1
|
Current problems and future avenues in proteoliposome research. Biochem Soc Trans 2021; 48:1473-1492. [PMID: 32830854 DOI: 10.1042/bst20190966] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022]
Abstract
Membrane proteins (MPs) are the gatekeepers between different biological compartments separated by lipid bilayers. Being receptors, channels, transporters, or primary pumps, they fulfill a wide variety of cellular functions and their importance is reflected in the increasing number of drugs that target MPs. Functional studies of MPs within a native cellular context, however, is difficult due to the innate complexity of the densely packed membranes. Over the past decades, detergent-based extraction and purification of MPs and their reconstitution into lipid mimetic systems has been a very powerful tool to simplify the experimental system. In this review, we focus on proteoliposomes that have become an indispensable experimental system for enzymes with a vectorial function, including many of the here described energy transducing MPs. We first address long standing questions on the difficulty of successful reconstitution and controlled orientation of MPs into liposomes. A special emphasis is given on coreconstitution of several MPs into the same bilayer. Second, we discuss recent progress in the development of fluorescent dyes that offer sensitive detection with high temporal resolution. Finally, we briefly cover the use of giant unilamellar vesicles for the investigation of complex enzymatic cascades, a very promising experimental tool considering our increasing knowledge of the interplay of different cellular components.
Collapse
|
2
|
Yoneda JS, Sebinelli HG, Itri R, Ciancaglini P. Overview on solubilization and lipid reconstitution of Na,K-ATPase: enzyme kinetic and biophysical characterization. Biophys Rev 2020; 12:49-64. [PMID: 31955383 DOI: 10.1007/s12551-020-00616-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/07/2020] [Indexed: 12/11/2022] Open
Abstract
Na,K-ATPase is a membrane protein which plays a vital role. It pumps Na+ and K+ ions across the cellular membranes using energy from ATP hydrolysis, and is responsible for maintaining the osmotic equilibrium and generating the membrane potential. Moreover, Na,K-ATPase has also been involved in cell signaling, interacting with partner proteins. Cardiotonic steroids bind specifically to Na,K-ATPase triggering a number of signaling pathways. Because of its importance, many efforts have been employed to study the structure and function of this protein. Difficulties associated with its removal from natural membranes and the concomitant search for appropriate replacement conditions to keep the protein in solution have presented a challenge that had to be overcome prior to carrying out biophysical and biochemical studies in vitro. In this review, we summarized all of the methods and techniques applied by our group in order to obtain information about Na,K-ATPase in respect to solubilization, reconstitution into mimetic system, influence of lipid composition, stability, oligomerization, and aggregation.
Collapse
Affiliation(s)
- Juliana Sakamoto Yoneda
- Instituto de Fisica, Universidade de Sao Paulo, Rua do Matao, 1371, 05508-090, Sao Paulo, SP, Brazil.
| | - Heitor Gobbi Sebinelli
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Ribeirão Preto, SP, 14040-901, Brazil
| | - Rosangela Itri
- Instituto de Fisica, Universidade de Sao Paulo, Rua do Matao, 1371, 05508-090, Sao Paulo, SP, Brazil
| | - Pietro Ciancaglini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Ribeirão Preto, SP, 14040-901, Brazil
| |
Collapse
|
3
|
Santos HDL, Rigos CF, Tedesco AC, Ciancaglini P. Biostimulation of Na,K-ATPase by low-energy laser irradiation (685 nm, 35 mW): comparative effects in membrane, solubilized and DPPC:DPPE-liposome reconstituted enzyme. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2007; 89:22-8. [PMID: 17804250 DOI: 10.1016/j.jphotobiol.2007.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 07/25/2007] [Accepted: 07/30/2007] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The aim of the present work was to investigate the effect of low-energy laser irradiation (685 nm, 35 mW) on the ATPase activity of the different forms of the Na,K-ATPase. METHODS Membrane-bound and solubilized (alphabeta)(2) form of Na,K-ATPase was obtained from the dark red outer medulla of the kidney and proteoliposomes of DPPC:DPPE and Na,K-ATPase was prepared by the co-solubilization method. Irradiations were carried out at 685 nm using an InGaAIP diode laser. RESULTS The ATPase activity of the membrane fraction was not altered with exposition to irradiation doses between 4 and 24 J/cm(2). However, with irradiation doses ranging from 32 to 40 J/cm(2), a 28% increase on the ATPase activity was observed while when using up to 50 J/cm(2) no additional enhancement was observed. When biostimulation was done using the solubilized and purified enzyme or the DPPC:DPPE-liposome reconstituted enzyme, an increase of about 36-40% on the ATPase activity was observed using only 4-8 J/cm(2). With irradiation above these values (24 J/cm(2)) no additional increase in the activity was observed. These studies revealed that the biostimulation of ATPase activity from different forms of the Na,K-ATPase is dose dependent in different ranges of irradiation exposure. The stimulation promoted by visible laser doses was modulated and the process was reverted after 2 h for the enzyme present in the membrane and after about 5 h for the solubilized or the reconstituted in DPPC:DPPE-liposomes.
Collapse
Affiliation(s)
- Hérica de Lima Santos
- Universidade Federal de São João Del Rei, Departamento de Ciências Naturais, DCNAT/UFSJ, Brazil
| | | | | | | |
Collapse
|
4
|
Powalska E, Janosch S, Kinne-Saffran E, Kinne RKH, Fontes CFL, Mignaco JA, Winter R. Fluorescence spectroscopic studies of pressure effects on Na+,K(+)-ATPase reconstituted into phospholipid bilayers and model raft mixtures. Biochemistry 2007; 46:1672-83. [PMID: 17279630 DOI: 10.1021/bi062235e] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To contribute to the understanding of membrane protein function upon application of pressure as relevant for understanding, for example, the physiology of deep sea organisms or for baroenzymological biotechnical processes, we investigated the influence of hydrostatic pressure on the activity of Na+,K+-ATPase enriched in the plasma membrane from rabbit kidney outer medulla using a kinetic assay that couples ATP hydrolysis to NADH oxidation. The data show that the activity of Na+,K+-ATPase is reversibly inhibited by pressures below 2 kbar. At higher pressures, the enzyme is irreversibly inactivated. To be able to explore the effect of the lipid matrix on enzyme activity, the enzyme was also reconstituted into various lipid bilayer systems of different chain length, conformation, phase state, and heterogeneity including model raft mixtures. To yield additional information on the conformation and phase state of the lipid bilayer systems, generalized polarization values by the Laurdan fluorescence technique were determined as well. Incorporation of the enzyme leads to a significant increase of the lipid chain order. Generally, similar to the enzyme activity in the natural plasma membrane, high hydrostatic pressures lead to a decline of the activity of the enzyme reconstituted into the various lipid bilayer systems, and in most cases, a multi-phasic behavior is observed. Interestingly, in the low-pressure region, around 100 bar, a significant increase of activity is observed for the enzyme reconstituted into DMPC and DOPC bilayers. Above 100-200 bar, this activity enhancement is followed by a steep decrease of activity up to about 800 bar, where a more or less broad plateau value is reached. The enzyme activity decreases to zero around 2 kbar for all reconstituted systems measured. A different scenario is observed for the effect of pressure on the enzyme activity in the model raft mixture. The coexistence of liquid-ordered and liquid-disordered domains with the possibility of lipid sorting in this lipid mixture leads to a reduced pressure sensitivity in the medium-pressure range. The decrease of ATPase activity may be induced by an increasing hydrophobic mismatch, leading to a decrease of the conformational dynamics of the protein and eventually subunit rearrangement. High pressures, above about 2.2 kbar, irreversibly change protein conformation, probably because of the dissociation and partial unfolding of the subunits.
Collapse
Affiliation(s)
- Ewa Powalska
- Department of Chemistry, Physical Chemistry I, and Biophysical Chemistry, University of Dortmund, Otto-Hahn Strasse 6, D-44227 Dortmund, Germany
| | | | | | | | | | | | | |
Collapse
|
5
|
de Lima Santos H, Fortes Rigos C, Ciancaglini P. Kinetics behaviors of Na,K-ATPase: comparison of solubilized and DPPC:DPPE-liposome reconstituted enzyme. Comp Biochem Physiol C Toxicol Pharmacol 2006; 142:309-316. [PMID: 16413831 DOI: 10.1016/j.cbpc.2005.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 11/03/2005] [Accepted: 11/04/2005] [Indexed: 12/01/2022]
Abstract
We describe and compare the main kinetic characteristics of rabbit kidney Na,K-ATPase incorporated inside-out in DPPC:DPPE-liposomes with the C(12)E(8) solubilized and purified form. In proteoliposomes, we observed that the ATP hydrolysis of the enzyme is favored and also its affinity for Na(+)-binding sites increases, keeping the negative cooperativity with two classes of hydrolysis sites: one of high affinity (K(0.5)=6 microM and 4 microM for reconstituted enzyme and purified form, respectively) and another of low affinity (K(0.5)=0.4 mM and 1.4 mM for reconstituted enzyme and purified form, respectively). Our data showed a biphasic curve for ATP hydrolysis, suggesting the presence of (alphabeta)(2) oligomer in reconstituted Na,K-ATPase similar to the solubilized enzyme. The Mg(2+) concentration dependence in the proteoliposomes stimulated the Na,K-ATPase activity up to 476 U/mg with a K(0.5) value of 0.4 mM. The Na(+) ions also presented a single saturation curve with V(M)=551 U/mg and K(0.5)=0.2 mM with cooperative effects. The activity was also stimulated by K(+) ions through a single curve of saturation sites (K(0.5)=2.8 mM), with cooperative effects and V(M)=641 U/mg. The lipid microenvironment close to the proteic structure and the K(+) internal to the liposome has a key role in enzyme regulation, affecting its kinetic parameters while it can also modulate the enzyme's affinity for substrate and ions.
Collapse
Affiliation(s)
- Hérica de Lima Santos
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto-FFCLRP, Universidade de São Paulo-USP, 14040-901-Ribeirão Preto, SP, Brasil
| | - Carolina Fortes Rigos
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto-FFCLRP, Universidade de São Paulo-USP, 14040-901-Ribeirão Preto, SP, Brasil
| | - Pietro Ciancaglini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto-FFCLRP, Universidade de São Paulo-USP, 14040-901-Ribeirão Preto, SP, Brasil.
| |
Collapse
|
6
|
de Lima Santos H, Lopes ML, Maggio B, Ciancaglini P. Na,K-ATPase reconstituted in liposomes: effects of lipid composition on hydrolytic activity and enzyme orientation. Colloids Surf B Biointerfaces 2005; 41:239-48. [PMID: 15748819 DOI: 10.1016/j.colsurfb.2004.12.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2004] [Accepted: 12/22/2004] [Indexed: 11/30/2022]
Abstract
In this paper, the reconstitution of Na,K-ATPase in liposomes (formed by single or mixed phospholipids and cholesterol) was investigated and the enzyme orientation was determined on kinetic basis using only specific inhibitors of ATP hydrolysis. A condition of foremost importance for enzyme reconstitution is the achievement of complete solubilization of the lipid in the initial stage of the cosolubilization process for the subsequent formation of the liposomes and/or proteoliposomes. PC-liposomes showed that increasing the fatty acid chain length increases the percentage of Na,K-ATPase incorporated. The average diameter of the proteoliposomes also increases in proportion, reaching a maximum with phospholipids with 16 carbon chains, resulting in 75.1% protein reconstitution and 319.4 nm diameter size, respectively. Binary lipid systems with PC and PE were efficient for incorporation of Na,K-ATPase, depending on the lipid:protein ratio used, varying from 15 to 80% recovery of total ATPase activity. The best results for Na,K-ATPase reconstitution using PC and PE mixture were obtained using a lipid:lipid ratio 1:1 (w/w) and lipid:protein 1:3 (w/w). Integrity studies using calcein release mediated by detergent or alamethicin, in association with inhibition of ATPase activity (ouabain and vanadate) showed that the enzyme is oriented inside-out in DPPC:DPPE proteoliposomes. In these vesicular systems, the enzyme is reconstituted with about 78.9% ATPase activity recovery and 89% protein incorporation, with an average diameter of 140 nm. Systems constituted by DPPC:DPPE, DPPC:DLOPE or DLOPC:DLOPE showed approximately 80, 71 and 70% of recovery of total ATPase activity, but no homogeneity in the distribution of Na,K-ATPase orientation. Reconstitution of Na,K-ATPase in DPPC:DPPE:cholesterol or DPPC:DLOPE:cholesterol systems (55% of cholesterol) showed recovery of about 86 and 82%, respectively, of its total ATPase activity. The results point to an important effect of the lipid acyl chain length and lipid-protein ratio in relation to the composition of the lipid matrix to finely tune the structural asymmetry and the amount of enzyme that can be incorporated a lipid bilayer vesicle while preserving membrane permeability.
Collapse
Affiliation(s)
- Hérica de Lima Santos
- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Departamento de Química, FFCLRP-USP, 14040-901 Ribeirão Preto, SP, Brazil
| | | | | | | |
Collapse
|
7
|
de Lima Santos H, Ciancaglini P. Kinetic characterization of Na,K-ATPase from rabbit outer renal medulla: properties of the (alpha beta)(2) dimer. Comp Biochem Physiol B Biochem Mol Biol 2003; 135:539-49. [PMID: 12831774 DOI: 10.1016/s1096-4959(03)00139-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We describe and compare the main kinetic characteristics of the (alpha beta)(2) form of rabbit kidney Na,K-ATPase. The dependence of ATPase activity on ATP concentration revealed high (K(0.5)=4 microM) and low (K(0.5)=1.4 mM) affinity sites for ATP, exhibiting negative cooperativity and a specific activity of approximately 700 U/mg. For p-nitrophenylphosphate (PNPP) as substrate, a single saturation curve was found, with a smaller apparent affinity of the enzyme for this substrate (K(0.5)=0.5 mM) and a lower hydrolysis rate (V(M)=42 U/mg). Stimulation of ATPase activity by K(+) (K(0.5)=0.63 mM), Na(+) (K(0.5)=11 mM) and Mg(2+) (K(0.5)=0.60 mM) all showed V(M)'s of approximately 600 U/mg and negative cooperativity. K(+) (K(0.5)=0.69 mM) and Mg(2+) (K(0.5)=0.57 mM) also stimulated PNPPase activity of the (alpha beta)(2) form. Ouabain (K(0.5)=0.01 microM and K(0.5)=0.1 mM) and orthovanadate (K(0.5)=0.06 microM) completely inhibited the ATPase activity of the (alpha beta)(2) form. The kinetic characteristics obtained constitute reference values for diprotomeric (alpha beta)(2)-units of Na,K-ATPase, thus contributing to a better understanding of the biochemical mechanisms of the enzyme.
Collapse
Affiliation(s)
- Hérica de Lima Santos
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto-FFCLRP, Universidade de São Paulo-USP, Av. Bandeirantes 3900, SP, 14040-901, Ribeirão Preto, Brazil
| | | |
Collapse
|
8
|
Abstract
Two-dimensional crystallogenesis is a crucial step in the long road that leads to the determination of macromolecules structure via electron crystallography. The necessity of having large and highly ordered samples can hold back the resolution of structural works for a long time, and this, despite improvements made in electron microscopes or image processing. Today, finding good conditions for growing two-dimensional crystals still rely on either "biocrystallo-cooks" or on lucky ones. The present review presents the field by first describing the different crystals that one can encounter and the different crystallisation methods used. Then, the effects of different components (such as protein, lipids, detergent, buffer, and temperature) and the different methods (dialysis, hydrophobic adsorption) are discussed. This discussion is punctuated by correspondences made to the world of three-dimensional crystallogenesis. Finally, a guide for setting up 2D crystallogenesis experiments, built on the discussion mentioned before, is proposed to the reader. More than giving recipes, this review is meant to open up the discussions in this field.
Collapse
Affiliation(s)
- G Mosser
- LPCC, UMR168-CNRS, Institut Curie-Section de Recherche, 11 rue Pierre et Marie Curie, 75005 Paris, France.
| |
Collapse
|