Dance GSC, Sowden MP, Cartegni L, Cooper E, Krainer AR, Smith HC. Two proteins essential for apolipoprotein B mRNA editing are expressed from a single gene through alternative splicing.
J Biol Chem 2002;
277:12703-9. [PMID:
11815617 DOI:
10.1074/jbc.m111337200]
[Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein B (apoB) mRNA editing involves site-specific deamination of cytidine to form uridine, resulting in the production of an in-frame stop codon. Protein translated from edited mRNA is associated with a reduced risk of atherosclerosis, and hence the protein factors that regulate hepatic apoB mRNA editing are of interest. A human protein essential for apoB mRNA editing and an eight-amino acid-longer variant of no known function have been recently cloned. We report that both proteins, henceforth referred to as ACF64 and ACF65, supported APOBEC-1 (the catalytic subunit of the editosome) equivalently in editing of apoB mRNA. They are encoded by a single 82-kb gene on chromosome 10. The transcripts are encoded by 15 exons that are expressed from a tissue-specific promoter minimally contained within the -0.33-kb DNA sequence. ACF64 and ACF65 mRNAs are expressed in both liver and intestinal cells in an approximate 1:4 ratio. Exon 11 is alternatively spliced to include or exclude 24 nucleotides of exon 12, thereby encoding ACF65 and ACF64, respectively. Recognition motifs for the serine/arginine-rich (SR) proteins SC35, SRp40, SRp55, and SF2/ASF involved in alternative RNA splicing were predicted in exon 12. Overexpression of these SR proteins in liver cells demonstrated that alternative splicing of a minigene-derived transcript to express ACF65 was enhanced 6-fold by SRp40. The data account for the expression of two editing factors and provide a possible explanation for their different levels of expression.
Collapse