1
|
Diastereomers of a mono-substituted phosphoryl guanidine trideoxyribonucleotide: Isolation and properties. Biochem Biophys Res Commun 2019; 513:807-811. [PMID: 31000201 DOI: 10.1016/j.bbrc.2019.04.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 04/03/2019] [Indexed: 12/19/2022]
Abstract
Recently, a new type of nucleic acid analogues with modified phosphate group, namely, phosphoryl guanidine oligonucleotides, has been described. In the present work, we assess the difference between diastereomers of a mono-substituted phosphoryl guanidine oligonucleotide and analyze their resistance to nuclease digestion. Individual diastereomers ('fast' and 'slow') of a trideoxynucleotide d (TpCp*A) were isolated by reverse-phase HPLC. Snake venom phosphodiesterase digestion showed that the native trideoxynucleotide was fully degraded after 30 min, whereas both 'fast' and 'slow' diastereomers of d (TpCp*A) were not completely digested even after 7 days. UV and CD spectra revealed similarities in the structure of the diastereomers. Structural analysis by 1D and 2D NMR spectroscopy also uncovered significant similarity in the properties of Rp and Sp diastereomers. Structural analysis of nuclear Overhauser effect spectroscopy (NOESY) data and restrained molecular dynamics methods showed very flexible single-stranded oligonucleotide structures. Detailed computational analysis of restraint penalty energies via restrained molecular dynamics simulations with the 2D NMR interproton distance data allowed us to conclude that most likely, the 'fast' isomer is the Sp diastereomer, and the 'slow' isomer is the Rp diastereomer.
Collapse
|
2
|
Spring-Connell AM, Evich M, Germann MW. NMR Structure Determination for Oligonucleotides. ACTA ACUST UNITED AC 2019; 72:7.28.1-7.28.39. [PMID: 29927124 DOI: 10.1002/cpnc.48] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
NMR spectroscopy is a versatile tool for determining the structure and dynamics of nucleic acids under solution conditions. In this unit, we provide an overview and detail of the experiments and methods used in our laboratory to determine the structure of oligonucleotides at natural abundance, thus limiting our approach to 1 H, 13 C, and 31 P NMR techniques. Isotopic labeling is heavily used in RNA NMR studies, however, labeling of DNA is still less common and, if modified nucleotides are investigated, is exceptionally expensive or not feasible. Each method described here is extensively documented and annotated with tips and observations to facilitate their application. Sections are devoted to sample preparation, NMR experiments and setup, resonance assignment, structure generation protocols, evaluation, tips that may be useful, and software sources. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
| | - Marina Evich
- Department of Chemistry, Georgia State University, Atlanta, Georgia
| | - Markus W Germann
- Department of Chemistry, Georgia State University, Atlanta, Georgia.,Neuroscience Institute, Georgia State University, Atlanta, Georgia
| |
Collapse
|
3
|
Imeddourene AB, Xu X, Zargarian L, Oguey C, Foloppe N, Mauffret O, Hartmann B. The intrinsic mechanics of B-DNA in solution characterized by NMR. Nucleic Acids Res 2016; 44:3432-47. [PMID: 26883628 PMCID: PMC4838374 DOI: 10.1093/nar/gkw084] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 02/01/2016] [Indexed: 12/19/2022] Open
Abstract
Experimental characterization of the structural couplings in free B-DNA in solution has been elusive, because of subtle effects that are challenging to tackle. Here, the exploitation of the NMR measurements collected on four dodecamers containing a substantial set of dinucleotide sequences provides new, consistent correlations revealing the DNA intrinsic mechanics. The difference between two successive residual dipolar couplings (ΔRDCs) involving C6/8-H6/8, C3′-H3′ and C4′-H4′ vectors are correlated to the 31P chemical shifts (δP), which reflect the populations of the BI and BII backbone states. The δPs are also correlated to the internucleotide distances (Dinter) involving H6/8, H2′ and H2″ protons. Calculations of NMR quantities on high resolution X-ray structures and controlled models of DNA enable to interpret these couplings: the studied ΔRDCs depend mostly on roll, while Dinter are mainly sensitive to twist or slide. Overall, these relations demonstrate how δP measurements inform on key inter base parameters, in addition to probe the BI↔BII backbone equilibrium, and shed new light into coordinated motions of phosphate groups and bases in free B-DNA in solution. Inspection of the 5′ and 3′ ends of the dodecamers also supplies new information on the fraying events, otherwise neglected.
Collapse
Affiliation(s)
- Akli Ben Imeddourene
- Laboratoire de Biologie et Pharmacologie Appliquée, ENS Cachan, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan cedex, France Université Pierre et Marie Curie, 4 Place Jussieu, 75005 Paris, France
| | - Xiaoqian Xu
- Laboratoire de Biologie et Pharmacologie Appliquée, ENS Cachan, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan cedex, France Department of Life Sciences, East China Normal University, 200062 Shanghai, People's Republic of China
| | - Loussiné Zargarian
- Laboratoire de Biologie et Pharmacologie Appliquée, ENS Cachan, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan cedex, France
| | - Christophe Oguey
- Laboratoire de Physique Théorique et Modélisation, UMR 8089, CNRS, Université de Cergy-Pontoise, Cergy-Pontoise, France
| | | | - Olivier Mauffret
- Laboratoire de Biologie et Pharmacologie Appliquée, ENS Cachan, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan cedex, France
| | - Brigitte Hartmann
- Laboratoire de Biologie et Pharmacologie Appliquée, ENS Cachan, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan cedex, France
| |
Collapse
|
4
|
Webba da Silva M. NMR methods for studying quadruplex nucleic acids. Methods 2008; 43:264-77. [PMID: 17967697 DOI: 10.1016/j.ymeth.2007.05.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 05/16/2007] [Indexed: 12/22/2022] Open
Abstract
Solution NMR spectroscopy has traditionally played a central role in examining quadruplex structure, dynamics, and interactions. Here, an overview is given of the methods currently applied to structural, dynamics, thermodynamics, and kinetics studies of nucleic acid quadruplexes and associated cations.
Collapse
Affiliation(s)
- Mateus Webba da Silva
- School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine BT52 1SA, UK.
| |
Collapse
|
5
|
Roberts MF, Cui Q, Turner CJ, Case DA, Redfield AG. High-Resolution Field-Cycling NMR Studies of a DNA Octamer as a Probe of Phosphodiester Dynamics and Comparison with Computer Simulation†. Biochemistry 2004; 43:3637-50. [PMID: 15035634 DOI: 10.1021/bi035979q] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phosphorus-spin longitudinal relaxation rates of the DNA duplex octamer [d(GGAATTCC)](2) have been measured from 0.1 to 17.6 T by means of conventional and new field-cycling NMR methods. The high-resolution field-cycling method is identical to a conventional relaxation experiment, except that after preparation the sample is moved pneumatically from its usual position at the center of the high-resolution magnet upward to a lower field above its normal position and then returned to the center for readout after it has relaxed for the programmed relaxation delay at the low field. This is the first measurement of all longitudinal relaxation rates R(1) of a nuclear species in a macromolecule over virtually the entire accessible magnetic field range. For detailed analysis, three magnetic field regions can be delineated: (i) dipolar relaxation dominates at fields below 2 T, (ii) chemical shift anisotropy (CSA) relaxation is roughly constant from 2 to 6 T, and (iii) a square-law increasing dependence is seen at fields higher than approximately 6 T due to internal motion CSA relaxation. The analysis provides a rotational correlation time (tau(r) = 4.1 +/- 0.3 ns) for the duplex at both 1.5 and 0.25 mM concentrations (of duplex) at 22 degrees C. For comparison, extraction of tau(r) in the conventional way from the ratio of T(1)/T(2) at 14 T yields 3.2 ns. The tau(r) discrepancy disappears when we exclude the contribution of internal motion from the R(1) in the ratio. The low-field dipolar relaxation provides a weighted inverse sixth power sum of the distances from the phosphorus to the protons responsible for relaxation. This average is similar for all phosphates in the octamer and similar to that in previous B-DNA structures (its inverse sixth root is about 2.40 A for two different concentrations of octamer). The CSA relaxation at intermediate field provides an estimate of the order parameter squared, S(c)(2), for each phosphorus. S(c)(2) is about 0.7-1, clearly different for different phosphate linkages in the octamer duplex. The increasing R(1) at high fields reflects CSA relaxation due to internal motions, for which a correlation time, tau(hf), can be approximately extracted with the aid of additional measurements at 14.0 and 17.6 T. We conclude that tau(hf) values are relatively large, in the range of about 150 ps. Insight into the motions leading to this correlation time was gained by a 28 ns molecular dynamics simulation of the molecule. S(2) and tau(s) (corresponding to tau(hf)) predicted by this simulation were in good agreement with the experimental values from the field-cycling data. Both the effect of Mg(2+) on the dynamic parameters extracted from (31)P relaxation rates and the field dependence of relaxation rates for several protons of the octamer were measured. High-resolution field cycling opens up the possibility of monitoring residue-specific dipolar interactions and dynamics for the phosphorus nuclei of diverse oligonucleotides.
Collapse
Affiliation(s)
- Mary F Roberts
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | | | | | | | | |
Collapse
|
6
|
Bendiak B, Fang TT, Jones DNM. An effective strategy for structural elucidation of oligosaccharides through NMR spectroscopy combined with peracetylation using doubly 13C-labeled acetyl groups. CAN J CHEM 2002. [DOI: 10.1139/v02-132] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The use of NMR spectroscopy for the elucidation of larger carbohydrate structures isolated from natural sources is principally limited by severe overlap of 1H signals, poor sensitivity when experiments involve 13C nuclei, and difficulties in conclusively establishing linkage positions. Peracetylation of oligosaccharides with doubly 13C-labeled acetyl groups provides several major advantages for their structural elucidation when combined with specifically tailored NMR pulse sequences. The 2.54.7 Hz J-coupling constants between acetyl carbonyl-13C nuclei and protons of the sugar ring at the sites of acetylation enables these sites to be readily assigned. By inference, glycosidic linkage positions on monosaccharides can be unambiguously determined. This can be used in lieu of permethylation analysis, yet does not require degradation of oligosaccharides. Spectral dispersion in the directly detected (1H) dimension is increased ~2.62.7-fold due to the downfield shifting of sugar-ring protons at the positions of acetylation. Peracetylation also introduces three new frequency dimensions for NMR studies, namely the 13CO, 13CMe, and 1HMe frequencies of the acetyl groups. These frequencies can be correlated to sugar protons, either independently or in combination, in alternative 2-, 3-, or 4-D experiments. The use of HartmannHahn coherence transfer combined with zero-quantum dephasing periods permits purely absorptive in-phase multiplets to be extracted and enables accurate scalar couplings between ring protons to be measured, even in multidimensional experiments. Results are illustrated on a nonasaccharide-alditol derived from N-linked glycoproteins and on some smaller structures containing sialic acids and N-acetylhexosamines. Methods for small-scale sample acetylation using the superacylation catalyst, 4-dimethylamino pyridine, are described. A brief historical perspective pertinent to the fundamental contributions of Dr. R.U. Lemieux to the field of carbohydrate NMR is also presented.Key words: NMR, oligosaccharides, peracetylation, doubly 13C-labeled acetyl groups, tailored pulse sequences, heteronuclear HartmannHahn.
Collapse
|
7
|
Földesi A, Trifonova A, Dinya Z, Chattopadhyaya J. Total synthesis of 2',3',4',5',5' '-(2)h(5)-ribonucleosides: the key building blocks for NMR structure elucidation of large RNA. J Org Chem 2001; 66:6560-70. [PMID: 11578205 DOI: 10.1021/jo010097n] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The diastereospecific chemical syntheses of uridine-2',3',4',5',5' '-(2)H(5) (21a), adenosine-2',3',4',5',5' '-(2)H(5) (21b), cytidine-2',3',4',5',5' '-(2)H(5)(2)H(5) (21c), and guanosine-2',3',4',5',5' '-(2)H(5) (21d) (>97 atom % (2)H at C2', C3', C4', and C5'/C5' ') have been achieved for their use in the solution NMR structure determination of oligo-RNA by the Uppsala "NMR-window" concept (refs 4a-c, 5a, 6), in which a small (1)H segment is NMR-visible, while the rest is made NMR-invisible by incorporation of the deuterated blocks 21a-d. The deuterated ribonucleosides 21a-d have been prepared by the condensation of appropriately protected aglycone with 1-O-acetyl-2,3,5-tri-O-(4-toluoyl)-alpha/beta-D-ribofuranose-2,3,4,5,5'-(2)H(5) (19), which has been obtained via diastereospecific deuterium incorporation at the C2 center of appropriate D-ribose-(2)H(4) derivatives either through an oxidation-reduction-inversion sequence or a one-step deuterium-proton exchange in high overall yield (44% and 24%, respectively).
Collapse
Affiliation(s)
- A Földesi
- Department of Bioorganic Chemistry, Box 581, Biomedical Centre, University of Uppsala, SE-751 23 Uppsala, Sweden
| | | | | | | |
Collapse
|
8
|
Wu Z, Bax A. Measurement of homonuclear proton couplings based on cross-peak nulling in CT-COSY. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2001; 151:242-252. [PMID: 11531346 DOI: 10.1006/jmre.2001.2358] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A method in which 1H-1H scalar and dipolar couplings are obtained from the cross-peak nulling condition in a series of constant-time (CT) COSY spectra, as a function of the duration of the CT period, is described. The method is best suited for measurement of 1H-1H couplings in the range 5-20 Hz. It is shown, however, that results can be sensitive to cross-correlated relaxation effects. Also, artifactual resonances, resulting from strong coupling, can be quite pronounced in CT-COSY spectra, even when /J(AB)/(deltaA-deltaB)/<0.1. The experiments are demonstrated for the DNA dodecamer d(CGCGAATTCGCG)2, both in isotropic solution and in a liquid crystalline phase.
Collapse
Affiliation(s)
- Z Wu
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
9
|
Abstract
During the past few years, NMR methodology for the study of nucleic acids has benefited from new developments that greatly improved state-of-the-art technology for the precise determination of three-dimensional structures. Substantial progress has been made in designing experimental protocols for the measurement of residual dipolar couplings, in sensitivity optimization of triple-resonance experiments and in detection of hydrogen bonds and in developing computational methods for structure refinement using NMR restraints.
Collapse
Affiliation(s)
- L Zídek
- National Centre for Biomolecular Research, Masaryk University, Kotlárská 2, 611 37, Brno, Czech Republic
| | | | | |
Collapse
|