1
|
Application of Heteronuclear NMR Spectroscopy to Bioinorganic and Medicinal Chemistry ☆. REFERENCE MODULE IN CHEMISTRY, MOLECULAR SCIENCES AND CHEMICAL ENGINEERING 2018. [PMCID: PMC7157447 DOI: 10.1016/b978-0-12-409547-2.10947-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
2
|
Hackett MJ, Paterson PG, Pickering IJ, George GN. Imaging Taurine in the Central Nervous System Using Chemically Specific X-ray Fluorescence Imaging at the Sulfur K-Edge. Anal Chem 2016; 88:10916-10924. [PMID: 27700065 DOI: 10.1021/acs.analchem.6b02298] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A method to image taurine distributions within the central nervous system and other organs has long been sought. Since taurine is small and mobile, it cannot be chemically "tagged" and imaged using conventional immuno-histochemistry methods. Combining numerous indirect measurements, taurine is known to play critical roles in brain function during health and disease and is proposed to act as a neuro-osmolyte, neuro-modulator, and possibly a neuro-transmitter. Elucidation of taurine's neurochemical roles and importance would be substantially enhanced by a direct method to visualize alterations, due to physiological and pathological events in the brain, in the local concentration of taurine at or near cellular spatial resolution in vivo or in situ in tissue sections. We thus have developed chemically specific X-ray fluorescence imaging (XFI) at the sulfur K-edge to image the sulfonate group in taurine in situ in ex vivo tissue sections. To our knowledge, this represents the first undistorted imaging of taurine distribution in brain at 20 μm resolution. We report quantitative technique validation by imaging taurine in the cerebellum and hippocampus regions of the rat brain. Further, we apply the technique to image taurine loss from the vulnerable CA1 (cornus ammonis 1) sector of the rat hippocampus following global brain ischemia. The location-specific loss of taurine from CA1 but not CA3 neurons following ischemia reveals osmotic stress may be a key factor in delayed neurodegeneration after a cerebral ischemic insult and highlights the significant potential of chemically specific XFI to study the role of taurine in brain disease.
Collapse
Affiliation(s)
- Mark J Hackett
- Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan , 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada.,Department of Chemistry, Curtin University , GPO Box U1987, Perth, Western Australia 6845, Australia
| | - Phyllis G Paterson
- College of Pharmacy and Nutrition, University of Saskatchewan , 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Ingrid J Pickering
- Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan , 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada.,Department of Chemistry, University of Saskatchewan , 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Graham N George
- Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan , 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada.,Department of Chemistry, University of Saskatchewan , 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| |
Collapse
|
3
|
Yu YY, Zheng XX, Bian TT, Li YJ, Wu XW, Yang DZ, Jiang SS, Tang DQ. Development and application of a LC-MS/MS assay for the simultaneous quantification of edaravone and taurine in beagle plasma. J Sep Sci 2013; 36:3837-44. [DOI: 10.1002/jssc.201300983] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 09/30/2013] [Accepted: 10/02/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Yan-yan Yu
- Department of Pharmaceutical Analysis; Xuzhou Medical College; Xuzhou Jiangsu China
- Key Laboratory of New Drug and Clinical Application; Xuzhou Medical College; Xuzhou Jiangsu China
| | - Xiao-xiao Zheng
- Key Laboratory of New Drug and Clinical Application; Xuzhou Medical College; Xuzhou Jiangsu China
| | - Ting-ting Bian
- Key Laboratory of New Drug and Clinical Application; Xuzhou Medical College; Xuzhou Jiangsu China
| | - Yin-jie Li
- Key Laboratory of New Drug and Clinical Application; Xuzhou Medical College; Xuzhou Jiangsu China
| | - Xiao-wen Wu
- Key Laboratory of New Drug and Clinical Application; Xuzhou Medical College; Xuzhou Jiangsu China
| | - Dong-zhi Yang
- Department of Pharmaceutical Analysis; Xuzhou Medical College; Xuzhou Jiangsu China
- Key Laboratory of New Drug and Clinical Application; Xuzhou Medical College; Xuzhou Jiangsu China
| | - Shui-shi Jiang
- Nanjing Yoko Pharmaceutical Co. Ltd; Nanjing Jiangsu China
| | - Dao-quan Tang
- Department of Pharmaceutical Analysis; Xuzhou Medical College; Xuzhou Jiangsu China
- Key Laboratory of New Drug and Clinical Application; Xuzhou Medical College; Xuzhou Jiangsu China
| |
Collapse
|
4
|
Hobo F, Takahashi M, Saito Y, Sato N, Takao T, Koshiba S, Maeda H. 33S nuclear magnetic resonance spectroscopy of biological samples obtained with a laboratory model 33S cryogenic probe. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2010; 81:054302. [PMID: 20515157 DOI: 10.1063/1.3424853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
(33)S nuclear magnetic resonance (NMR) spectroscopy is limited by inherently low NMR sensitivity because of the quadrupolar moment and low gyromagnetic ratio of the (33)S nucleus. We have developed a 10 mm (33)S cryogenic NMR probe, which is operated at 9-26 K with a cold preamplifier and a cold rf switch operated at 60 K. The (33)S NMR sensitivity of the cryogenic probe is as large as 9.8 times that of a conventional 5 mm broadband NMR probe. The (33)S cryogenic probe was applied to biological samples such as human urine, bile, chondroitin sulfate, and scallop tissue. We demonstrated that the system can detect and determine sulfur compounds having SO(4)(2-) anions and -SO(3)(-) groups using the (33)S cryogenic probe, as the (33)S nuclei in these groups are in highly symmetric environments. The NMR signals for other common sulfur compounds such as cysteine are still undetectable by the (33)S cryogenic probe, as the (33)S nuclei in these compounds are in asymmetric environments. If we shorten the rf pulse width or decrease the rf coil diameter, we should be able to detect the NMR signals for these compounds.
Collapse
Affiliation(s)
- Fumio Hobo
- Graduate School of Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | |
Collapse
|
5
|
Hobo F, Takahashi M, Maeda H. 33S NMR cryogenic probe for taurine detection. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2009; 80:036106. [PMID: 19334961 DOI: 10.1063/1.3103573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
With the goal of a (33)S nuclear magnetic resonance (NMR) probe applicable to in vivo NMR on taurine-biological samples, we have developed the (33)S NMR cryogenic probe, which is applicable to taurine solutions. The NMR sensitivity gain relative to a conventional broadband probe is as large as 3.5. This work suggests that improvements in the preamplifier could allow NMR measurements on 100 microM taurine solutions, which is the level of sensitivity necessary for biological samples.
Collapse
Affiliation(s)
- Fumio Hobo
- Graduate School of Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | | | | |
Collapse
|
6
|
Ronconi L, Sadler PJ. Applications of heteronuclear NMR spectroscopy in biological and medicinal inorganic chemistry. Coord Chem Rev 2008; 252:2239-2277. [PMID: 32226090 PMCID: PMC7094630 DOI: 10.1016/j.ccr.2008.01.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Accepted: 01/15/2008] [Indexed: 11/30/2022]
Abstract
There is a wide range of potential applications of inorganic compounds, and metal coordination complexes in particular, in medicine but progress is hampered by a lack of methods to study their speciation. The biological activity of metal complexes is determined by the metal itself, its oxidation state, the types and number of coordinated ligands and their strength of binding, the geometry of the complex, redox potential and ligand exchange rates. For organic drugs a variety of readily observed spin I = 1/2 nuclei can be used (1H, 13C, 15N, 19F, 31P), but only a few metals fall into this category. Most are quadrupolar nuclei giving rise to broad lines with low detection sensitivity (for biological systems). However we show that, in some cases, heteronuclear NMR studies can provide new insights into the biological and medicinal chemistry of a range of elements and these data will stimulate further advances in this area.
Collapse
Key Words
- ADP, adenosine diphosphate
- AES, atomic emission spectroscopy
- AMP, adenosine monophosphate
- ATP, adenosine triphosphate
- BNCT, boron neutron capture therapy
- BPG, 2,3-bisphosphoglycerate
- BSA, bovine serum albumin
- BSH, sodium borocaptate
- Bioinorganic chemistry
- Biological systems
- DNA, deoxyribonucleic acid
- EDTA-N4, ethylenediaminetetraacetamide
- EFG, electric field gradient
- GMP, guanosine monophosphate
- HMQC, heteronuclear multiple quantum correlation
- Heteronuclear NMR spectroscopy
- Im, imidazole
- In, indazole
- MQF, multiple quantum filtered
- MRI, magnetic resonance imaging
- Medicinal inorganic chemistry
- Metallopharmaceuticals
- NOE, nuclear Overhauser effect
- PET, positron emission tomography
- Quadrupolar nuclei
- RBC, red blood cell
- RNA, ribonucleic acid
- SDS, sodium dodecyl sulfate
- rRNA, ribosomal ribonucleic acid
- tRNA, transfer ribonucleic acid
Collapse
Affiliation(s)
- Luca Ronconi
- School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, UK
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| |
Collapse
|
7
|
Wagler TA, Daunch WA, Panzner M, Youngs WJ, Rinaldi PL. Solid-state 33S MAS NMR of inorganic sulfates. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2004; 170:336-344. [PMID: 15388098 DOI: 10.1016/j.jmr.2004.07.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Revised: 07/19/2004] [Indexed: 05/24/2023]
Abstract
Solid-state (33)S MAS NMR spectra of a variety of inorganic sulfates have been obtained at magnetic field strengths of 4.7, 14.1, 17.6, and 18.8 T. Some of the difficulties associated with obtaining natural abundance (33)S NMR spectra have been overcome by using a high magnetic field strength and magic angle spinning (MAS). Multiple factors were considered when analyzing the spectral linewidths, including magnetic field inhomogeneity, dipolar coupling, chemical shift anisotropy, chemical shift dispersion, and quadrupolar coupling. In most of these sulfate samples, quadrupolar coupling was the dominant line broadening mechanism. Nuclear electric quadrupolar coupling constants (C(q)) as large as 2.05 MHz were calculated using spectral simulation software. Spectral information from these new data are compared with X-ray measurements and GAUSSIAN 98W calculations. A general correlation was observed between the magnitude of the C(q) and the increasing difference between S-O bond distances within the sulfate groups. Solid-state (33)S spin-lattice (T(1)) relaxation times were measured and show a significant reduction in T(1) for the hydrated sulfates. This is most likely the result of the modulation of the time-dependent electric field gradient at the nuclear site by motion of water molecules. This information will be useful in future efforts to use (33)S NMR in the compositional and structural analysis of sulfur containing materials.
Collapse
Affiliation(s)
- Todd A Wagler
- Knight Chemical Laboratory, Department of Chemistry, The University of Akron, Akron, OH 44325-3601, USA
| | | | | | | | | |
Collapse
|