2
|
Forse AC, Gonzalez MI, Siegelman RL, Witherspoon VJ, Jawahery S, Mercado R, Milner PJ, Martell JD, Smit B, Blümich B, Long JR, Reimer JA. Unexpected Diffusion Anisotropy of Carbon Dioxide in the Metal-Organic Framework Zn 2(dobpdc). J Am Chem Soc 2018; 140:1663-1673. [PMID: 29300483 PMCID: PMC8240119 DOI: 10.1021/jacs.7b09453] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metal-organic frameworks are promising materials for energy-efficient gas separations, but little is known about the diffusion of adsorbates in materials featuring one-dimensional porosity at the nanoscale. An understanding of the interplay between framework structure and gas diffusion is crucial for the practical application of these materials as adsorbents or in mixed-matrix membranes, since the rate of gas diffusion within the adsorbent pores impacts the required size (and therefore cost) of the adsorbent column or membrane. Here, we investigate the diffusion of CO2 within the pores of Zn2(dobpdc) (dobpdc4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) using pulsed field gradient (PFG) nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations. The residual chemical shift anisotropy for pore-confined CO2 allows PFG NMR measurements of self-diffusion in different crystallographic directions, and our analysis of the entire NMR line shape as a function of the applied field gradient provides a precise determination of the self-diffusion coefficients. In addition to observing CO2 diffusion through the channels parallel to the crystallographic c axis (self-diffusion coefficient D∥ = (5.8 ± 0.1) × 10-9 m2 s-1 at a pressure of 625 mbar CO2), we unexpectedly find that CO2 is also able to diffuse between the hexagonal channels in the crystallographic ab plane (D⊥ = (1.9 ± 0.2) × 10-10 m2 s-1), despite the walls of these channels appearing impermeable by single-crystal X-ray crystallography and flexible lattice MD simulations. Observation of such unexpected diffusion in the ab plane suggests the presence of defects that enable effective multidimensional CO2 transport in a metal-organic framework with nominally one-dimensional porosity.
Collapse
Affiliation(s)
- Alexander C. Forse
- Department of Chemistry, University of California, Berkeley, California 94720, U.S.A
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, U.S.A
- Berkeley Energy and Climate Institute, University of California, Berkeley, California 94720, U.S.A
| | - Miguel I. Gonzalez
- Department of Chemistry, University of California, Berkeley, California 94720, U.S.A
| | - Rebecca L. Siegelman
- Department of Chemistry, University of California, Berkeley, California 94720, U.S.A
| | - Velencia J. Witherspoon
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, U.S.A
| | - Sudi Jawahery
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, U.S.A
| | - Rocio Mercado
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, U.S.A
| | - Phillip J. Milner
- Department of Chemistry, University of California, Berkeley, California 94720, U.S.A
| | - Jeffrey D. Martell
- Department of Chemistry, University of California, Berkeley, California 94720, U.S.A
| | - Berend Smit
- Department of Chemistry, University of California, Berkeley, California 94720, U.S.A
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, U.S.A
- Institut des Sciences et Ingenierie Chimiques, Valais, École Polytechnique Fedérale de Lausanne (EPFL), Rue de l’Industrie 17, CH-1951 Sion, Switzerland
| | - Bernhard Blümich
- Institut für Technische und Makromolekulare Chemie (ITMC), RWTH Aachen University, Aachen, Germany
| | - Jeffrey R. Long
- Department of Chemistry, University of California, Berkeley, California 94720, U.S.A
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, U.S.A
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, U.S.A
| | - Jeffrey A. Reimer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, U.S.A
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, U.S.A
| |
Collapse
|
3
|
Ulrich K, Sanders M, Grinberg F, Galvosas P, Vasenkov S. Application of pulsed field gradient NMR with high gradient strength for studies of self-diffusion in lipid membranes on the nanoscale. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:7365-7370. [PMID: 18553990 DOI: 10.1021/la8002355] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This work demonstrates the feasibility of noninvasive studies of lipid self-diffusion in model lipid membranes on the nanoscale using proton pulsed field gradient (PFG) NMR spectroscopy with high (up to 35 T/m) gradient amplitudes. Application of high gradients affords for the use of sufficiently small diffusion times under the conditions when the width of the gradient pulses is much smaller than the diffusion time. As a result, PFG NMR studies of partially restricted or anomalous diffusion in lipid bilayers become possible over length scales as small as 100 nm. This length scale is important because it is comparable to the size of membrane domains, or lipid rafts, which are believed to exist in biomembranes. In this work, high-gradient PFG NMR has been applied to study lipid self-diffusion in three-component planar-supported multibilayers (1,2-dioleoyl- sn-glycerol-3-phosphocholine/sphingomyelin/cholesterol). The degree of lipid orientation in the bilayers was determined with (31)P NMR. A special insert was designed to mechanically align the multibilayer stack at the magic angle with respect to the direction of the constant magnetic field to address the detrimental effects of proton dipole-dipole interactions on the NMR signal. This insert is an alternative to the conventional method of magic angle orientation of lipid membranes, the goniometer probe, which is not compatible with commercial high-gradient coils because of the lack of space in the magnet bore. Macroscopic orientation of the multibilayer stacks using the insert was confirmed with (1)H NMR spectroscopic studies and the comparison of results obtained from identical experiments using a goniometer probe for orientation. Diffusion studies were carried out at three different constant magnetic field strengths ( B 0) over a range of temperatures and diffusion times. The measured diffusivities were found to be in agreement with the data obtained previously by techniques that are limited to much larger length scales of diffusion observation than high-gradient PFG NMR.
Collapse
Affiliation(s)
- Konstantin Ulrich
- Fakultät für Physik und Geowissenschaften, Universität Leipzig, Leipzig, Germany
| | | | | | | | | |
Collapse
|
4
|
Hubbard PL, McGrath KM, Callaghan PT. A study of anisotropic water self-diffusion and defects in the lamellar mesophase. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:4340-6. [PMID: 16032845 DOI: 10.1021/la0470378] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The correlation of molecular diffusion coefficients obtained via a novel two-dimensional pulsed gradient spin-echo (PGSE) NMR method has been shown to reveal detailed structural information on the mesophases of lyotropic liquid crystals. A four-component system containing both nonionic (pentaethylene glycol monododecyl ether) and ionic (sodium dodecyl sulfate) surfactants, water, and decane was prepared and left to equilibrate. In the temperature region around 309 K, a lamellar mesophase forms. A two-dimensional Laplace inverse transformation was performed on the (gammadeltag)2(delta - delta/3) domain data to separate any multiexponential behavior that resulted from local anisotropy. The results of the double PGSE experiment with contiguous gradient pulse pairs, applied both collinearly and orthogonally, clearly show the presence of local anisotropic self-diffusion of the water molecules and suggest a preferred orientation of the lamellae. Information about defects/domain size was obtained by the insertion of a mixing time (t(m)') between the successive gradient pulse pairs. This work highlights the value of this new NMR correlation method in the study of surfactant systems.
Collapse
Affiliation(s)
- Penny L Hubbard
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6001, New Zealand.
| | | | | |
Collapse
|
6
|
Wästerby P, Orädd G, Lindblom G. Anisotropic water diffusion in macroscopically oriented lipid bilayers studied by pulsed magnetic field gradient NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2002; 157:156-159. [PMID: 12202145 DOI: 10.1006/jmre.2002.2583] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The anisotropy, D(parallel)/D( perpendicular ), of water diffusion in fully hydrated bilayers of dimyristoylphosphatidylcholine at 29 degrees C has been measured by pulsed magnetic field gradient (pfg) NMR. By using NMR imaging hardware to produce magnetic field gradients in an arbitrary direction with respect to a stack of macroscopically aligned lipid bilayers, translational diffusion of water was measured as a function of the angle between the direction of the magnetic field gradient and the normal of the lipid membrane. The observed diffusion coefficient is found to depend strongly on this angle. The anisotropy cannot be accurately determined due to the very small value of D( perpendicular ), but a lower limit of about 70 can be estimated from the observed diffusion coefficients. The results are discussed in terms of the relatively low permeability of water across the lipid bilayer, instrumental limitations, and/or possible defects in the lamellae.
Collapse
Affiliation(s)
- Pär Wästerby
- Department of Biophysical Chemistry, Umeå University, SE-90187, Umeå, Sweden
| | | | | |
Collapse
|
7
|
Dvinskikh SV, Furó I, Zimmermann H, Maliniak A. Anisotropic self-diffusion in thermotropic liquid crystals studied by 1H and 2H pulse-field-gradient spin-echo NMR. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2002; 65:061701. [PMID: 12188745 DOI: 10.1103/physreve.65.061701] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2002] [Indexed: 05/23/2023]
Abstract
The molecular self-diffusion coefficients in nematic and smectic-A thermotropic liquid crystals are measured using stimulated-echo-type 2H and 1H pulse-field-gradient spin-echo nuclear magnetic resonance (PGSE NMR) combined with multiple-pulse dipolar decoupling and slice selection. The temperature dependence of the principal components of the diffusion tensor in the nematic phase follows a simple Arrhenius relationship except in the region of nematic-isotropic phase transition where it reflects, merely, the decrease of the molecular orientational order. The average of the principal diffusion coefficients in the isotropic-nematic phase transition region is close to the diffusion coefficient in the isotropic phase. At the nematic-smectic-A phase transition the diffusion coefficients change continuously. The results in nematic phase are best described in terms of the affine transformation model for diffusion in nematics formed by hard ellipsoids. In the smectic-A phase the data are interpreted using a modified model for diffusion in presence of a periodic potential along the director.
Collapse
Affiliation(s)
- S V Dvinskikh
- Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden.
| | | | | | | |
Collapse
|
8
|
Dvinskikh SV, Furó I, Sandström D, Maliniak A, Zimmermann H. Deuterium stimulated-echo-type PGSE NMR experiments for measuring diffusion: application to a liquid crystal. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2001; 153:83-91. [PMID: 11700084 DOI: 10.1006/jmre.2001.2418] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The accessibility of molecular self-diffusion coefficients in anisotropic materials, such as liquid crystals or solids, by stimulated-echo-type (2)H PGSE NMR is examined. The amplitude and phase modulation of the signal in the stimulated-echo-type sequence by the static quadrupole coupling during the encoding/decoding delays is suppressed by adjusting the pulse flip angles and the phase cycle. For nuclei that experience both nonnegligible quadrupole and dipole couplings, the application of magic echoes during the evolution periods of stimulated echo is demonstrated as a helpful technique in the case of slow diffusion. These findings are demonstrated by experimental results in the thermotropic liquid crystal of partially deuterated 8CB. The obtained diffusion coefficients are also compared to data obtained by a (1)H homonuclear-decoupling-type PGSE NMR method in the same material.
Collapse
Affiliation(s)
- S V Dvinskikh
- Division of Physical Chemistry, Department of Chemistry, Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | | | | | | | | |
Collapse
|