance peaks of the vinylic carbons of cholesterol are a doublet in samples containing 0.3 or 0.5 mol fraction cholesterol with 1-palmitoyl-2-oleoyl phosphatidylserine (POPS) or in cholesterol monohydrate crystals, but a singlet with mixtures of cholesterol and 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC). At these molar fractions of cholesterol with POPS, resonances of the C-18 of cholesterol appear at the same chemical shifts as in pure cholesterol monohydrate crystals. These resonances do not appear in samples of POPS with 0.2 mol fraction cholesterol or with POPC up to 0.5 mol fraction cholesterol. In addition, there is another resonance from the cholesterol C18 that appears in all of the mixtures of phospholipid and cholesterol but not in pure cholesterol monohydrate crystals. Using direct polarization, the fraction of cholesterol present as crystallites in POPS with 0.5 mol fraction cholesterol is found to be 80%, whereas with the same mol fraction of cholesterol and POPC none of the cholesterol is crystalline. After many hours of incubation, cholesterol monohydrate crystals in POPS undergo a change that results in an increase in the intensity of certain resonances of cholesterol monohydrate in (13)C cross polarization/magic angle spinning nuclear magnetic resonance, indicating a rigidification of the C and D rings of cholesterol but not other regions of the molecule.
Collapse
Affiliation(s)
- Richard M Epand
- Department of Biochemistry, McMaster University, Hamilton, Ontario L8S 4M1, Canada.
| | | | | | | | | |
Collapse
|
32
|
Soubias O, Réat V, Saurel O, Milon A. High resolution 2D 1H-13C correlation of cholesterol in model membrane. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2002; 158:143-148. [PMID: 12419679 DOI: 10.1016/s1090-7807(02)00067-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
High resolution 2D NMR MAS spectra of liposomes, in particular 1H-13C chemical shifts correlations have been obtained on fluid lipid bilayers made of pure phospholipids for several years. We have investigated herein the possibility to obtain high resolution 2D MAS spectra of cholesterol embedded in membranes, i.e. on a rigid molecule whose dynamics is characterized mainly by axial diffusion without internal segmental mobility. The efficiency of various pulse sequences for heteronuclear HETCOR has been compared in terms of resolution, sensitivity and selectivity, using either cross polarization or INEPT for coherence transfer, and with or without MREV-8 homonuclear decoupling during t1. At moderately high spinning speed (9 kHz), a similar resolution is obtained in all cases (0.2 ppm for 1H(3,4), 0.15 ppm for 13C(3,4) cholesterol resonances), while sensitivity increases in the order: INEPT < CP(x4) < CP + MREV. At reduced spinning speed (5 kHz), the homonuclear dipolar coupling between the two geminal protons attached to C(4) gives rise to spinning sidebands from which one can estimate a H-H dipolar coupling of 10 kHz which is in good agreement with the known dynamics of cholesterol in membranes.
Collapse
Affiliation(s)
- Olivier Soubias
- Institut de Pharmacologie et de Biologie Structurale, CNRS et Univ P Sabatier, 205 rte de Narbonne, Toulouse, France
| | | | | | | |
Collapse
|
33
|
Samoson A, Tuherm T, Past J. Ramped-speed cross polarization MAS NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2001; 149:264-267. [PMID: 11318627 DOI: 10.1006/jmre.2001.2302] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The inverse cubic dependency of the acceleration of a rotor on its diameter allows for mechanical dynamics comparable to spin dynamics in coupled spin systems. Rotor acceleration up to 300 kHz/s was measured. This feature can be used to simplify existing experiments and explore entirely new ones in the study of spin topologies and material properties.
Collapse
Affiliation(s)
- A Samoson
- National Institute of Chemical Physics and Biophysics, Akadeemia Tee 23, Tallinn 12618, Estonia
| | | | | |
Collapse
|