1
|
Ha DH, Thi PM, Chaudhary P, Jeong JH. Efficient Formation of Three Dimensional Spheroids of Primary Hepatocytes Using Micropatterned Multi-Well Plates. Macromol Res 2019. [DOI: 10.1007/s13233-019-7103-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
2
|
Kegel V, Deharde D, Pfeiffer E, Zeilinger K, Seehofer D, Damm G. Protocol for Isolation of Primary Human Hepatocytes and Corresponding Major Populations of Non-parenchymal Liver Cells. J Vis Exp 2016:e53069. [PMID: 27077489 DOI: 10.3791/53069] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Beside parenchymal hepatocytes, the liver consists of non-parenchymal cells (NPC) namely Kupffer cells (KC), liver endothelial cells (LEC) and hepatic Stellate cells (HSC). Two-dimensional (2D) culture of primary human hepatocyte (PHH) is still considered as the "gold standard" for in vitro testing of drug metabolism and hepatotoxicity. It is well-known that the 2D monoculture of PHH suffers from dedifferentiation and loss of function. Recently it was shown that hepatic NPC play a central role in liver (patho-) physiology and the maintenance of PHH functions. Current research focuses on the reconstruction of in vivo tissue architecture by 3D- and co-culture models to overcome the limitations of 2D monocultures. Previously we published a method to isolate human liver cells and investigated the suitability of these cells for their use in cell cultures in Experimental Biology and Medicine(1). Based on the broad interest in this technique the aim of this article was to provide a more detailed protocol for the liver cell isolation process including a video, which will allow an easy reproduction of this technique. Human liver cells were isolated from human liver tissue samples of surgical interventions by a two-step EGTA/collagenase P perfusion technique. PHH were separated from the NPC by an initial centrifugation at 50 x g. Density gradient centrifugation steps were used for removal of dead cells. Individual liver cell populations were isolated from the enriched NPC fraction using specific cell properties and cell sorting procedures. Beside the PHH isolation we were able to separate KC, LEC and HSC for further cultivation. Taken together, the presented protocol allows the isolation of PHH and NPC in high quality and quantity from one donor tissue sample. The access to purified liver cell populations could allow the creation of in vivo like human liver models.
Collapse
Affiliation(s)
- Victoria Kegel
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin
| | - Daniela Deharde
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin
| | - Elisa Pfeiffer
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin
| | - Katrin Zeilinger
- Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin
| | - Daniel Seehofer
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin
| | - Georg Damm
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin;
| |
Collapse
|
3
|
All-In-One: Advanced preparation of Human Parenchymal and Non-Parenchymal Liver Cells. PLoS One 2015; 10:e0138655. [PMID: 26407160 PMCID: PMC4583235 DOI: 10.1371/journal.pone.0138655] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 09/02/2015] [Indexed: 02/06/2023] Open
Abstract
Background & Aims Liver cells are key players in innate immunity. Thus, studying primary isolated liver cells is necessary for determining their role in liver physiology and pathophysiology. In particular, the quantity and quality of isolated cells are crucial to their function. Our aim was to isolate a large quantity of high-quality human parenchymal and non-parenchymal cells from a single liver specimen. Methods Hepatocytes, Kupffer cells, liver sinusoidal endothelial cells, and stellate cells were isolated from liver tissues by collagenase perfusion in combination with low-speed centrifugation, density gradient centrifugation, and magnetic-activated cell sorting. The purity and functionality of cultured cell populations were controlled by determining their morphology, discriminative cell marker expression, and functional activity. Results Cell preparation yielded the following cell counts per gram of liver tissue: 2.0±0.4×107 hepatocytes, 1.8±0.5×106 Kupffer cells, 4.3±1.9×105 liver sinusoidal endothelial cells, and 3.2±0.5×105 stellate cells. Hepatocytes were identified by albumin (95.5±1.7%) and exhibited time-dependent activity of cytochrome P450 enzymes. Kupffer cells expressed CD68 (94.5±1.2%) and exhibited phagocytic activity, as determined with 1μm latex beads. Endothelial cells were CD146+ (97.8±1.1%) and exhibited efficient uptake of acetylated low-density lipoprotein. Hepatic stellate cells were identified by the expression of α-smooth muscle actin (97.1±1.5%). These cells further exhibited retinol (vitamin A)-mediated autofluorescence. Conclusions Our isolation procedure for primary parenchymal and non-parenchymal liver cells resulted in cell populations of high purity and quality, with retained physiological functionality in vitro. Thus, this system may provide a valuable tool for determining liver function and disease.
Collapse
|
4
|
Peng Y, Li SM, Li GY, Ma J, Zhao TJ. Overview on isolation, cultivation and identification of liver sinusoidal endothelial cells. Shijie Huaren Xiaohua Zazhi 2015; 23:728-734. [DOI: 10.11569/wcjd.v23.i5.728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) play an important role in the hepatic physiological and pathological processes, and they have become a hot research topic in recent years. This paper will focus on the isolation, cultivation and identification of LSECs by summarizing and reviewing the latest technologies and methods, with an aim to make a great contribution to the research of LSECs and their roles in the hepatic physiological and pathological processes.
Collapse
|
5
|
Pfeiffer E, Kegel V, Zeilinger K, Hengstler JG, Nüssler AK, Seehofer D, Damm G. Featured Article: Isolation, characterization, and cultivation of human hepatocytes and non-parenchymal liver cells. Exp Biol Med (Maywood) 2014; 240:645-56. [PMID: 25394621 DOI: 10.1177/1535370214558025] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/18/2014] [Indexed: 02/06/2023] Open
Abstract
Primary human hepatocytes (PHH) are considered to be the gold standard for in vitro testing of xenobiotic metabolism and hepatotoxicity. However, PHH cultivation in 2D mono-cultures leads to dedifferentiation and a loss of function. It is well known that hepatic non-parenchymal cells (NPC), such as Kupffer cells (KC), liver endothelial cells (LEC), and hepatic stellate cells (HSC), play a central role in the maintenance of PHH functions. The aims of the present study were to establish a protocol for the simultaneous isolation of human PHH and NPC from the same tissue specimen and to test their suitability for in vitro co-culture. Human PHH and NPC were isolated from tissue obtained by partial liver resection by a two-step EDTA/collagenase perfusion technique. The obtained cell fractions were purified by Percoll density gradient centrifugation. KC, LEC, and HSC contained in the NPC fraction were separated using specific adherence properties and magnetic activated cell sorting (MACS®). Identified NPC revealed a yield of 1.9 × 10(6) KC, 2.7 × 10(5) LEC and 4.7 × 10(5) HSC per gram liver tissue, showing viabilities >90%. Characterization of these NPC showed that all populations went through an activation process, which influenced the cell fate. The activation of KC strongly depended on the tissue quality and donor anamnesis. KC became activated in culture in association with a loss of viability within 4-5 days. LEC lost specific features during culture, while HSC went through a transformation process into myofibroblasts. The testing of different culture conditions for HSC demonstrated that they can attenuate, but not prevent dedifferentiation in vitro. In conclusion, the method described allows the isolation and separation of PHH and NPC in high quality and quantity from the same donor.
Collapse
Affiliation(s)
- Elisa Pfeiffer
- Department for General, Visceral and Transplantation Surgery, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Victoria Kegel
- Department for General, Visceral and Transplantation Surgery, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Katrin Zeilinger
- Bioreactor Group, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Jan G Hengstler
- IfADo - Leibniz Research Centre for Working Environment and Human Factors at Dortmund Technical University, 44139 Dortmund, Germany
| | - Andreas K Nüssler
- Eberhard-Karls University Tübingen, BG Trauma Center, 72076 Tübingen, Germany
| | - Daniel Seehofer
- Department for General, Visceral and Transplantation Surgery, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Georg Damm
- Department for General, Visceral and Transplantation Surgery, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| |
Collapse
|
6
|
Damm G, Pfeiffer E, Burkhardt B, Vermehren J, Nüssler AK, Weiss TS. Human parenchymal and non-parenchymal liver cell isolation, culture and characterization. Hepatol Int 2013. [PMID: 26202025 DOI: 10.1007/s12072-013-9475-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Many reports describing parenchymal liver cell isolation have been published so far. However, recent evidence has clearly demonstrated that non-parenchymal liver cells play an important role in many pathophysiologies of the liver, such as drug-induced liver diseases, inflammation, and the development of liver fibrosis and cirrhosis. In this study, we present an overview of the current methods for isolating and characterizing parenchymal and non-parenchymal liver cells.
Collapse
Affiliation(s)
- Georg Damm
- Charité University Medicine Berlin, Department of General, Visceral, and Transplant Surgery, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Elisa Pfeiffer
- Charité University Medicine Berlin, Department of General, Visceral, and Transplant Surgery, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Britta Burkhardt
- Eberhard Karls University Tübingen, BG Trauma Center, Siegfried Weller Institut, BG-Tübingen, Siegfried Weller Institut, Schnarrenbergstr. 95, 72076, Tübingen, Germany
| | - Jan Vermehren
- Department of Pediatrics and Juvenile Medicine, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, 93053, Regensburg, Germany
| | - Andreas K Nüssler
- Eberhard Karls University Tübingen, BG Trauma Center, Siegfried Weller Institut, BG-Tübingen, Siegfried Weller Institut, Schnarrenbergstr. 95, 72076, Tübingen, Germany.
| | - Thomas S Weiss
- Department of Pediatrics and Juvenile Medicine, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, 93053, Regensburg, Germany.
| |
Collapse
|
7
|
Alfaro J, Grau M, Serrano M, Checa AI, Criado LM, Moreno E, Paz-Artal E, Mellado M, Serrano A. Blockade of endothelial G(i) protein enhances early engraftment in intraportal cell transplant to mouse liver. Cell Transplant 2013; 21:1383-96. [PMID: 22525519 DOI: 10.3727/096368912x640501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The limited availability of liver donors and recent progress in cell therapy technologies has centered interest on cell transplantation as a therapeutic alternative to orthotopic liver transplant for restoring liver function. Following transplant by intraportal perfusion, the main obstacle to cell integration in the parenchyma is the endothelial barrier. Transplanted cells form emboli in the portal branches, inducing ischemia and reperfusion injury, which cause disruption of endothelial impermeability and activate the immune system. Approximately 95% of transplanted cells fail to implant and die within hours by anoikis or are destroyed by the host immune system. Intravascular perfusion of Bordetella pertussis toxin (PTx) blocks endothelial G(i) proteins and acts as a reversible inducer of actin cytoskeleton reorganization, leading to interruption of cell confluence in vitro and increased vascular permeability in vivo. PTx treatment of the murine portal vascular tree 2 h before intraportal perfusion of embryonic stem cells facilitated rapid cell engraftment. By 2 h postperfusion, the number of implanted cells in treated mice was more than fivefold greater than in untreated controls, a difference that was maintained to at least 30 days posttransplant. We conclude that prior to cell transplant, PTx blockade of the G(i) protein pathway in liver endothelium promotes rapid, efficient cell implantation in liver parenchyma, and blocks chemokine receptor signaling, an essential step in early activation of the immune system.
Collapse
Affiliation(s)
- Javier Alfaro
- Cell Transplantation Unit, Department of Immunology Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Lalor PF, Herbert J, Bicknell R, Adams DH. Hepatic sinusoidal endothelium avidly binds platelets in an integrin-dependent manner, leading to platelet and endothelial activation and leukocyte recruitment. Am J Physiol Gastrointest Liver Physiol 2013; 304:G469-78. [PMID: 23257923 PMCID: PMC3602682 DOI: 10.1152/ajpgi.00407.2012] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Platelets have recently been shown to drive liver injury in murine models of viral hepatitis and promote liver regeneration through the release of serotonin. Despite their emerging role in inflammatory liver disease, little is known about the mechanisms by which platelets bind to the hepatic vasculature. Therefore, we referenced public expression data to determine the profile of potential adhesive receptors expressed by hepatic endothelium. We then used a combination of tissue-binding and flow-based endothelial-binding adhesion assays to show that resting platelets bind to human hepatic sinusoidal endothelial cells and that the magnitude of adhesion is greatly enhanced by thrombin-induced platelet activation. Adhesion was mediated by the integrins Gp1b, αIIbβIII, and αvβ3, as well as immobilized fibrinogen. Platelet binding to hepatic endothelial cells resulted in NF-κB activation and increased chemokine secretion. The functional relevance of platelet binding was confirmed by experiments that showed markedly increased binding of neutrophils and lymphocytes to hepatic endothelial cells under shear conditions replicating those found in the hepatic sinusoid, which was in part dependent on P-selectin expression. Thus the ability of platelets to activate endothelium and promote leukocyte adhesion may reflect an additional mechanism through which they promote liver injury.
Collapse
Affiliation(s)
| | - John Herbert
- 2CRUK Angiogenesis Research Group, Immunity and Infection, Institute of Biomedical Research, The Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Roy Bicknell
- 2CRUK Angiogenesis Research Group, Immunity and Infection, Institute of Biomedical Research, The Medical School, University of Birmingham, Birmingham, United Kingdom
| | - David H. Adams
- 1Centre for Liver Research and NIHR Biomedical Research Unit, and
| |
Collapse
|
9
|
Kehr D, Raschzok N, Sauer I. A Novel Cannulation Technique for Isolation of Human Hepatocytes from Explanted Diseased Whole Livers. Transplant Proc 2012; 44:999-1001. [DOI: 10.1016/j.transproceed.2012.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Lang R, Stern MM, Smith L, Liu Y, Bharadwaj S, Liu G, Baptista PM, Bergman CR, Soker S, Yoo JJ, Atala A, Zhang Y. Three-dimensional culture of hepatocytes on porcine liver tissue-derived extracellular matrix. Biomaterials 2011; 32:7042-52. [PMID: 21723601 DOI: 10.1016/j.biomaterials.2011.06.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 06/03/2011] [Indexed: 10/18/2022]
Abstract
There is currently no optimal system to expand and maintain the function of human adult hepatocytes in culture. Recent studies have demonstrated that specific tissue-derived extracellular matrix (ECM) can serve as a culture substrate and that cells tend to proliferate and differentiate best on ECM derived from their tissue of origin. The goal of this study was to investigate whether three-dimensional (3D) ECM derived from porcine liver can facilitate the growth and maintenance of physiological functions of liver cells. Optimized decellularization/oxidation procedures removed up to 93% of the cellular components from porcine liver tissue and preserved key molecular components in the ECM, including collagen-I, -III, and -IV, proteoglycans, glycosaminoglycans, fibronectin, elastin, and laminin. When HepG2 cells or human hepatocytes were seeded onto ECM discs, uniform multi-layer constructs of both cell types were formed. Dynamic culture conditions yielded better cellular infiltration into the ECM discs. Human hepatocytes cultured on ECM discs expressed significantly higher levels of albumin over a 21-day culture period compared to cells cultured in traditional polystyrene cultureware or in a collagen gel "sandwich". The culture of hepatocytes on 3D liver-specific ECM resulted in considerably improved cell growth and maintained cell function; therefore, this system could potentially be used in liver tissue regeneration, drug discovery or toxicology studies.
Collapse
Affiliation(s)
- Ren Lang
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Schmelzer E, Mutig K, Schrade P, Bachmann S, Gerlach JC, Zeilinger K. Effect of human patient plasma ex vivo treatment on gene expression and progenitor cell activation of primary human liver cells in multi-compartment 3D perfusion bioreactors for extra-corporeal liver support. Biotechnol Bioeng 2009; 103:817-27. [PMID: 19274748 DOI: 10.1002/bit.22283] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cultivation of primary human liver cells in innovative 3D perfusion multi-compartment capillary membrane bioreactors using decentralized mass exchange and integral oxygenation provides in vitro conditions close to the physiologic environment in vivo. While a few scale-up bioreactors were used clinically, inoculated liver progenitors in these bioreactors were not investigated. Therefore, we characterized regenerative processes and expression patterns of auto- and paracrine mediators involved in liver regeneration in bioreactors after patient treatment. Primary human liver cells containing parenchymal and non-parenchymal cells co-cultivated in bioreactors were used for clinical extra-corporeal liver support to bridge to liver transplantation. 3D tissue re-structuring in bioreactors was studied; expression of proteins and genes related to regenerative processes and hepatic progenitors was analyzed. Formation of multiple bile ductular networks and colonies of putative progenitors were observed within parenchymal cell aggregates. HGF was detected in scattered cells located close to vascular-like structures, expression of HGFA and c-Met was assigned to biliary cells and hepatocytes. Increased expression of genes associated to hepatic progenitors was detected following clinical application. The results confirm auto- and paracrine interactions between co-cultured cells in the bioreactor. The 3D bioreactor provides a valuable tool to study mechanisms of progenitor activation and hepatic regeneration ex vivo under patient plasma treatment.
Collapse
Affiliation(s)
- Eva Schmelzer
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Alfaro F, Grau M, Ramírez E, Cevey M, Mellado M, Castro M, Meneu J, Abradelo M, Camañas C, Moreno E, Morales P, Paz-Artal E, Serrano A. An In Vitro Model of Cell Transplantation for Evaluation of Cell Engraftment Enhancers. Transplant Proc 2009; 41:2487-90. [DOI: 10.1016/j.transproceed.2009.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Cogger VC, Arias IM, Warren A, McMahon AC, Kiss DL, Avery VM, Le Couteur DG. The response of fenestrations, actin, and caveolin-1 to vascular endothelial growth factor in SK Hep1 cells. Am J Physiol Gastrointest Liver Physiol 2008; 295:G137-G145. [PMID: 18497335 PMCID: PMC2494729 DOI: 10.1152/ajpgi.00069.2008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To study the regulation of fenestrations by vascular endothelial growth factor in liver sinusoidal endothelial cells, SK Hep1 cells were transfected with green fluorescence protein (GFP)-actin and GFP-caveolin-1. SK Hep1 cells had pores; some of which appeared to be fenestrations (diameter 55 +/- 28 nm, porosity 2.0 +/- 1.4%), rudimentary sieve plates, bristle-coated micropinocytotic vesicles and expressed caveolin-1, von Willebrand factor, vascular endothelial growth factor receptor-2, endothelial nitric oxide synthase and clathrin, but not CD31. There was avid uptake of formaldehyde serum albumin, consistent with endocytosis. Vascular endothelial growth factor caused an increase in porosity to 4.8 +/- 2.6% (P < 0.01) and pore diameter to 104 +/- 59 nm (P < 0.001). GFP-actin was expressed throughout the cells, whereas GFP-caveolin-1 had a punctate appearance; both responded to vascular endothelial growth factor by contraction toward the nucleus over hours in parallel with the formation of fenestrations. SK Hep1 cells resemble liver sinusoidal endothelial cells, and the vascular endothelial growth factor-induced formation of fenestration-like pores is preceded by contraction of actin cytoskeleton and attached caveolin-1 toward the nucleus.
Collapse
Affiliation(s)
- Victoria C. Cogger
- Centre for Education and Research on Ageing (CERA) and ANZAC Research Institute, Concord RG Hospital and University of Sydney, New South Wales, Australia; National Institute of Health and National Institute of Child Health and Human Development, Bethesda, Maryland; and Discovery Biology, Eskitis Institute for Cell & Molecular Therapies, Griffith University, Brisbane, Australia
| | - Irwin M. Arias
- Centre for Education and Research on Ageing (CERA) and ANZAC Research Institute, Concord RG Hospital and University of Sydney, New South Wales, Australia; National Institute of Health and National Institute of Child Health and Human Development, Bethesda, Maryland; and Discovery Biology, Eskitis Institute for Cell & Molecular Therapies, Griffith University, Brisbane, Australia
| | - Alessandra Warren
- Centre for Education and Research on Ageing (CERA) and ANZAC Research Institute, Concord RG Hospital and University of Sydney, New South Wales, Australia; National Institute of Health and National Institute of Child Health and Human Development, Bethesda, Maryland; and Discovery Biology, Eskitis Institute for Cell & Molecular Therapies, Griffith University, Brisbane, Australia
| | - Aisling C. McMahon
- Centre for Education and Research on Ageing (CERA) and ANZAC Research Institute, Concord RG Hospital and University of Sydney, New South Wales, Australia; National Institute of Health and National Institute of Child Health and Human Development, Bethesda, Maryland; and Discovery Biology, Eskitis Institute for Cell & Molecular Therapies, Griffith University, Brisbane, Australia
| | - Debra L. Kiss
- Centre for Education and Research on Ageing (CERA) and ANZAC Research Institute, Concord RG Hospital and University of Sydney, New South Wales, Australia; National Institute of Health and National Institute of Child Health and Human Development, Bethesda, Maryland; and Discovery Biology, Eskitis Institute for Cell & Molecular Therapies, Griffith University, Brisbane, Australia
| | - Vicky M. Avery
- Centre for Education and Research on Ageing (CERA) and ANZAC Research Institute, Concord RG Hospital and University of Sydney, New South Wales, Australia; National Institute of Health and National Institute of Child Health and Human Development, Bethesda, Maryland; and Discovery Biology, Eskitis Institute for Cell & Molecular Therapies, Griffith University, Brisbane, Australia
| | - David G. Le Couteur
- Centre for Education and Research on Ageing (CERA) and ANZAC Research Institute, Concord RG Hospital and University of Sydney, New South Wales, Australia; National Institute of Health and National Institute of Child Health and Human Development, Bethesda, Maryland; and Discovery Biology, Eskitis Institute for Cell & Molecular Therapies, Griffith University, Brisbane, Australia
| |
Collapse
|
14
|
Martinez I, Nedredal GI, Øie CI, Warren A, Johansen O, Le Couteur DG, Smedsrød B. The influence of oxygen tension on the structure and function of isolated liver sinusoidal endothelial cells. COMPARATIVE HEPATOLOGY 2008; 7:4. [PMID: 18457588 PMCID: PMC2408922 DOI: 10.1186/1476-5926-7-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Accepted: 05/05/2008] [Indexed: 01/12/2023]
Abstract
BACKGROUND Liver sinusoidal endothelial cells (LSECs) are specialized scavenger cells, with crucial roles in maintaining hepatic and systemic homeostasis. Under normal physiological conditions, the oxygen tension encountered in the hepatic sinusoids is in general considerably lower than the oxygen tension in the air; therefore, cultivation of freshly isolated LSECs under more physiologic conditions with regard to oxygen would expect to improve cell survival, structure and function. In this study LSECs were isolated from rats and cultured under either 5% (normoxic) or 20% (hyperoxic) oxygen tensions, and several morpho-functional features were compared. RESULTS Cultivation of LSECs under normoxia, as opposed to hyperoxia improved the survival of LSECs and scavenger receptor-mediated endocytic activity, reduced the production of the pro-inflammatory mediator, interleukin-6 and increased the production of the anti-inflammatory cytokine, interleukin-10. On the other hand, fenestration, a characteristic feature of LSECs disappeared gradually at the same rate regardless of the oxygen tension. Expression of the cell-adhesion molecule, ICAM-1 at the cell surface was slightly more elevated in cells maintained at hyperoxia. Under normoxia, endogenous generation of hydrogen peroxide was drastically reduced whereas the production of nitric oxide was unaltered. Culture decline in high oxygen-treated cultures was abrogated by administration of catalase, indicating that the toxic effects observed in high oxygen environments is largely caused by endogenous production of hydrogen peroxide. CONCLUSION Viability, structure and many of the essential functional characteristics of isolated LSECs are clearly better preserved when the cultures are maintained under more physiologic oxygen levels. Endogenous production of hydrogen peroxide is to a large extent responsible for the toxic effects observed in high oxygen environments.
Collapse
Affiliation(s)
- Inigo Martinez
- Department of Cell Biology and Histology, IMB, Department of Medicine, IKM, Department of Orthopaedic Surgery, IKM, University of Tromsø, Norway.
| | | | | | | | | | | | | |
Collapse
|
15
|
Elvevold K, Smedsrød B, Martinez I. The liver sinusoidal endothelial cell: a cell type of controversial and confusing identity. Am J Physiol Gastrointest Liver Physiol 2008; 294:G391-400. [PMID: 18063708 DOI: 10.1152/ajpgi.00167.2007] [Citation(s) in RCA: 176] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A look through the literature on liver sinusoidal endothelial cells (LSECs) reveals that there are several conflicts among different authors of what this cell type is and does. Major controversies that will be highlighted in this review include aspects of the physiological role, the characterization, and the protocols of isolation and cultivation of these cells. Many of these conflicts may be ascribed to the fact that the cell was only recently established as a distinct cell type and that researchers from different disciplines tend to define their structure and function differently. This field is in need of a common platform to obtain a sound communication and a unified understanding of how to interpret novel research results. The aim of this review is to encourage scientists not to ignore the fact that there are, indeed, different opinions in the literature on LSECs. We also hope that this review will point out to the reader that some issues that may seem well established regarding our knowledge about the LSECs, in reality, are still unresolved and, indeed, controversial.
Collapse
Affiliation(s)
- Kjetil Elvevold
- Department of Cell Biology and Histology, Institute of Medical Biology, University of Tromsø, 9037 Tromsø, Norway
| | | | | |
Collapse
|
16
|
TAKEDA A, ISEKI H, OTANI Y, TAKEUCHI H, ICHIOKA S, KAWAI Y, SHINOZUKA N, KOYAMA I. Lymphatic mapping and lymphatic endothelial cell isolation in colorectal cancer patients. Asia Pac J Clin Oncol 2006. [DOI: 10.1111/j.1743-7563.2006.00063.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Lalor PF, Lai WK, Curbishley SM, Shetty S, Adams DH. Human hepatic sinusoidal endothelial cells can be distinguished by expression of phenotypic markers related to their specialised functions in vivo. World J Gastroenterol 2006; 12:5429-39. [PMID: 17006978 PMCID: PMC4088223 DOI: 10.3748/wjg.v12.i34.5429] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The hepatic sinusoids are lined by a unique population of hepatic sinusoidal endothelial cells (HSEC), which is one of the first hepatic cell populations to come into contact with blood components. However, HSEC are not simply barrier cells that restrict the access of blood-borne compounds to the parenchyma. They are functionally specialised endothelial cells that have complex roles, including not only receptor-mediated clearance of endotoxin, bacteria and other compounds, but also the regulation of inflammation, leukocyte recruitment and host immune responses to pathogens. Thus understanding the differentiation and function of HSEC is critical for the elucidation of liver biology and pathophysiology. This article reviews methods for isolating and studying human hepatic endothelial cell populations using in vitro models. We also discuss the expression and functions of phenotypic markers, such as the presence of fenestrations and expression of VAP-1, Stabilin-1, L-SIGN, which can be used to identify sinusoidal endothelium and to permit discrimination from vascular and lymphatic endothelial cells.
Collapse
MESH Headings
- Amine Oxidase (Copper-Containing)/genetics
- Amine Oxidase (Copper-Containing)/metabolism
- Biomarkers/metabolism
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Cell Adhesion Molecules, Neuronal/genetics
- Cell Adhesion Molecules, Neuronal/metabolism
- Cells, Cultured
- Endothelial Cells/metabolism
- Endothelium, Lymphatic/cytology
- Endothelium, Vascular/cytology
- Gene Expression Regulation/genetics
- Humans
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Liver/blood supply
- Liver/cytology
- Liver/metabolism
- Liver Circulation
- Phenotype
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Lymphocyte Homing/genetics
- Receptors, Lymphocyte Homing/metabolism
Collapse
Affiliation(s)
- P F Lalor
- Liver Research Group, Institute of Biomedical Research, Division of Medical Science, University of Birmingham, Birmingham B15 2TT, United Kingdom.
| | | | | | | | | |
Collapse
|
18
|
Elvevold K, Nedredal GI, Revhaug A, Bertheussen K, Smedsrød B. Long-term preservation of high endocytic activity in primary cultures of pig liver sinusoidal endothelial cells. Eur J Cell Biol 2005; 84:749-64. [PMID: 16218189 DOI: 10.1016/j.ejcb.2005.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Together with Kupffer cells, liver sinusoidal endothelial cells (LSECs) constitute the most powerful scavenger system in the body. However, studies on LSEC function are hampered by the fact that the cells lose their scavenger ability and start deteriorating after a few days in culture. The purpose of the present study was to improve the conditions of cultivation to prolong the survival of pig LSECs in vitro. We used the high capacity receptor-mediated endocytosis of soluble waste molecules as a marker for functionally intact cells in the cultures. Compared with two commercially-, and two other media specifically designed for use with either SECs or hepatocytes from rat, our newly developed serum-free medium, DM 110/SS, devoid of any components of animal origin, was superior in maintaining the endocytic activity. Of six growth factors studied for their effect on endocytosis, basic fibroblast, and recombinant epidermal, but not vascular endothelial growth factor, were found to be most beneficial. After 8 days in DM 110/SS, LSECs maintained endocytosis via the scavenger receptor, mannose receptor, collagen alpha-chain receptor and the Fc-gamma receptor. All endocytosed ligands, except for aggregated IgG were degraded in 8-day-old cultures. Using the new medium, the cells endocytosed ligands for up to 20 days, and survived for at least an additional 10 days, albeit without the high endocytic activity typical of intact LSECs. Importantly, DNA synthesis in prolonged cultures of LSECs was observed only when maintained in DM 110/SS medium. In conclusion, we describe a protocol for the maintenance of LSECs in culture for the longest period yet reported.
Collapse
Affiliation(s)
- Kjetil Elvevold
- Department of Experimental Pathology, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway.
| | | | | | | | | |
Collapse
|
19
|
Edwards S, Lalor PF, Nash GB, Rainger GE, Adams DH. Lymphocyte traffic through sinusoidal endothelial cells is regulated by hepatocytes. Hepatology 2005; 41:451-9. [PMID: 15723297 DOI: 10.1002/hep.20585] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Crosstalk between hepatic sinusoidal ECs and closely juxtaposed hepatocytes via vascular endothelial growth factor is essential for the maintenance of sinusoidal endothelial growth and differentiation. We propose that paracrine interactions between endothelial cells and hepatocytes also may be responsible for the unique complement of adhesion receptors expressed on sinusoidal endothelium that regulate the recruitment of lymphocytes into the liver. To address this hypothesis, we developed an in vitro model of the hepatic sinusoid in which flowing lymphocytes could interact with hepatic endothelium conditioned by the presence of hepatocytes. Human hepatic sinusoidal endothelial cells cocultured with hepatocytes were activated so that they supported the adhesion of lymphocytes at levels equivalent to those seen on endothelium stimulated with the inflammatory cytokine tumour necrosis factor-beta. Lymphocyte adhesion was supported by intracellular adhesion molecule 1, vascular cell adhesion molecule 1, and E-selectin, with an additional contribution from the novel adhesion receptor VAP-1. In conclusion, we show that interactions between hepatocytes and endothelial cells amplify leukocyte recruitment through the sinusoids by regulating the expression and function of endothelial adhesion molecules. These paracrine interactions may be responsible for the induction of the adhesion molecules that support constitutive lymphocyte recruitment to the liver as well as contributing significantly to the patterns of leukocyte adhesion seen during episodes of hepatic inflammation.
Collapse
Affiliation(s)
- Sarah Edwards
- Liver Research Group, Institute for Biomedical Science, Edgbaston, Birmingham, United Kingdom
| | | | | | | | | |
Collapse
|
20
|
Gerlach JC, Mutig K, Sauer IM, Schrade P, Efimova E, Mieder T, Naumann G, Grunwald A, Pless G, Mas A, Bachmann S, Neuhaus P, Zeilinger K. Use of primary human liver cells originating from discarded grafts in a bioreactor for liver support therapy and the prospects of culturing adult liver stem cells in bioreactors: a morphologic study. Transplantation 2003; 76:781-6. [PMID: 14501853 DOI: 10.1097/01.tp.0000083319.36931.32] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION The development of a bioreactor providing a three-dimensional network of interwoven capillary membranes with integrated oxygenation and decentralized mass exchange enables the culture of primary human liver cells from discarded donor organs for extracorporeal liver support. METHODS Primary liver cells were isolated from 54 discarded organs (donor age 56.7+/-13.2 years). Between 2.8x10(10) and 6.4x10(10) parenchymal cells (PC) were cocultured with nonparenchymal cells (NPC) of the same organ in bioreactors (n=36). The metabolic activity of the cells was regularly determined during culture. The cell morphology and ultrastructure were investigated after culture periods of 1 to 5 weeks. RESULTS Cell metabolism was maintained over at least 3 weeks after a phase of adaptation lasting 2 to 3 days. Through the use of transmission electron microscopy and immunohistochemistry, it was demonstrated that PC and NPC spontaneously formed tissue-like structures. Vascular cavities (CD 31 immunoreactivity [IR]) and bile duct-like channels (CK 19 IR), both exhibiting proliferation activity (Ki-67 IR), were regularly distributed. Some of the bile duct-like channels showed similarities to the Canals of Hering found in the natural liver. Cells expressing morphologic and antigenic characteristics of adult liver stem cells (CD 34 IR and c-kit IR) and areas with cells that showed both hepatocyte and biliary characteristics were detected. CONCLUSION The results show that primary human liver cells obtained from discarded donor organs recover and can be maintained in bioreactors for clinical liver support therapy. In addition, initial observations on adult liver stem-cell culture in bioreactors are presented.
Collapse
Affiliation(s)
- Jörg C Gerlach
- Department of Surgery, Charité, Campus Virchow, Humboldt University, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
The synthetic analog of vasopressin desmopressin (DDAVP) is widely used for the treatment of patients with von Willebrand disease (VWD), hemophilia A, several platelet disorders, and uremic bleeding. DDAVP induces an increase in plasma levels of von Willebrand factor (VWF), coagulation factor VIII (FVIII), and tissue plasminogen activator (t-PA). It also has a vasodilatory action. In spite of its extensive clinical use, its cellular mechanism of action remains incompletely understood. Its effect on VWF and t-PA as well as its vasodilatory effect are likely explained by a direct action on the endothelium, via activation of endothelial vasopressin V2R receptor and cAMP-mediated signaling. This leads to exocytosis from Weibel Palade bodies where both VWF and t-PA are stored, as well as to nitric oxide (NO) production via activation of endothelial NO synthase. The mechanism of action of DDAVP on FVIII plasma levels remains to be elucidated. The hemostatic effect of DDAVP likely involves additional cellular effects that remain to be discovered.
Collapse
Affiliation(s)
- J E Kaufmann
- Division of Clinical Biochemistry, Geneva, Switzerland
| | | |
Collapse
|
22
|
Nedredal GI, Elvevold KH, Ytrebø LM, Olsen R, Revhaug A, Smedsrød B. Liver sinusoidal endothelial cells represents an important blood clearance system in pigs. COMPARATIVE HEPATOLOGY 2003; 2:1. [PMID: 12537582 PMCID: PMC149430 DOI: 10.1186/1476-5926-2-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2002] [Accepted: 01/03/2003] [Indexed: 11/10/2022]
Abstract
BACKGROUND: Numerous studies in rats and a few other mammalian species, including man, have shown that the sinusoidal cells constitute an important part of liver function. In the pig, however, which is frequently used in studies on liver transplantation and liver failure models, our knowledge about the function of hepatic sinusoidal cells is scarce. We have explored the scavenger function of pig liver sinusoidal endothelial cells (LSEC), a cell type that in other mammals performs vital elimination of an array of waste macromolecules from the circulation. RESULTS: 125I-macromolecules known to be cleared in the rat via the scavenger and mannose receptors were rapidly removed from the pig circulation, 50% of the injected dose being removed within the first 2-5 min following injection. Fluorescently labeled microbeads (2 &mgr;m in diameter) used to probe phagocytosis accumulated in Kupffer cells only, whereas fluorescently labeled soluble macromolecular ligands for the mannose and scavenger receptors were sequestered only by LSEC. Desmin-positive stellate cells accumulated no probes. Isolation of liver cells using collagenase perfusion through the portal vein, followed by various centrifugation protocols to separate the different liver cell populations yielded 280 x 107 (range 50-890 x 107) sinusoidal cells per liver (weight of liver 237.1 g (sd 43.6)). Use of specific anti-Kupffer cell- and anti-desmin antibodies, combined with endocytosis of fluorescently labeled macromolecular soluble ligands indicated that the LSEC fraction contained 62 x 107 (sd 12 x 107) purified LSEC. Cultured LSEC avidly endocytosed ligands for the mannose and scavenger receptors. CONCLUSIONS: We show here for the first time that pig LSEC, similar to what has been found earlier in rat LSEC, represent an effective scavenger system for removal of macromolecular waste products from the circulation.
Collapse
Affiliation(s)
- Geir I Nedredal
- Department of Digestive Surgery, University Hospital of Tromsø, 9038 Tromsø, Norway
| | - Kjetil H Elvevold
- Department of Experimental Pathology, Institute of Medical Biology, University of Tromsø, 9037 Tromsø, Norway
| | - Lars M Ytrebø
- Department of Digestive Surgery, University Hospital of Tromsø, 9038 Tromsø, Norway
| | - Randi Olsen
- Department of Electron Microscopy, Institute of Medical Biology, University of Tromsø, 9037 Tromsø, Norway
| | - Arthur Revhaug
- Department of Digestive Surgery, University Hospital of Tromsø, 9038 Tromsø, Norway
| | - Bård Smedsrød
- Department of Experimental Pathology, Institute of Medical Biology, University of Tromsø, 9037 Tromsø, Norway
| |
Collapse
|
23
|
Sauer IM, Zeilinger K, Obermayer N, Pless G, Grünwald A, Pascher A, Mieder T, Roth S, Goetz M, Kardassis D, Mas A, Neuhaus P, Gerlach JC. Primary human liver cells as source for modular extracorporeal liver support--a preliminary report. Int J Artif Organs 2002; 25:1001-5. [PMID: 12456042 DOI: 10.1177/039139880202501015] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cell-based extracorporeal liver support is an option to assist or replace the failing organ until regeneration or until transplantation can be performed. The use of porcine cells or tumor cell lines is controversial. Primary human liver cells, obtained from explanted organs found to be unsuitable for transplantation, are a desirable cell source as they perform human metabolism and regulation. The Modular Extracorporeal Liver Support (MELS) concept combines different extracorporeal therapy units, tailored to suit the individual and intra-individual clinical needs of the patient. A multi-compartment bioreactor (CellModule) is loaded with human liver cells obtained by 5-step collagenase liver perfusion. A cell mass of 400 g - 600 g enables the clinical application of a liver lobe equivalent hybrid organ. A detoxification module enables single pass albumin-dialysis via a standard high-flux dialysis filter, and continuous veno-venuous hemodiafiltration may be included if required. Cells from 54 human livers have been isolated (donor age: 56 +/- 13 years, liver weight: 1862 +/- 556 g resulting in a viability of 55.0 +/- 15.9%). These grafts were not suitable for LTx, due to steatosis (54%), cirrhosis (15%), fibrosis (9%), and other reasons (22%). Out of 36 prepared bioreactors, 10 were clinically used to treat 8 patients with liver failure. The overall treatment time was 7-144 hours. No adverse events were observed. Initial clinical applications of the bioreactor evidenced the technical feasibility and safety of the system.
Collapse
Affiliation(s)
- I M Sauer
- Klinik für Allgemein-, Visceral- und Transplantationschirurgie, Charité, Campus Virchow, Humboldt-University, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Gerlach JC, Zeilinger K, Sauer IM, Mieder T, Naumann G, Grünwald A, Pless G, Holland G, Mas A, Vienken J, Neuhaus P. Extracorporeal liver support: porcine or human cell based systems? Int J Artif Organs 2002; 25:1013-8. [PMID: 12456044 DOI: 10.1177/039139880202501017] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Initial results of the clinical use of primary porcine liver cells for extracorporeal liver support are being reviewed as the cell source is controversial. According to Eurotransplant data 20-25% of explanted donor livers are not transplanted, due to factors such as steatosis or cirrhosis. This number corresponds to the number of patients with acute liver failure who require bridging therapy to transplantation. Primary human liver cells from transplant discards can be isolated, purified and maintained in bioreactors and provide an alternative for cell-based extracorporeal liver support therapy. A four-compartment bioreactor enables recovery from preservation and isolation injury in a three-dimensional network of interwoven capillary membranes with integrated oxygenation, rendering the liver cells from these discarded donor organs viable for clinical utilization. Patient contact with additional animal-derived biomatrix and fetal calf serum can be avoided. The initiation of an in vitro cultivation phase allows cell stabilization, quality control, and immediate availability of a characterized system without cryopreservation. The hypothesis of this paper is that with appropriate logistics and four-compartment bioreactor technology, cells from human liver transplant discards can serve the demand for cell-based therapy, including extracorporeal liver support.
Collapse
Affiliation(s)
- J C Gerlach
- Department of Surgery, Charité, Campus Virchow, Humboldt University, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|